JPH02154195A - Incore insert assembly - Google Patents

Incore insert assembly

Info

Publication number
JPH02154195A
JPH02154195A JP63307807A JP30780788A JPH02154195A JP H02154195 A JPH02154195 A JP H02154195A JP 63307807 A JP63307807 A JP 63307807A JP 30780788 A JP30780788 A JP 30780788A JP H02154195 A JPH02154195 A JP H02154195A
Authority
JP
Japan
Prior art keywords
fuel
neutrons
reactivity control
neutron
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63307807A
Other languages
Japanese (ja)
Inventor
Noboru Okada
昇 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP63307807A priority Critical patent/JPH02154195A/en
Publication of JPH02154195A publication Critical patent/JPH02154195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To simplify operation control by incorporating a reactivity control member contg. a material which is variable in neutron absorptivity during fuel cycle into an intermediate part and incorporating a material which hardly absorbs neutrons and converts neutron spectra to heat into the upper and lower parts. CONSTITUTION:The hollow cladding pipe 3 made of zircaloy of the reactivity control member 2 is formed of the upper cladding pipe part 3a, the intermediate cladding pipe part 3b, and the lower cladding pipe 3c. The primary coolant in a reactor vessel flows via a slit 7 into the part 3b but the concn. of the boric acid in the primary coolant is high and the thermal neutron absorption of the boric acid is large; therefore, the nuclear fission reaction of the fuel and neutrons in the adjacent regions of the part 3b is suppressed and the relative output in the axial intermediate part of the fuel assembly is lowered. The thermal neutrons are hardly absorbed in the parts 3a, 3c and since the pellets 6 of the zirconium halide which is converted to the thermal neutron exist, the nuclear fission reaction of the fuel and thermal neutrons in the adjacent regions thereof becomes active and the degradation in the output of the part 3b is compensated. The output distribution in the axial direction is thus flattened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子炉の炉心の出力分布を平坦化する目的で
使用する出力分布制御用の炉心内挿物集合体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a core insert assembly for power distribution control used for the purpose of flattening the power distribution of a nuclear reactor core.

[従来の技術] 原子炉の炉心を経済的に且つ安定して運転するための条
件としては、燃料の寿命初期における過剰反応度を抑制
することと、炉心の出力分布を平坦化することとが必要
であり、このため、燃料集合体内に適宜挿入されるいわ
ゆる内挿物集合体が従来から使用されている。
[Prior Art] The conditions for economical and stable operation of a nuclear reactor core are to suppress excessive reactivity at the beginning of the fuel life and to flatten the power distribution of the core. This is why so-called insert assemblies have traditionally been used, which are appropriately inserted into the fuel assemblies.

従来の内挿物集合体の一般的形態は、第6図及び第7図
に示すように、複数の長尺の反応度制御部材12と、複
数の短尺のプラグ13とを平行に配置してなり、このよ
うな内挿物集合体11を燃料集合体の案内管(図示せず
)内に挿入すると、反応度制御部材12は、炉心内の出
力分布に影響する主因たる燃料集合体の反応度を低下さ
せる。また、プラグ13は、反応度制御部材12が挿入
されていない案内管をプラギングする。
The general form of a conventional insert assembly is as shown in FIGS. 6 and 7, in which a plurality of long reactivity control members 12 and a plurality of short plugs 13 are arranged in parallel. When such an insert assembly 11 is inserted into a guide pipe (not shown) of a fuel assembly, the reactivity control member 12 controls the reaction of the fuel assembly, which is the main factor influencing the power distribution in the core. reduce the degree of Moreover, the plug 13 plugs the guide tube in which the reactivity control member 12 is not inserted.

プラグ13は、第8図から諒解されるように、通常、ス
テンレス鋼製の丸棒からなり、また、反応度制御部材1
2は、バーナプルポイズン棒であって、第9図に示すよ
うに、ステンレス鋼製の2重管からなる被覆管14の環
状空間内に10Bのような中性子吸収物質15がガラス
の形で収容されている。1体の内挿物集合体11は、通
常、8〜20本(第7図の例では12本)の反応度制御
部材12を含み、これ等の反応度制御部材12が燃料集
合体に挿入されると、同燃料集合体の反応度は寿命初期
において約10〜20%へに/に程度減少する。
As can be understood from FIG. 8, the plug 13 is usually made of a round bar made of stainless steel, and the reactivity control member 1
2 is a burner-pull poison rod, and as shown in FIG. 9, a neutron absorbing substance 15 such as 10B is housed in the form of glass in the annular space of a cladding tube 14 made of a double tube made of stainless steel. has been done. One insert assembly 11 normally includes 8 to 20 (12 in the example of FIG. 7) reactivity control members 12, and these reactivity control members 12 are inserted into the fuel assembly. As a result, the reactivity of the fuel assembly decreases to about 10-20% at the beginning of its life.

