JPH02154470A - Memory cell of nonvolatile semiconductor memory - Google Patents

Memory cell of nonvolatile semiconductor memory

Info

Publication number
JPH02154470A
JPH02154470A JP63308530A JP30853088A JPH02154470A JP H02154470 A JPH02154470 A JP H02154470A JP 63308530 A JP63308530 A JP 63308530A JP 30853088 A JP30853088 A JP 30853088A JP H02154470 A JPH02154470 A JP H02154470A
Authority
JP
Japan
Prior art keywords
gate
drain
floating gate
insulating film
control gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63308530A
Other languages
Japanese (ja)
Inventor
Shoichi Iwasa
岩佐 昇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63308530A priority Critical patent/JPH02154470A/en
Publication of JPH02154470A publication Critical patent/JPH02154470A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To put a control control gate between a drain and a floating gate and prevent the floating gate from rising, a suppressing the capacitive coupling between the floating gate and the drain, by prolonging one end of the control gate in the drain direction and bringing it into contact with the first gate insulating film. CONSTITUTION:A part of a control gate 2 is prolonged in the drain direction 5 and touches the first gate insulating film 10 directly. By this, the control gate 2 is put between the drain and a floating gate 3, and excludes the capaci tive coupling between the drain 5 and the floating gate 3 of a nonselective cell. Accordingly, it becomes possible to suppress the channel leak owing to the rising of the floating gate 3 and prevent the lowering of digit line potential at the time of writing operation. Besides, it also becomes possible to prevent the discharge of the charge of a having-been-written cell owing to stress being applied to the drain 5, as the drain 5 and floating gate 3 are isolated from each other in structure.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は浮遊ゲート型子揮発性MO3半導体装置に関し
、特に電気的に書込かつ一括消去を行い得る不揮発性メ
モリに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a floating gate type volatile MO3 semiconductor device, and more particularly to a nonvolatile memory that can be electrically written to and erased all at once.

[従来の技術] 従来、この種の浮遊ゲート型不揮発性MOS半導体装置
には、第2A図〜第2B図に示す構造が最も多く用いら
れており、浮遊ゲートと制御ゲートが自己整合的に形成
され、浮遊ゲートの両側がソース及びドレインと拡散層
の横方内拡がり分オーバーラツプしている構造をなして
いる。その書込方法は、前記制御ゲートに正の書込用電
圧を印加すると同時に、正のドレイン電圧を印加して、
ドレイン近傍に発生するホットエレクトロンの一部を浮
遊ゲートに注入することによって行い、消去はUV紫外
光を照射することによって浮遊ゲート内の電子を励起さ
せてシリコン/二酸化シリコン界面のバリア高さ3.2
eVを越えるエネルギーを与え、浮遊ゲート外へ放出さ
せることによって行っている。
[Prior Art] Conventionally, the structure shown in FIGS. 2A and 2B has been most commonly used in this type of floating gate type nonvolatile MOS semiconductor device, in which the floating gate and the control gate are formed in a self-aligned manner. The floating gate has a structure in which both sides of the floating gate overlap with the source and drain by the lateral inward expansion of the diffusion layer. The write method includes applying a positive write voltage to the control gate and simultaneously applying a positive drain voltage.
This is done by injecting some of the hot electrons generated near the drain into the floating gate, and erasing is done by exciting the electrons in the floating gate by irradiating UV light to increase the barrier height of the silicon/silicon dioxide interface. 2
This is done by applying energy exceeding eV and emitting it outside the floating gate.

[発明が解決しようとする問題点] 然るに、上述した従来の浮遊ゲート型子揮発性MO3半
導体装置は近年その大容量 @細化と共に次ぎに挙げる
問題点が無視できなくなりつつあ。
[Problems to be Solved by the Invention] However, as the above-mentioned conventional floating gate type volatile MO3 semiconductor devices have become larger in capacity and thinner in recent years, the following problems have become impossible to ignore.

