JPH02155286A - Wavelength-tunable semiconductor laser device - Google Patents

Wavelength-tunable semiconductor laser device

Info

Publication number
JPH02155286A
JPH02155286A JP30964688A JP30964688A JPH02155286A JP H02155286 A JPH02155286 A JP H02155286A JP 30964688 A JP30964688 A JP 30964688A JP 30964688 A JP30964688 A JP 30964688A JP H02155286 A JPH02155286 A JP H02155286A
Authority
JP
Japan
Prior art keywords
semiconductor laser
wavelength
piezoelectric member
pressure
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30964688A
Other languages
Japanese (ja)
Inventor
Yutaka Ueda
裕 上田
Eiji Noda
英治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP30964688A priority Critical patent/JPH02155286A/en
Publication of JPH02155286A publication Critical patent/JPH02155286A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize an oscillation wavelength and to simplify manufacturing steps by combining a semiconductor laser having a non-diffraction grating structure and a piezoelectric member so disposed as to directly or indirectly compress the laser. CONSTITUTION:Pressure is applied to a semiconductor laser by using a piezoelectric member such as crystal, Rochelle salt, BaTiO3, etc., to variably control the oscillation wavelength of a laser. As a semiconductor laser, non-grating structure which is heretofore known such as GaAs, etc., is employed. As a pressure transfer member, a rigid material such as hard resin, glass, iron, etc., is employed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光記録(波長多重記録)、光通信等に利用さ
れる波長可変半導体レーザー装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wavelength tunable semiconductor laser device used for optical recording (wavelength multiplexing recording), optical communication, and the like.

〔従来技術〕[Prior art]

従来、波長可変半導体レーザー装置としてはDBR(分
布反射型)又はDFB (分布帰還型)レーザーのよう
に、共振器が回折格子のような周期構造を有する半導体
レーザーの回折格子部分にキャリアを注入することによ
り、屈折率変化を生じさせ、実効的に格子定数を変化さ
せて発振波長を変化させる方式のものや、前記と同様な
周期構造を有する半導体レーザーの回折格子の格子定数
を物理的に変化させて発振波長を変化させる方式のもの
が知られている。
Conventionally, as a wavelength tunable semiconductor laser device, carriers are injected into the diffraction grating portion of a semiconductor laser whose resonator has a periodic structure like a diffraction grating, such as a DBR (distributed reflection type) or DFB (distributed feedback type) laser. There are methods that change the refractive index and effectively change the lattice constant to change the oscillation wavelength, and methods that physically change the lattice constant of the diffraction grating of a semiconductor laser that has a periodic structure similar to the above. A method is known in which the oscillation wavelength is changed by changing the oscillation wavelength.

前者のキャリア注入を利用したレーザー装置、例えばD
BRレーザー装置は第1図(a)に示すように、活性領
域の両側(又は片側)に回折格子からなるDBR領域を
有し、そのブラッグ反射条件を満たす波長(縦モード)
だけ反射することを利用して発振波長の選択を行う、従
って回折格子の格子定数が変れず発振波長も変る。
Laser devices using the former carrier injection, such as D
As shown in Figure 1(a), a BR laser device has a DBR region consisting of a diffraction grating on both sides (or one side) of an active region, and has a wavelength (longitudinal mode) that satisfies the Bragg reflection condition.
The oscillation wavelength is selected by utilizing the fact that the oscillation wavelength is reflected. Therefore, the lattice constant of the diffraction grating does not change, but the oscillation wavelength also changes.

そこで前記図に示すように、DBR領域にItなる電流
を流しキャリア注入を行ない、回折格子媒質の屈折率を
変化させ実効的に格子定数を変えることにより発振波長
を変える試みがなされている。ところが、この方法の場
合、Itの電流密度により半導体レーザーの温度上昇の
度合いが異なるため、Itに変調をかけると温度の不安
定性に起因して発振波長が不安定になるという欠点を有
している。
Therefore, as shown in the figure, an attempt has been made to change the oscillation wavelength by flowing a current It in the DBR region and injecting carriers to change the refractive index of the diffraction grating medium and effectively change the lattice constant. However, in this method, the degree of temperature rise of the semiconductor laser differs depending on the current density of It, so modulating It has the disadvantage that the oscillation wavelength becomes unstable due to temperature instability. There is.

