JPH02154150A - Automatic analysis apparatus - Google Patents
Automatic analysis apparatusInfo
- Publication number
- JPH02154150A JPH02154150A JP25166388A JP25166388A JPH02154150A JP H02154150 A JPH02154150 A JP H02154150A JP 25166388 A JP25166388 A JP 25166388A JP 25166388 A JP25166388 A JP 25166388A JP H02154150 A JPH02154150 A JP H02154150A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- sample
- gas chromatograph
- fraction
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims description 33
- 239000007788 liquid Substances 0.000 claims abstract description 113
- 238000000034 method Methods 0.000 claims abstract description 58
- 238000002347 injection Methods 0.000 claims abstract description 38
- 239000007924 injection Substances 0.000 claims abstract description 38
- 238000002156 mixing Methods 0.000 claims abstract description 38
- 238000004140 cleaning Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 15
- 238000007865 diluting Methods 0.000 claims abstract description 6
- 238000012546 transfer Methods 0.000 claims abstract description 6
- 239000000523 sample Substances 0.000 claims description 33
- 239000003085 diluting agent Substances 0.000 claims description 30
- 239000000126 substance Substances 0.000 claims description 26
- 239000012488 sample solution Substances 0.000 claims description 21
- 238000000926 separation method Methods 0.000 claims description 17
- 238000004817 gas chromatography Methods 0.000 abstract description 5
- 239000010422 internal standard material Substances 0.000 abstract description 3
- 238000004587 chromatography analysis Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 47
- 239000002699 waste material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000009834 vaporization Methods 0.000 description 6
- 230000008016 vaporization Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YKHZGLKQBYTRHO-UHFFFAOYSA-N 11-cyanoundecanoic acid Chemical compound OC(=O)CCCCCCCCCCC#N YKHZGLKQBYTRHO-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- -1 inbutanol Chemical compound 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- 241000272814 Anser sp. Species 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、自動分析装置、詳しくはオンライン制御の下
でプロセス液体等の液体試料を連続的にガスクロマトグ
ラフで分析することができる自動分析装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic analyzer, specifically an automatic analyzer that can continuously analyze liquid samples such as process liquids using a gas chromatograph under online control. Regarding.
〔従来の技術及び発明が解決しようとする課題〕オンラ
イン制御のプロセスガスクロマトグラフは、通常気体成
分を分析対象としており、液体成分を対象とする場合は
低沸点の物質に限られている。従って、常温で粘度の大
きい物質、低温では気化室で蒸気になり難い低蒸気圧物
質、又は高温で熱分解し易い物質は直接オンライン自動
分析することが困難であるという欠点があった。[Prior Art and Problems to be Solved by the Invention] On-line controlled process gas chromatographs usually analyze gas components, and when analyzing liquid components, they are limited to substances with low boiling points. Therefore, there is a drawback that it is difficult to perform direct on-line automatic analysis of substances that have a high viscosity at room temperature, low vapor pressure substances that are difficult to vaporize in the vaporization chamber at low temperatures, or substances that are easily thermally decomposed at high temperatures.
また、上記プロセスガスクロマトグラフを用いる分析に
おいては絶対検量線法が採用されており、全ての成分を
分析する場合は、ダブルカラムシステム又はバックフラ
シュ力ラムシステム等を採用する必要があるため分析装
置が複雑となる欠点があり、また、一部の成分を分析す
る場合はプレカットカラムシステムを採用する必要があ
るため、やはり分析装置が複雑になる欠点があった。In addition, the absolute calibration curve method is adopted in the analysis using the process gas chromatograph mentioned above, and if all components are to be analyzed, it is necessary to adopt a double column system or a backflush force ram system, so the analytical equipment is It has the disadvantage of being complicated, and since it is necessary to employ a pre-cut column system when analyzing some components, it also has the disadvantage of complicating the analytical device.
更に、上述の如く絶対検量線法を採用しているので、液
体試料(プロセス液体)を対象としてプロセスガスクロ
マトグラフを用いる場合は分析精度が注入量の精度によ
り大きく左右されるため分析精度が低いという問題があ
った。Furthermore, since the absolute calibration curve method is used as mentioned above, when using a process gas chromatograph for liquid samples (process liquids), the analysis accuracy is greatly affected by the accuracy of the injection amount, so the analysis accuracy is low. There was a problem.
従って、本発明の目的は、液体試料(プロセス液体)が
高粘性である場合、蒸気圧が低い場合又は熱分解し易い
場合でも、オンライン制御の下で&11実に且つ正確に
ガスクロマトグラフ分析ができる間車な構成からなる自
動分析装置を提供することにある。Therefore, it is an object of the present invention to enable gas chromatographic analysis to be carried out under on-line control, even when the liquid sample (process liquid) is highly viscous, has a low vapor pressure, or is prone to thermal decomposition. The purpose of the present invention is to provide an automatic analysis device having a simple configuration.