また、他の内挿物集合体としては、外形的形態は前述し
たものと同様であるが、反応度制御部材をステンレス鋼
製(特開昭56−111491号公報)としたり、ジル
カロイ製(特開昭61−122595号公報)としたも
の等が知られている。
In addition, as for other insert assemblies, the external shape is the same as that described above, but the reactivity control member is made of stainless steel (Japanese Patent Application Laid-open No. 111491/1982) or Zircaloy (Japanese Patent Laid-Open No. 111491/1983). JP-A No. 61-122595) is known.

[発明が解決しようとする課題] しかし、上述したような従来の内挿物集合体では、原子
炉の炉心の横方向出力分布の平坦化は可能であるが、上
述のような物質を反応度制御部材の全有効長に亙って実
質的に均等に分布せしめたものであり、軸方向出力分布
の平坦化については考慮していなかったために、燃料サ
イクルの寿命初期において燃料の熱的制限に余裕のない
状況を生起させる。また、燃料サイクルの全寿命を通じ
て軸方向出力分布は大巾に変化するため、上述のような
内挿物集合体を使用していると、軸方向出力分布を可及
的に一定にするための運転指標となる軸方向中性子束偏
差目標値の設定を定期的に更新する必要があり、炉心の
運転管理上の繁雑化を招くことになる。
[Problems to be Solved by the Invention] However, with the conventional interpolation assembly as described above, it is possible to flatten the lateral power distribution of the reactor core, but it is possible to flatten the lateral power distribution of the reactor core. The power distribution was substantially evenly distributed over the entire effective length of the control member and did not take into account the flattening of the axial power distribution, resulting in thermal limitations of the fuel early in the life of the fuel cycle. Create a situation that you cannot afford. Additionally, since the axial power distribution varies widely over the life of the fuel cycle, using an interpolation assembly such as the one described above will help ensure that the axial power distribution is as constant as possible. It is necessary to periodically update the setting of the axial neutron flux deviation target value, which is an operating index, which leads to complicated core operation management.

従って、本発明の目的は、軸方1出力分布の平坦化が可
能な炉心内挿物集合体を提供することである。
Therefore, an object of the present invention is to provide a core insert assembly capable of flattening the axial power distribution.

[課題を解決するための手段] この目的を達成するため、本発明によると、燃料集合体
に挿入される出力分布制御用の炉心内挿物集合体は、複
数の反応度制御部材を備え、該反応度制御部材のうち少
なくとも所定のものが、その軸方向の中間部内に、燃料
サイクル中の中性子吸収率が可変の物質を含むことが可
能であり、その軸方向の上下部内に、中性子を殆ど吸収
せず中性子スペクトルを熱化する物質を含むことを特徴
としている。
[Means for Solving the Problem] In order to achieve this object, according to the present invention, a core insert assembly for power distribution control inserted into a fuel assembly includes a plurality of reactivity control members, At least a predetermined one of the reactivity control members may include a material having a variable neutron absorption rate during the fuel cycle in its axially intermediate portion, and may contain a substance having a variable neutron absorption rate during the fuel cycle in its axially upper and lower portions. It is characterized by containing a substance that absorbs little and heats up the neutron spectrum.

[作用] 反応度制御の目的で一次冷却材(中性子吸収率が可変の
物質)にはホウ酸が注入されており、その濃度は、例え
ばサイクル寿命初期で約1200ppm、サイクル寿命
末期で約10ppmに調整される。
[Function] Boric acid is injected into the primary coolant (substance with variable neutron absorption rate) for the purpose of reactivity control, and its concentration is, for example, about 1200 ppm at the beginning of the cycle life and about 10 ppm at the end of the cycle life. be adjusted.