一方、後者の格子定数の物理的変化を利用したレーザー
装置は第1図(b)及び第2図(図中1は圧電性部材、
10はDFB領域)に示すように例えばDFBレーザー
において回折格子と平行に圧電性部材1を配置し、圧電
性部材を駆動すれば、格子定数を変化させることが可能
である。しかしこの場合、圧電性部材層は半導体レーザ
ーのエピタキシャル成長工程の途中で設けなければなら
ず、製造工程が複雑になる。
On the other hand, the latter laser device that utilizes physical changes in the lattice constant is shown in Figures 1(b) and 2 (1 in the figure is a piezoelectric member,
10 is a DFB region), for example, in a DFB laser, the piezoelectric member 1 is arranged in parallel with the diffraction grating, and the piezoelectric member is driven to change the lattice constant. However, in this case, the piezoelectric member layer must be provided during the epitaxial growth process of the semiconductor laser, which complicates the manufacturing process.

また両生導体レーザー装置とも回折格子構造を有する半
導体レーザーを利用するものであり、このようなレーザ
ーは回折格子作成のための複雑な工程を要する。
Further, both of the amphibodiic conductor laser devices utilize a semiconductor laser having a diffraction grating structure, and such lasers require a complicated process to create the diffraction grating.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、従来技術における以上のような欠点を
除去し、半導体レーザーの発振波長不安定の原因となる
温度不安定性を伴なわず。
An object of the present invention is to eliminate the above-mentioned drawbacks in the prior art, and to eliminate temperature instability which causes instability in the oscillation wavelength of semiconductor lasers.

且つ製造工程も簡単な非回折格子構造の可変発振半導体
レーザー装置を提供することである。
Another object of the present invention is to provide a tunable oscillation semiconductor laser device with a non-diffraction grating structure that is easy to manufacture.

〔発明の構成・動作〕[Structure and operation of the invention]

本発明の可変発振半導体レーザー装置は非回折格子構造
の半導体レーザーとこのレーザーを直接又は間接的に圧
縮できるように配置された圧電部材とを組合せたもので
ある。なお前記圧電性部材は電気信号により駆動され圧
力を発生するものである。
The tunable oscillation semiconductor laser device of the present invention is a combination of a semiconductor laser having a non-diffraction grating structure and a piezoelectric member arranged to compress the laser directly or indirectly. Note that the piezoelectric member is driven by an electric signal to generate pressure.

本発明装置の発振波長可変原理を図面によって説明する
The principle of tunable oscillation wavelength of the device of the present invention will be explained with reference to the drawings.

一般に固体のエネルギーギャップ又はエネルギーバンド
巾(Eg)は第3図に模式的に示すように、原子間距離
と共に変化する。この図の場合には、もし外部からの圧
力により原子間距離が近づくと、Egは小さくなる。バ
ンド構造によっては逆に大きくなるものもあれば、適当
な原子間距離で極大値(又は極小値)をとるものもある
。半導体レーザーの場合、Egが変れば発光スペクトル
も変わるので、発振波長を圧力で制御することが可能で
ある。例えばG a A sの場合、Eg(通常1.4
eV程度)は圧力によって約I Xl0−seV/ba
rの割合で増加すると云われている。この事は換云すれ
ば約100100O/Cm”の圧力により約70人の波
長変動があることになる。但し以上の事は圧力が等方的
に加わった場合の話であり、実際にこのような圧力を加
えるためには例えば液体中に半導体レーザーを人けで、
この液体に圧力を加えるようにしなければならず、実現
が困難である。しかし−軸方向の圧力だけでも上記のよ
うな効果はある程度発現することが確認されている。
Generally, the energy gap or energy band width (Eg) of a solid changes with the interatomic distance, as schematically shown in FIG. In the case of this figure, if the interatomic distance becomes closer due to external pressure, Eg becomes smaller. Depending on the band structure, some become large, while others take a maximum value (or minimum value) at an appropriate interatomic distance. In the case of a semiconductor laser, since the emission spectrum changes as Eg changes, the oscillation wavelength can be controlled by pressure. For example, in the case of Ga As, Eg (usually 1.4
eV) is approximately I Xl0-seV/ba depending on the pressure.
It is said that it increases at a rate of r. In other words, a pressure of about 100,100 O/Cm causes a wavelength fluctuation of about 70 degrees.However, the above is a case where pressure is applied isotropically, and in reality, In order to apply a certain amount of pressure, for example, by placing a semiconductor laser into the liquid,
This requires applying pressure to the liquid, which is difficult to achieve. However, it has been confirmed that the above-mentioned effects can be exerted to some extent even by applying pressure in the axial direction alone.

本発明は以上のような原理を利用し、圧電性部材を用い
て半導体レーザーに圧力を加えることによってレーザー
の発振波長を可変制御するものである。
The present invention utilizes the above principle to variably control the oscillation wavelength of a laser by applying pressure to a semiconductor laser using a piezoelectric member.