る。すなわち、第3図にメモリ素子の等価回路を示して
いるが、メモリセルのゲート長が長い場合には第3図の
容量間にはCI、C2>>C3,C32の関係があり、
しかもソース・ドレイン拡散層の不純物が拡散係数の小
さいヒ素等の場合にはオーバーラツプ容量C3,C3’
を無視することができていたが、最近の短チヤネル化に
伴い、特にC3すなわち浮遊ゲート−ドレインオーバー
ラツプ容量の影響が無視できなくなりつつある。つまり
第4図に示すように、ワード線xi、デイジット線Yj
を選択してメモリMIJにデータヒツトを書き込もうと
する場合、非選択であるMi−1jまたはMi+Ijに
おいてはYjが共通であるため、各々ドレインにMij
と同じ正の印加電圧が加わる。
Ru. That is, although the equivalent circuit of the memory element is shown in FIG. 3, when the gate length of the memory cell is long, there is a relationship between the capacitances in FIG. 3 as CI, C2 >> C3, C32,
Moreover, if the impurity in the source/drain diffusion layer is arsenic, etc., which has a small diffusion coefficient, the overlap capacitances C3 and C3'
However, with the recent trend toward shorter channels, the influence of C3, that is, the floating gate-drain overlap capacitance, can no longer be ignored. That is, as shown in FIG. 4, word line xi, digit line Yj
When attempting to write a data hit to memory MIJ by selecting , Yj is common in unselected Mi-1j or Mi+Ij, so Mij is placed on each drain.
The same positive applied voltage is applied.

この際C3の影響で浮遊ゲートが浮き上がり、オフ状態
であるべきMi−1j、 Mi+1jが弱反転し電流が
流れるため、Yjが書込可能な電位まで上がらすMiJ
の書込みに支障をきたす。Yjにぶら下がるメモリセル
トランジスタの数が多くなればなるほど、この容jlc
3の影響は大きい。
At this time, the floating gate floats due to the influence of C3, and Mi-1j and Mi+1j, which should be in the off state, are weakly reversed and a current flows, so Yj raises MiJ to a writeable potential.
This will cause problems when writing. As the number of memory cell transistors hanging from Yj increases, this capacity jlc
3 has a big influence.

一方、すてにMijが書込まれた状態にあり、他の同一
のYjにぶら下がるMi−1jまたはMi+IJを書き
込んでいる場合を考えると、この時Mijにはドレイン
にのみ書き込み電圧が印加されており、このストレスで
ドレイン近傍に発生するホットキャリアのうち、ホール
がドレイン電位より相対的に低い電位にある浮遊ゲート
に引かれて注入され、浮遊ゲート内の電子と相殺され、
書込レベルが下がるという欠点も有している。この場合
にもまた1本のデイジット線にぶら下がるメモリセルト
ランジスタが多いほど、その影響は深刻である。
On the other hand, if we consider the case where Mij has already been written and Mi-1j or Mi+IJ hanging from another identical Yj is being written, at this time the write voltage is applied only to the drain of Mij. Among the hot carriers generated near the drain due to this stress, holes are attracted to the floating gate, which is at a relatively lower potential than the drain potential, and are injected, canceling out the electrons in the floating gate.
It also has the disadvantage of lowering the writing level. In this case as well, the more memory cell transistors that hang from one digit line, the more serious the effect will be.

[発明の従来技術に対する相違点コ 上述した従来の浮遊ゲート型子揮発性MO5半導体装置
に対し、本発明は制御ゲートの一端をドレイン方向ζ4
延在させ、第1ゲート絶縁膜に接触させることにより、
ドレインと浮遊ゲート、間に制御ゲートを介在させ、非
選択セルに対しては、浮遊ゲート−ドレイン間の容量結
合を抑制して浮遊ゲートの浮き上がりをなくし、またド
レインと浮遊ゲートが隔離されるので、ドレインに印加
されるス1ドレスで発生するホットキャリアの影響を受
けないという相違点を有する。
[Differences between the invention and the prior art] Compared to the above-mentioned conventional floating gate type volatile MO5 semiconductor device, the present invention has one end of the control gate aligned in the drain direction ζ4.
By extending and contacting the first gate insulating film,
A control gate is interposed between the drain and the floating gate, and for unselected cells, capacitive coupling between the floating gate and the drain is suppressed to eliminate floating gate floating, and the drain and floating gate are isolated. , the difference is that it is not affected by hot carriers generated by the voltage applied to the drain.