内挿物集合体を燃料集合体に挿入すると、原子炉の運転
中、反応度制御部材の中間部内には原子炉容器内の一次
冷却材が流入するが、サイクル寿命初期では一次冷却材
中のホウ酸濃度が高くホウ酸の熱中性子の吸収が大きい
ため、中間部の隣接領域及び周辺領域における燃料23
5Uと熱中性子との核分裂反応は抑制されることになり
、燃料集合体の軸方向中間部の相対出力は低下する。一
方、反応度制御部材の上部及び下部においては、殆ど熱
中性子を吸収せず熱中性子化する物質、即ちジルコニウ
ムハイドライドのベレットが存在するため、その隣接領
域及び周辺領域での燃料215Uと熱中性子との核分裂
反応は活発になり、燃料集合体の軸方向中間部の相対出
力低下分を補償して、軸方向出力分布の平坦化を実現し
ている。
When the insert assembly is inserted into the fuel assembly, the primary coolant in the reactor vessel flows into the middle part of the reactivity control member during reactor operation, but at the beginning of the cycle life, the primary coolant in the reactor vessel flows into the middle part of the reactivity control member. Due to the high concentration of boric acid and the large absorption of thermal neutrons by boric acid, the fuel 23 in the adjacent region and peripheral region of the middle portion
The nuclear fission reaction between 5U and thermal neutrons is suppressed, and the relative output of the axially intermediate portion of the fuel assembly is reduced. On the other hand, in the upper and lower parts of the reactivity control member, there is a substance that absorbs almost no thermal neutrons and converts them into thermal neutrons, that is, zirconium hydride pellets, so that the fuel 215U and thermal neutrons in the adjacent and surrounding areas are present. The nuclear fission reaction becomes active, compensating for the relative power drop in the axially intermediate portion of the fuel assembly, and flattening the axial power distribution.

また、−次冷却材中のホウ酸濃度が低くなるサイクル寿
命末期では、−次冷却材(水)より若干中性子化能力の
低いジルコニウムハイドライドの特性を利用して、水領
域で多く発生する熱中性子数を適当な数に制限すること
により、反応度制御部材の上部及び下部の隣接領域及び
周辺領域における燃料235Uと熱中性子との核分裂反
応を抑制し、その補償を燃料集合体の軸方向中間部の相
対出力上昇で行い、軸方向出力分布の平坦化を実現して
いる。
In addition, at the end of the cycle life when the concentration of boric acid in the secondary coolant is low, thermal neutrons, which are generated in large quantities in the water region, are By limiting the number to an appropriate number, the fission reaction between the fuel 235U and thermal neutrons in the adjacent and surrounding areas of the upper and lower parts of the reactivity control member is suppressed, and its compensation is carried out in the axially intermediate part of the fuel assembly. This is done by increasing the relative output of , thereby achieving a flattened axial output distribution.

[実施例] 次に、本発明の好適な実施例について添付図面を参照し
て詳細に説明するが、図中、同一符号は同−又は対応部
分を示すものとする。
[Embodiments] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which the same reference numerals indicate the same or corresponding parts.

第1図において、本発明による炉心内挿物集合体1は、
第6図及び第7図に関連して説明した従来のものと同様
に、複数の反応度制御部材2と複数のプラグ13とを支
持体8から垂下するように平行に配設せしめたものであ
る。支持体8は駆動装置9(図にはその一部のみを示す
)に結合されている。支持体8及び駆動装置9は周知の
ものでよく、また、プラグ13は、第6図及び第8図に
関連して説明したような従来のものと同様に、ステンレ
ス鋼製の短尺の中実丸棒のものが用いられているが、ジ
ルシカロイ製でもよい。
In FIG. 1, a core insert assembly 1 according to the present invention includes:
Similar to the conventional one described in connection with FIGS. 6 and 7, a plurality of reactivity control members 2 and a plurality of plugs 13 are arranged in parallel so as to hang down from a support 8. be. The support 8 is connected to a drive device 9 (only part of which is shown in the figure). The support 8 and drive 9 may be of any known type, and the plug 13 may be a short solid piece of stainless steel, similar to the conventional one described in connection with FIGS. 6 and 8. A round bar is used, but it may also be made of Jirshikaloy.