本発明で使用される圧電性部材の種類に特に制限はない
が、発生力の大きなものの方が効果的である。通常の圧
電性部材は100Kgf/am”程度の大きな発生力が
容易に得られる。このような圧電性部材の具体例として
は水晶、ロッシェル塩、BaTi○、系、P Z T 
(P bT’xo、  P bZro、)系、CdS、
ZnO,5in2;ポリ弗化ビニルデン;高分子とPZ
T系等の強誘電性セラミックスとの複合体等が挙げられ
る。
Although there are no particular limitations on the type of piezoelectric member used in the present invention, a piezoelectric member that generates a large force is more effective. Ordinary piezoelectric members can easily generate a large force of about 100 Kgf/am''. Specific examples of such piezoelectric members include quartz, Rochelle salt, BaTi○, PZT.
(P bT'xo, P bZro,) system, CdS,
ZnO, 5in2; Polyvinyldene fluoride; Polymer and PZ
Examples include composites with ferroelectric ceramics such as T-based ceramics.

従ってこれら通常の圧電性部材を用いて例えばlO:1
の面積比で半導体レーザーに圧縮力を伝達すれば半導体
レーザーに対し100100O/cm”の圧縮力を加え
ることは可能である。
Therefore, using these ordinary piezoelectric members, for example, 1O:1
It is possible to apply a compressive force of 100100 O/cm'' to the semiconductor laser by transmitting the compressive force to the semiconductor laser with an area ratio of .

以上のような圧電性部材を用いた波長可変半導体レーザ
ー装置の構成の各−例を第4〜6図に示す。第4〜5図
(図中2は圧力伝達部材、3は半導体レーザー、4は台
)の装置はいずれも圧電性部材1の圧力は圧力伝達部材
を介して半導体レーザーに伝達するようになっている。
Examples of the structure of a wavelength tunable semiconductor laser device using the piezoelectric member as described above are shown in FIGS. 4 to 6. 4 and 5 (in the figures, 2 is a pressure transmitting member, 3 is a semiconductor laser, and 4 is a stand), the pressure of the piezoelectric member 1 is transmitted to the semiconductor laser via the pressure transmitting member. There is.

第4図の場合は加える圧力を1軸方向に、また第5図の
場合は2軸方向にしたものである。また第4図では圧力
伝達部材は圧電性部材に接する上面と半導体レーザーに
接する下面との面積比が例えば約10:1の角錐台状を
しており、これにより圧電性部材の圧力を10倍にして
半導体レーザーに伝達することが可能である。
In the case of FIG. 4, the pressure is applied in one axial direction, and in the case of FIG. 5, it is applied in two axial directions. In addition, in FIG. 4, the pressure transmitting member has a truncated pyramid shape in which the area ratio of the upper surface in contact with the piezoelectric member and the lower surface in contact with the semiconductor laser is approximately 10:1, thereby increasing the pressure of the piezoelectric member by 10 times. It is possible to transmit the signal to a semiconductor laser.

また圧電性部材の特性、あるいは可変波長範囲によって
は第6図のように直接圧電性部材が半導体レーザーを圧
縮する形でもよい。
Further, depending on the characteristics of the piezoelectric member or the variable wavelength range, the piezoelectric member may directly compress the semiconductor laser as shown in FIG.

いずれにしても半導体レーザーとしてはGaAs、Ga
AQAs、InGaAQP、InGaAsP等、従来公
知の非格子構造のものが全て使用できる。
In any case, as a semiconductor laser, GaAs, Ga
All conventionally known non-lattice structures such as AQAs, InGaAQP, and InGaAsP can be used.

また圧力伝達部材としては硬質樹脂;ガラス:鉄、ニッ
ケル、アルミニウム、亜鉛、ステンレス、黄銅等の一般
金属等の剛性材料が使用できる。
Further, as the pressure transmission member, rigid materials such as hard resin, glass, and general metals such as iron, nickel, aluminum, zinc, stainless steel, and brass can be used.

なお、半導体レーザーの大きさは最大0.1mmX0.
1mm程度のものであるから、その10倍の面積でもl
mmX1mm以内でありレーザー光源として大型化する
ような心配はない。
Note that the maximum size of the semiconductor laser is 0.1 mm x 0.
Since it is about 1 mm, even if the area is 10 times that, l
Since it is within mm x 1 mm, there is no need to worry about it becoming too large as a laser light source.