ン [問題点を解決するたφの手段] 本発明の要旨は第1導電型の半導体基板上に互いに離隔
して形成された第2導電型のソース領域及びドレイン領
域と、該ソース領域とドレイン領域の間の半導体基板上
に形成された第1ゲート絶縁膜と、上記第1ゲート絶縁
膜上に設けられ一端が上記ソース領域の端部上方に位置
す否浮遊ゲートと、該浮遊ゲート上に形成された第2ゲ
ート絶縁膜と、該第2ゲート絶縁膜と上記第1ゲート絶
縁膜上に上記浮遊ゲートと一部重なるよう形成され一端
が上記ドレイン領域の端部の上方に位置する制御ゲート
とを含む不揮発性半導体記憶装置のメモ刀セルにおいて
、前記制御ゲートに第1極性書込用電圧を印加すると同
時に第1極性のドレイン電圧を印加して、前記ソース領
域とドレイン領域との間、の反転チャネル領域における
制御ゲート下と浮遊ゲート下との各々の表面ポテンシャ
ルの差を・利用してチャネル方向に加速・されたホット
エレクトロンの一部を前記浮遊ゲートに注入することに
より書込みを行うことである。
[Means for Solving Problems] The gist of the present invention is to provide a source region and a drain region of a second conductivity type formed on a semiconductor substrate of a first conductivity type and separated from each other; a first gate insulating film formed on a semiconductor substrate between the regions; a non-floating gate provided on the first gate insulating film and having one end located above an end of the source region; a second gate insulating film formed, and a control gate formed on the second gate insulating film and the first gate insulating film so as to partially overlap the floating gate, and having one end located above an end of the drain region. In a memo cell of a nonvolatile semiconductor memory device comprising: applying a first polarity write voltage to the control gate and simultaneously applying a first polarity drain voltage, between the source region and the drain region; Writing is performed by injecting a portion of hot electrons accelerated in the channel direction into the floating gate by utilizing the difference in surface potential between the bottom of the control gate and the bottom of the floating gate in the inversion channel region. It is.

[実施例] 次に本発明の実施例について図面を参照して説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.

第1A図及至第1B図は、各々本発明の第1実施例の平
面図及び断面図であり、第1B図は第1A図においてA
−A’線に沿って切断した断面図である。第1B図に見
るように、ソース4とドレイン5の間にあるチャネル領
域を、第1ゲート絶縁膜10を介してソース側を浮遊ゲ
ート3が、ドレイン側を制御ゲート2が直接規定するよ
う形成されており、かつ前記制御ゲート2の一部が図に
示すように浮遊ゲート3の上に第2ゲート絶縁膜11を
介して延在する構造になっている。
1A and 1B are a plan view and a cross-sectional view of a first embodiment of the present invention, respectively, and FIG. 1B is an A in FIG. 1A.
- It is a sectional view cut along the A' line. As shown in FIG. 1B, the channel region between the source 4 and the drain 5 is formed so that the floating gate 3 directly defines the source side and the control gate 2 directly defines the drain side through the first gate insulating film 10. The structure is such that a part of the control gate 2 extends above the floating gate 3 via the second gate insulating film 11, as shown in the figure.