好適な実施例では、各内挿物集合体1は、12本の反応
度制御部材2と12本のプラグ13とを有するが、これ
等の本数は炉心設計に応じて適宜変更可能であり、また
、各内挿物集合体1の全反応度制御部材を本発明に従っ
て構成する必要はなく、所定のものを反応度制御部材2
とし、他のものを従来の反応度制御部材12としてもよ
い。
In a preferred embodiment, each insert assembly 1 has 12 reactivity control members 2 and 12 plugs 13, but these numbers can be changed as appropriate depending on the core design. Further, it is not necessary to configure all the reactivity control members of each interpolated material assembly 1 according to the present invention, and a predetermined one is used as the reactivity control member 2.
However, other components may be used as the conventional reactivity control member 12.

本発明の好適な実施例によると、各反応度制御部材2の
ジルカロイ製の中空被覆管3は、上部被覆管部分(上部
)3aと、中間被覆管部分3bと、下部被覆管部分3c
とからなる。上部被覆管部分3aの頂端及び底端には例
えば溶接のような手段によって頂部端栓4a及び底部端
栓4bがそれぞれ取着されており、これ等の端栓4a及
び4bによって上部被覆管部分3aが封止され、また、
下部被覆管部分3cの頂端及び底端には頂部端栓4c及
び底部端栓4dがそれぞれ取着されており、これ等の端
栓4c及び4dによって下部被覆管部分3cが封止され
ている。また、端栓4b及び4cはそれぞれ中間被覆管
部分3bの頂端及び底端にも挿入されて、上部被覆管部
分3aと中間被覆管部分3bと下部被覆管部分3cとを
相互に整列状態で結合し、1本の中空被覆管3を形成し
ている。各端栓もジルカロイ製とす゛るのが好適である
According to a preferred embodiment of the present invention, the Zircaloy hollow cladding tube 3 of each reactivity control member 2 includes an upper cladding tube section (upper part) 3a, an intermediate cladding tube section 3b, and a lower cladding tube section 3c.
It consists of. A top end plug 4a and a bottom end plug 4b are attached to the top and bottom ends of the upper cladding tube section 3a, respectively, by means such as welding, and these end plugs 4a and 4b allow the upper cladding tube section 3a to is sealed, and
A top end plug 4c and a bottom end plug 4d are attached to the top and bottom ends of the lower cladding tube portion 3c, respectively, and the lower cladding tube portion 3c is sealed by these end plugs 4c and 4d. The end plugs 4b and 4c are also inserted into the top and bottom ends of the intermediate cladding tube section 3b, respectively, to connect the upper cladding tube section 3a, the intermediate cladding tube section 3b, and the lower cladding tube section 3c in alignment with each other. However, one hollow cladding tube 3 is formed. Preferably, each end plug is also made of Zircaloy.

更に、本発明によると、上述した上部被覆管部分3a及
び下部被覆管部分3c内には、中性子を殆ど吸収すぜ中
性子スペクトルを熱化する物質、例えばジルコニウムハ
イドライド(Zrll□)のようなジルコニウム化合物
がスプリング5により上方から押圧された状態で好まし
くはペレット6の形態で積み重ねられ装填されており、
また、中間被覆管部分3bには、その内部を外部に連通
させるように、即ち本発明の内挿物集合体1を燃料集合
体に挿入した場合、原子炉の運転中に一次冷却材が中間
被覆管部分3bに流入、流出可能なように、実施例では
軸方向に延びる8本のスリット7が形成されている。上
部被覆管部分3a、中間被覆管部分3b及び下部被覆管
部分3cの長さの割合は(上部及び下部被覆管部分につ
いては、厳密には、その内部のペレット6の積重体の軸
方向長さ)、炉心内の反応度バランスを考慮して約1:
2+1に設定されているが、炉心設計に応じてその他の
割合に適宜設定することもできる。
Further, according to the present invention, in the above-mentioned upper cladding tube section 3a and lower cladding tube section 3c, a substance that absorbs most of the neutrons and thermalizes the neutron spectrum, for example, a zirconium compound such as zirconium hydride (Zrll□) is included. are stacked and loaded preferably in the form of pellets 6 while being pressed from above by a spring 5,
In addition, the intermediate cladding tube portion 3b has a structure in which the inside thereof is communicated with the outside, that is, when the insert assembly 1 of the present invention is inserted into the fuel assembly, the primary coolant is supplied to the intermediate cladding tube portion 3b during operation of the reactor. In the embodiment, eight slits 7 extending in the axial direction are formed so that the fluid can flow into and out of the cladding tube portion 3b. The ratio of the lengths of the upper cladding tube section 3a, the intermediate cladding tube section 3b, and the lower cladding tube section 3c is (for the upper and lower cladding tube sections, strictly speaking, the axial length of the stack of pellets 6 inside them) ), approximately 1 considering the reactivity balance within the core:
Although the ratio is set to 2+1, other ratios can be set as appropriate depending on the core design.