〔発明の作用効果〕[Function and effect of the invention]

本発明の波長可変半導体レーザー装置は以上のように非
回折格子構造の半、導体レーザーに圧電性部材を組合せ
たので、温度不安定を伴わず、従って発振波長が安定で
あり、しかも従来のように圧電性部材層をエビタキャル
成長工程の途中で設けたり、回折格子を作成する必要が
ないので、製造工程が簡略化できるという利点がある。
As described above, the wavelength tunable semiconductor laser device of the present invention combines a piezoelectric member with a semi-conductor laser having a non-diffraction grating structure, so there is no temperature instability and the oscillation wavelength is stable. Since there is no need to provide a piezoelectric material layer during the Evitacal growth process or create a diffraction grating, there is an advantage that the manufacturing process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は夫々従来の波長可変DBR及
びDFB半導体レーザー装置の説明図、第2図は前記D
FB半導体レーザー装置の一例の断面図、第3図は本発
明の波長可変半導体レーザー装置の原理を説明するため
の固体におけるエネルギーギャップの模式図、第4〜6
図は本発明装置の各−例の断面図である。
FIGS. 1(a) and (b) are explanatory diagrams of conventional wavelength tunable DBR and DFB semiconductor laser devices, respectively, and FIG.
FIG. 3 is a cross-sectional view of an example of an FB semiconductor laser device, and FIG. 3 is a schematic diagram of an energy gap in a solid for explaining the principle of the wavelength tunable semiconductor laser device of the present invention.
The figures are cross-sectional views of each example of the device of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1、非回折格子構造の半導体レーザーとこのレーザーを
直接又は圧力伝達部材を介して間接的に圧縮できるよう
に配置された圧電性部材とを組合せてなる波長可変半導
体レーザー装置。
1. A wavelength-tunable semiconductor laser device that combines a semiconductor laser with a non-diffraction grating structure and a piezoelectric member arranged to compress the laser directly or indirectly through a pressure transmission member.
JP30964688A 1988-12-07 1988-12-07 Wavelength-tunable semiconductor laser device Pending JPH02155286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30964688A JPH02155286A (en) 1988-12-07 1988-12-07 Wavelength-tunable semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30964688A JPH02155286A (en) 1988-12-07 1988-12-07 Wavelength-tunable semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH02155286A true JPH02155286A (en) 1990-06-14

Family

ID=17995551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30964688A Pending JPH02155286A (en) 1988-12-07 1988-12-07 Wavelength-tunable semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH02155286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135256A (en) * 2004-11-09 2006-05-25 Hamamatsu Photonics Kk Semiconductor laser element
JP2006245543A (en) * 2005-02-28 2006-09-14 Samsung Electro Mech Co Ltd Light emitting device of wavelength transformation type

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135256A (en) * 2004-11-09 2006-05-25 Hamamatsu Photonics Kk Semiconductor laser element
JP4536488B2 (en) * 2004-11-09 2010-09-01 浜松ホトニクス株式会社 Semiconductor laser element
JP2006245543A (en) * 2005-02-28 2006-09-14 Samsung Electro Mech Co Ltd Light emitting device of wavelength transformation type

Similar Documents

Publication Publication Date Title
US4904045A (en) Grating coupler with monolithically integrated quantum well index modulator
US6041071A (en) Electro-optically tunable external cavity mirror for a narrow linewidth semiconductor laser
US5384797A (en) Monolithic multi-wavelength laser diode array
JP2813067B2 (en) Optical filter
US6052400A (en) Variable wavelength semiconductor laser
US4532632A (en) Tunable semiconductor laser
JPH02159781A (en) Optical communication device
JPH07202327A (en) Optical semiconductor element
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
KR20040102018A (en) Quantum nano-composite semiconductor laser and quantum nano-composite array
JPH02155286A (en) Wavelength-tunable semiconductor laser device
JPH0732292B2 (en) Semiconductor light emitting device
WO1992022946A1 (en) Laser diode with volume refractive index grating
JP2659199B2 (en) Tunable wavelength filter
EP0549123B1 (en) Semiconductor laser having reduced temperature dependence
JPH03189631A (en) Waveguide apparatus
JPH06125141A (en) Semiconductor quantum well optical element
JPS6250075B2 (en)
JPH0716079B2 (en) Semiconductor laser device
JPS6328520B2 (en)
JPH03248130A (en) Semiconductor optical amplifying element, semiconductor optical element and method for using these elements
JP2713445B2 (en) Semiconductor laser device
JP3707846B2 (en) Distributed feedback semiconductor laser device
JPH03266489A (en) Semiconductor laser
JP3226072B2 (en) Semiconductor laser capable of polarization modulation and its use.