次にその動作について説明する。上記の制御ゲート2に
正の書込用電圧(12,5V〜18V)を印加すると同
時に、正のドレイン電圧例えば10からIIVを印加す
ることによって、前記ソース4.ドレイン5間に反転領
域を形成するが、この時浮遊ケート3の電位は第1ゲー
ト絶縁膜10と第2ゲート絶縁膜11の膜厚及び面積に
よって決まる容量比で決定され、例えば第1ゲート絶縁
膜厚を300人、第2ゲート絶縁膜厚な400人とする
と、浮遊ゲートの電位はおよそ0. 60VCG (V
CG:制御ゲート電圧)となり7.5V〜11.OVと
なる。従って、制御ゲート2が直接第1ゲート絶縁膜に
接しているチャネル領域よりも弱反転になっており、そ
の表面ポテンシャルも相対的に高い。このチャネル領域
をチャネルキャリアである電子が通過する際にこのポテ
ンシャル差により、チャネルと水平方向に加速されるこ
とによってシリコン/二酸化シリコン界面の障壁高さ3
.2eVを越えるホットエレクトロンが発生し、浮遊ゲ
ート3に注入され、書込みが行われる。第6図にVCG
=17.OVて行った本実施例の書込特性を示している
Next, its operation will be explained. The source 4. An inversion region is formed between the drains 5, and at this time, the potential of the floating gate 3 is determined by the capacitance ratio determined by the film thickness and area of the first gate insulating film 10 and the second gate insulating film 11. Assuming that the film thickness is 300 and the second gate insulating film is 400, the potential of the floating gate is approximately 0. 60VCG (V
CG: control gate voltage) is 7.5V to 11. It becomes OV. Therefore, the control gate 2 is inverted weaker than the channel region directly in contact with the first gate insulating film, and its surface potential is also relatively high. When electrons, which are channel carriers, pass through this channel region, they are accelerated in the horizontal direction with the channel due to this potential difference, resulting in a barrier height of 3 at the silicon/silicon dioxide interface.
.. Hot electrons exceeding 2 eV are generated and injected into the floating gate 3 to perform writing. Figure 6 shows VCG
=17. It shows the write characteristics of this example when OV was performed.

また浮遊ゲート3の浮き上がりに対する改善の効果を第
7図に示す。第7図では各々浮遊ゲート長1.2μmを
持つ従来型(第2A図及至第2B図に示すタイプ)と本
実施例(第1図)のVDS−IDS特性(制御ゲートを
接地)を示しており、この図から明らかなようにVDS
<8.4Vの領域では制御ゲートをドレイン方向へオー
バーラツプさせた分実行的なチャネル長が長くなった分
■DSも低く、またVDS>8.4V領域においては、
浮き上がりを抑制している効果か顕著に見られる。
FIG. 7 shows the effect of improving the lifting of the floating gate 3. Figure 7 shows the VDS-IDS characteristics (with the control gate grounded) of the conventional type (the type shown in Figures 2A and 2B) and this embodiment (Figure 1), each with a floating gate length of 1.2 μm. As is clear from this figure, VDS
In the <8.4V region, the effective channel length is longer due to the overlap of the control gate in the drain direction, and the DS is also lower; in the VDS>8.4V region,
The effect of suppressing lifting can be clearly seen.

第5図は本発明の第2実施例の断面図である。FIG. 5 is a sectional view of a second embodiment of the invention.

本実施例の平面図は第1実施例の第1A図と同様である
。本実施例では第1実施例とは、ことなり制御ゲート2
が直接第1ゲート絶縁膜10に接しているチャネル領域
に浮遊ゲート3形成後にこれと自己整合的に反転しやす
いようにチャネルドーピング領域12を形成している。
The plan view of this embodiment is similar to FIG. 1A of the first embodiment. In this embodiment, the control gate 2 is different from the first embodiment.
A channel doping region 12 is formed in the channel region where the floating gate 3 is in direct contact with the first gate insulating film 10 so as to be easily inverted in self-alignment with the floating gate 3 after the floating gate 3 is formed.

こうすることによって制御ゲート2に正の書込電圧を印
加した際、浮遊ゲート下と制御ゲート下のチャネルドー
ピングした領域の表面ポテンシャルの差が第1実施例よ
りもさらに大きくなり、チャネルエレクトロンをより効
率よく加速することができ、書込効率が増すという効果
がある。
By doing this, when a positive write voltage is applied to the control gate 2, the difference in surface potential between the channel doped regions under the floating gate and the control gate becomes even larger than in the first embodiment, and the channel electrons are further reduced. This has the effect of efficiently accelerating and increasing writing efficiency.