以上のような反応度制御部材2を有する内挿物集合体1
を図示しない燃料集合体に挿入した場合のサイクル寿命
初期及び末期における軸方向出力分布が、第4図及び第
5図に、従来の内挿物集合体を挿入した場合の軸方向出
力分布を示す鎖線と比較して、実線で示されている。こ
れ等のグラフから分かるように、本発明による内挿物集
合体1を使用すると、サイクル寿命初期及び末期の双方
において軸方向出力分布が平坦化される。
An insert assembly 1 having the reactivity control member 2 as described above
The axial power distribution at the beginning and end of the cycle life when inserted into a fuel assembly (not shown) is shown in FIGS. 4 and 5. The axial power distribution when a conventional insert assembly is inserted is shown in FIGS. Shown as a solid line compared to a dashed line. As can be seen from these graphs, the use of the interpolator assembly 1 according to the present invention flattens the axial power distribution both at the beginning and end of the cycle life.

即ち、周知のように、反応度制御の目的で一次冷却材に
はホウ酸が注入されており、−次冷却材中のその濃度は
、サイクル寿命初期で約1200ppm、サイクル寿命
末期で約10ppmに調整され、熱中性子の吸収効果を
可変に制御している。即ち、原子炉−次冷却系の冷却材
は、中性子吸収率もしくは断面積が可変の物質である。
That is, as is well known, boric acid is injected into the primary coolant for the purpose of reactivity control, and its concentration in the secondary coolant is about 1200 ppm at the beginning of the cycle life and about 10 ppm at the end of the cycle life. It is adjusted to variably control the absorption effect of thermal neutrons. That is, the coolant of the reactor sub-cooling system is a material whose neutron absorption rate or cross-sectional area is variable.

そのため11本発明による内挿物集合体1を燃料集合体
に挿入すると、原子炉の運転中、中間被覆管部分3b内
にはスリット7を介して原子炉容器内の一次冷却材が流
入するが、サイクル寿命初期では一次冷却材中のホウ酸
濃度が高くホウ酸の熱中性子の吸収が大きいため、中間
被覆管部分3bの隣接領域及び周辺領域における燃料2
35Uと熱中性子との核分裂反応は抑制されることにな
り、燃料集合体の軸方向中間部の相対出力は低下する。
Therefore, when the insert assembly 1 according to the present invention is inserted into a fuel assembly, the primary coolant in the reactor vessel will flow into the intermediate cladding tube section 3b through the slit 7 during operation of the nuclear reactor. , at the beginning of the cycle life, the concentration of boric acid in the primary coolant is high and absorption of thermal neutrons by boric acid is large;
The nuclear fission reaction between 35U and thermal neutrons is suppressed, and the relative output of the axially intermediate portion of the fuel assembly decreases.

一方、上部及び下部被覆管部分3a、3cにおいては、
殆ど熱中性子を吸収せず熱中性子化するジルコニウムハ
イドライドのペレット6が存在するため、その隣接領域
及び周辺領域での燃料235Uと熱中性子との核分裂反
応は活発になり、燃f1集合体の軸方向中間部の相対出
力低下分を補償して、軸方向出力分布の平坦化が図れる
。このようにして、第4図に一点鎖線で示す熱的制限包
絡線からも分かるように、燃料の熱的制限である熱流束
の熱水路係数に対する余裕が改善される。
On the other hand, in the upper and lower cladding tube sections 3a and 3c,
Because there are zirconium hydride pellets 6 that absorb almost no thermal neutrons and convert into thermal neutrons, the nuclear fission reaction between the fuel 235U and thermal neutrons becomes active in the adjacent and surrounding areas, and the fission reaction in the axial direction of the fuel f1 assembly becomes active. By compensating for the relative output decrease in the intermediate portion, the axial output distribution can be flattened. In this way, as can be seen from the thermal limitation envelope shown by the dashed line in FIG. 4, the margin of heat flux, which is the thermal limitation of the fuel, with respect to the hydrothermal channel coefficient is improved.

また、−次冷却材中のホウ酸濃度が低くなるサイクル寿
命末期では、−次冷却材(水)より若干中性子化能力の
低いジルコニウムハイドライドの特性を利用して、水領
域で多く発生する熱中性子数を適当な数に制限すること
により、上部及び下部被覆管部分3a、3cの隣接領域
及び周辺領域における燃料2ffSIJと熱中性子との
核分裂反応を抑制し、その補償を燃f4集合体の軸方向
中間部の相対出力上昇で行い、軸方向出力分布の平坦化
を図っている。
In addition, at the end of the cycle life when the concentration of boric acid in the secondary coolant is low, thermal neutrons, which are generated in large quantities in the water region, are By limiting the number to an appropriate number, the fission reaction between the fuel 2FFSIJ and thermal neutrons in the adjacent and surrounding areas of the upper and lower cladding tube sections 3a and 3c is suppressed, and the compensation is performed in the axial direction of the F4 assembly. This is done by increasing the relative output in the middle section, with the aim of flattening the axial output distribution.

[発明の効果] 以上の説明から明らかなように、本発明による炉心内挿
物集合体は、中間部に、燃料サイクル中の中性子吸収率
が可変の物質を含むことが可能であり、上下部に、中性
子を殆ど吸収せず中性子スペクトルを熱化する物質を含
む反応度制御部材を有するので、燃料サイクルの全寿命
を通じて軸方向出力分布の変化が非常に小さくなり、炉
心の運転指標である軸方向中性子束偏差目標値の設定を
更新する必要がなく、運転管理の簡素化が図れる。
[Effects of the Invention] As is clear from the above description, the core insert assembly according to the present invention can contain a substance whose neutron absorption rate during the fuel cycle is variable in the middle part, and In addition, it has a reactivity control member containing a substance that absorbs almost no neutrons and heats the neutron spectrum, so changes in the axial power distribution are extremely small throughout the life of the fuel cycle, and the axial power distribution, which is an indicator of core operation, is There is no need to update the setting of the directional neutron flux deviation target value, and operation management can be simplified.

また、好適な実施例においては、炉心内挿物集合体は、
ジルコニウム化合物、水冷却材、ステンレス鋼等のよう
に従来から原子炉において十分に使用実績のある材料も
しくは物質で構成されているので、長期的に使用可能で
あることは実証ずみであり、繰り返し使用できるので、
従来の内挿物集合体のように使用済みのものを大量発生
するようなことはなく、放射性廃棄物蓄積の問題も解消
することができる。
In a preferred embodiment, the core insert assembly also includes:
It is composed of materials or substances that have been used in nuclear reactors for a long time, such as zirconium compounds, water coolants, stainless steel, etc., so it has been proven that it can be used for a long time and can be used repeatedly. Because you can
Unlike conventional insert assemblies, there is no need to generate a large amount of used inserts, and the problem of radioactive waste accumulation can be solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による炉心内挿物集合体の好適な実施
例を示す概略側面図、第2図は、第1図の炉心内挿物集
合体で使用されている反応度制御部材の断面図、第3八
図は、第2図の3^−3八線に沿った断面図、第3B図
は、第2図の3B−3B線に沿った断面図、第4図及び
第5図は、燃料サイクルの寿命初期及び末期における燃
料集合体の軸方向出力分布を従来の内挿物集合体を使用
した場合(鎖線)と本発明の内挿物集合体を使用した場
合(実tりとについて示す図、第6図は、従来の内挿物
集合体の概要図、第7図、第8図及び第9図は、それぞ
れ第6図の7−7線、8−8線及び9−9線に沿った断
面図である。 1・・・炉心内挿物集合体 2・・・反応度制御部材 3・・・被覆管 3a・・・上部被覆管部分(上部) 3b・・・中間被覆管部分く中間部) 3C・・・下部被覆管部分く下部) 6・・・ベレッl−(中性子スペクトルを熱化する物X
> 出願人 三菱原子カニ業株式会社 代理人  曽   我   道   照□゛1(ズ 贈 尿 帳 四 側 厳 叱 第8図 第9図
FIG. 1 is a schematic side view showing a preferred embodiment of the core insert assembly according to the present invention, and FIG. 2 shows a reactivity control member used in the core insert assembly of FIG. 38 is a sectional view taken along line 3^-38 in FIG. 2, FIG. 3B is a sectional view taken along line 3B-3B in FIG. 2, and FIGS. The figure shows the axial power distribution of the fuel assembly at the beginning and end of the life of the fuel cycle when a conventional interpolant assembly is used (dashed line) and when the interpolator assembly of the present invention is used (actual t FIG. 6 is a schematic diagram of a conventional interpolation assembly, and FIGS. 7, 8, and 9 are lines 7-7, 8-8, and 8-8 in FIG. 6, respectively. It is a sectional view taken along line 9-9. 1... Core insert assembly 2... Reactivity control member 3... Cladding tube 3a... Upper cladding tube portion (upper part) 3b...・Middle cladding tube part (middle part) 3C...Lower cladding tube part (lower part)
> Applicant Mitsubishi Atomic Crab Industry Co., Ltd. Agent Teru So Gado□゛1