[発明の効果] 以上説明したように本発明は、制御ゲートの一部をドレ
イン方向に延在させ、第1ゲート絶縁膜に直接接触させ
ることにより、ドレインと浮遊ゲート間に制御ゲートを
介在させ、非選択セルの浮遊ゲート−ドレイン間の容量
結合を排するので浮遊ゲートの浮き上がりによるチャネ
ルリークを抑えることができ、書込動作時のデイジット
線電位の低下を防ぐことができる。またドレインと浮遊
ゲートが隔離された構造になっているため、ドレインに
印加されるストレスによる既書込セルのチャージの散失
も防ぐことができる。
[Effects of the Invention] As explained above, the present invention allows the control gate to be interposed between the drain and the floating gate by extending a part of the control gate in the drain direction and directly contacting the first gate insulating film. Since capacitive coupling between the floating gate and the drain of unselected cells is eliminated, channel leakage due to floating of the floating gate can be suppressed, and a drop in digit line potential during write operation can be prevented. Furthermore, since the drain and the floating gate are separated from each other, it is possible to prevent the charge in the written cell from dissipating due to stress applied to the drain.

ざらに、その構造上、浮遊ゲートの端部が制御ゲートで
覆われているため、制御ゲートにある一定の正電圧を印
加することにより、この端部において浮遊ゲート内の電
子を制御ゲートにトンネル注入させ、電気的に一括消去
が可能になるという点で従来例のような、紫外線を照射
するための窓付パッケージを必要とせず、安価なプラス
チックパッケージに封入しても何回も書込/消去が可能
になるという効果もある。
Generally, due to its structure, the end of the floating gate is covered with a control gate, so by applying a certain positive voltage to the control gate, electrons in the floating gate can be tunneled to the control gate at this end. Since it is possible to inject and electrically erase all at once, there is no need for a package with a window for irradiating ultraviolet rays as in the conventional case, and it can be written and erased many times even if it is enclosed in an inexpensive plastic package. It also has the effect of making erasing possible.

−10〜-10~

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は第1実施例の平面図、第1B図は第1A図の
A−A”線に沿った断面図、第2A図は不揮発性MO5
半導体装置の従来例を示す平面図、第2B図は第2A図
のB−B’線に沿った断面図、第3図は従来例の等価回
路図、第4図は従来例における単一デイジット線に沿っ
て見たセル′アレイの等価回路図、第5図は本発明の第
2実施例の断面図、第6図は第1実施例の書込特性を示
すグラフ、第7図は本発明と従来例の浮き上がりによる
チャネルリーク電流の差を説明するグラフである。 1 ・ 3 ・ 4・ 5 ・ 6 ・ 7 φ ・フィールド絶縁膜、 ・ワード線(制御ゲート)、 ・浮遊ゲート、 ・ソース拡散層、 ・ドレイン拡散層、 ・ドレインコンタクト、 ・デイジット線、 8 ・ ・ 9 ・ ・ 10 ・ 11 ・ 12 ・
Figure 1A is a plan view of the first embodiment, Figure 1B is a sectional view taken along line A-A'' in Figure 1A, and Figure 2A is a non-volatile MO5
A plan view showing a conventional example of a semiconductor device, FIG. 2B is a sectional view taken along line BB' in FIG. 2A, FIG. 3 is an equivalent circuit diagram of the conventional example, and FIG. 4 is a single digit in the conventional example. 5 is a sectional view of the second embodiment of the present invention, FIG. 6 is a graph showing the write characteristics of the first embodiment, and FIG. 7 is a graph showing the write characteristics of the first embodiment. 7 is a graph illustrating a difference in channel leakage current due to floating between the invention and a conventional example. 1 ・ 3 ・ 4 ・ 5 ・ 6 ・ 7 φ ・Field insulating film, ・Word line (control gate), ・Floating gate, ・Source diffusion layer, ・Drain diffusion layer, ・Drain contact, ・Digit line, 8 ・ ・9 ・ ・ 10 ・ 11 ・ 12 ・