Claims (1)

【特許請求の範囲】[Claims] 燃料集合体に挿入される出力分布制御用の炉心内挿物集
合体であって、複数の反応度制御部材を備え、該反応度
制御部材のうち少なくとも所定のものが、その軸方向の
中間部内に、燃料サイクル中の中性子吸収率が可変の物
質を含むことが可能であり、その軸方向の上及び下部内
に、中性子を殆ど吸収せず中性子スペクトルを熱化する
物質を含む、炉心内挿物集合体。
A core insert assembly for power distribution control inserted into a fuel assembly, comprising a plurality of reactivity control members, at least a predetermined one of the reactivity control members being inserted into the axially intermediate portion thereof. It is possible to include materials with a variable neutron absorption rate during the fuel cycle, and in the upper and lower parts of the core, there are materials that absorb few neutrons and thermalize the neutron spectrum. collection of objects.
JP63307807A 1988-12-07 1988-12-07 Incore insert assembly Pending JPH02154195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63307807A JPH02154195A (en) 1988-12-07 1988-12-07 Incore insert assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63307807A JPH02154195A (en) 1988-12-07 1988-12-07 Incore insert assembly

Publications (1)

Publication Number Publication Date
JPH02154195A true JPH02154195A (en) 1990-06-13

Family

ID=17973457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63307807A Pending JPH02154195A (en) 1988-12-07 1988-12-07 Incore insert assembly

Country Status (1)

Country Link
JP (1) JPH02154195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119840A1 (en) * 2009-04-14 2010-10-21 三菱重工業株式会社 Reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119840A1 (en) * 2009-04-14 2010-10-21 三菱重工業株式会社 Reactor
JP2010249618A (en) * 2009-04-14 2010-11-04 Mitsubishi Heavy Ind Ltd Nuclear reactor

Similar Documents

Publication Publication Date Title
US4617170A (en) Assembly for a core of a nuclear reactor
US4636352A (en) Nuclear fuel rod with burnable plate and pellet-clad interaction fix
US5219519A (en) Increased fuel column height for boiling water reactor fuel rods
EP0212920B1 (en) Full length control rod employing axially inhomogeneous absorber materials for zero reactivity redistribution factor
JPH04301593A (en) Fuel assembly
US6002735A (en) Nuclear fuel pellet
US5991354A (en) Nuclear fuel pellet
JPH02154195A (en) Incore insert assembly
US4876062A (en) Fuel assembly
US4576787A (en) Burnable absorber assembly
JP2002533736A (en) Control rod
JPS6318152B2 (en)
JPS6319032B2 (en)
US11398315B2 (en) Fuel element, fuel assembly, and core
US4826654A (en) Fuel assembly
JPH0248878B2 (en)
JPH073468B2 (en) Control rod for nuclear reactor
JPH0545152B2 (en)
US5186890A (en) Reactor core of fast breeder reactor, components of same, and regulating method of coolant distribution of same
JP3167771B2 (en) Reactor and fuel assemblies
JPH01123195A (en) Control rod for nuclear reactor
JPH07270568A (en) Double layer pellet of nuclear fuel
JPH0816711B2 (en) Fuel assembly
JPS63293487A (en) Fuel assembly
JPH0521433B2 (en)