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に互いに離隔して形成された
第2導電型のソース領域及びドレイン領域と、該ソース
領域とドレイン領域の間の半導体基板上に形成された第
1ゲート絶縁膜と、上記第1ゲート絶縁膜上に設けられ
一端が上記ソース領域の端部上方に位置する浮遊ゲート
と、該浮遊ゲート上に形成された第2ゲート絶縁膜と、
該第2ゲート絶縁膜と上記第1ゲート絶縁膜上に上記浮
遊ゲートと一部重なるよう形成され一端が上記ドレイン
領域の端部の上方に位置する制御ゲートとを含む不揮発
性半導体記憶装置のメモリセルにおいて、前記制御ゲー
トに第1極性書込用電圧を印加すると同時に第1極性の
ドレイン電圧を印加して、前記ソース領域とドレイン領
域との間の反転チャネル領域における制御ゲート下と浮
遊ゲート下との各々の表面ポテンシャルの差を利用して
チャネル方向に加速されたホットエレクトロンの一部を
前記浮遊ゲートに注入することにより書込みを行うこと
を特徴とする不揮発性半導体記憶装置のメモリセル。
A source region and a drain region of a second conductivity type formed on a semiconductor substrate of a first conductivity type and separated from each other; and a first gate insulating film formed on the semiconductor substrate between the source region and the drain region. , a floating gate provided on the first gate insulating film and having one end located above an end of the source region; a second gate insulating film formed on the floating gate;
A memory for a non-volatile semiconductor memory device comprising the second gate insulating film and a control gate formed on the first gate insulating film so as to partially overlap the floating gate and having one end located above an end of the drain region. In the cell, a first polarity write voltage is applied to the control gate and a first polarity drain voltage is simultaneously applied to the control gate and the floating gate in the inverted channel region between the source region and the drain region. A memory cell of a nonvolatile semiconductor memory device, characterized in that writing is performed by injecting a portion of hot electrons accelerated in a channel direction into the floating gate using a difference in surface potential between the two.
JP63308530A 1988-12-06 1988-12-06 Memory cell of nonvolatile semiconductor memory Pending JPH02154470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63308530A JPH02154470A (en) 1988-12-06 1988-12-06 Memory cell of nonvolatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63308530A JPH02154470A (en) 1988-12-06 1988-12-06 Memory cell of nonvolatile semiconductor memory

Publications (1)

Publication Number Publication Date
JPH02154470A true JPH02154470A (en) 1990-06-13

Family

ID=17982142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308530A Pending JPH02154470A (en) 1988-12-06 1988-12-06 Memory cell of nonvolatile semiconductor memory

Country Status (1)

Country Link
JP (1) JPH02154470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677440A (en) * 1992-08-27 1994-03-18 Mitsubishi Electric Corp Nonvolatile semiconductor memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677440A (en) * 1992-08-27 1994-03-18 Mitsubishi Electric Corp Nonvolatile semiconductor memory

Similar Documents

Publication Publication Date Title
US7577027B2 (en) Multi-state memory cell with asymmetric charge trapping
JP2710521B2 (en) Semiconductor memory cell and memory array including inversion layer
US7982256B2 (en) Semiconductor memory device having DRAM cell mode and non-volatile memory cell mode and operation method thereof
US7417893B2 (en) Integrated DRAM-NVRAM multi-level memory
US6878991B1 (en) Vertical device 4F2 EEPROM memory
EP0051158B1 (en) Electrically alterable double dense memory
KR0179175B1 (en) Method of manufacturing semiconductor memory device
JPH0685272A (en) Noncontact 5-v high-speed eprom/flash eprom array using cell written by using source-side injection
US6822910B2 (en) Non-volatile memory and operating method thereof
TW201301485A (en) Non-volatile semiconductor memory cell with dual functions
US4486859A (en) Electrically alterable read-only storage cell and method of operating same
US6528845B1 (en) Non-volatile semiconductor memory cell utilizing trapped charge generated by channel-initiated secondary electron injection
JPH02154470A (en) Memory cell of nonvolatile semiconductor memory
US8530952B2 (en) Systems, methods and devices for a memory having a buried select line
KR100488583B1 (en) Dual bit split gate flash memory device and method for driving the same
US11101000B2 (en) Semiconductor device and method for operating the same
KR100521430B1 (en) Method for programming by the flash memory
JPS6180853A (en) Non-volatile dynamic memory cell
JPH05129627A (en) Nonvolatile semiconductor storage element