〔課題を解決するための手段]
本発明者等は、種々検討した結果、液体試料が高粘性で
ある場合の外、低蒸気圧である場合、更には熱分解し易
い場合であっても、希釈することによりプロセスガスク
ロマトグラフによる安定した分析が可能となることを知
見した。[Means for Solving the Problems] As a result of various studies, the present inventors have found that, in addition to cases where the liquid sample is highly viscous, it has a low vapor pressure, and even when it is easy to thermally decompose, It was discovered that dilution enables stable analysis using a process gas chromatograph.
本発明は、上記知見によりなされたもので、次の装置を
提供するものである。The present invention has been made based on the above findings, and provides the following device.
ガスクロマトグラフ及び1亥ガスクロマトグラフによる
分析結果を処理するデータ処理部を備えていると共に、
プロセス流路から規定量の液体試料を分取する試料分取
手段、内部標準物質を含有する規定量の希釈液を分取す
る希釈液分取手段、それぞれ分取した液体試料を希釈液
に混合・溶解して試料溶液を調製する混合手段、調製し
た試料溶液を上記ガスクロマトグラフの注入部に移送す
る試料溶液の移送手段、移送された試料溶液をガスクロ
マトグラフのカラムに注入する注入手段、及び注入後の
上記混合手段乃至注入部の内部を洗浄する洗浄手段を備
えており、」二記各手段をオンライン制御して、プロセ
ス流路から逐次分取する試1)溶液を上記ガスクロマト
グラフで連続的に分析し、その結果を上記データ処理部
で処理することを特徴とする自動分析装置。It is equipped with a data processing section that processes the analysis results by a gas chromatograph and a 1.0 gas chromatograph, and
A sample separation means that separates a specified amount of liquid sample from the process flow path, a dilution liquid separation means that separates a specified amount of diluted liquid containing an internal standard substance, and mixes each separated liquid sample with the diluted liquid.・A mixing means for dissolving and preparing a sample solution, a sample solution transfer means for transferring the prepared sample solution to the injection section of the gas chromatograph, an injection means for injecting the transferred sample solution into the column of the gas chromatograph, and injection It is equipped with a cleaning means for cleaning the inside of the mixing means or the injection part afterward, and each means described in 2 is controlled online to sequentially sample the solution from the process flow path. 1) The solution is continuously collected using the gas chromatograph. An automatic analysis device characterized in that the analysis result is processed by the data processing section.
本発明によれば、試料溶液を希釈することにより、液体
試料が高粘性であっても確実にガスクロマトグラフの注
入部に移送し、該試料の所定量をカラムに正も1に注入
することができ、また、低蒸気圧の場合でも確実に分析
でき、更に、ガスクロマトグラフの気化室の温度を下げ
て分析することが可能となるため、熱分解性の液体試料
であっても安定した状態で精度の高い内部標串法により
分析することができ、しかも液体試料をカラムに注入し
た後に混合槽等に残存付着している」1記液体試料を洗
浄除去することにより、次の液体試料に対する分析の準
備を整えることが可能となるため、オンライン制御′n
の下で連続的に液体試料を分析し、且つその結果のデー
タ処理を自動的に行うことができる。According to the present invention, by diluting the sample solution, even if the liquid sample is highly viscous, it can be reliably transferred to the injection section of the gas chromatograph, and a predetermined amount of the sample can be injected directly into the column. In addition, even in the case of low vapor pressure, it can be analyzed reliably.Furthermore, it is possible to lower the temperature of the vaporization chamber of the gas chromatograph for analysis, so even thermally decomposable liquid samples can be analyzed in a stable state. It can be analyzed using a highly accurate internal standard method, and there is no residual adhesion in the mixing tank etc. after the liquid sample is injected into the column.1) By washing and removing the liquid sample, it is possible to analyze the next liquid sample. online control'n
Liquid samples can be continuously analyzed under the following conditions, and the resulting data processing can be performed automatically.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は、本発明の一実施例である自動分析装置の大略
を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an outline of an automatic analyzer that is an embodiment of the present invention.
本実施例の自動分析装置は、ガスクロマトグラフl及び
該ガスクロマトグラフ1による分析結果を処理するデー
タ処理装置(データ処理部)2を備えている。The automatic analyzer of this embodiment includes a gas chromatograph 1 and a data processing device (data processing section) 2 that processes the analysis results obtained by the gas chromatograph 1.
そして、上記自動分析装置は、図中左下に示したプロセ
ス流路から規定量の液体試料を分取する試料分取手段A
、内部標準物質を含有する規定量の希釈液を分取するた
めの希釈液分取手段B、及びそれぞれ分取した液体試料
を希釈液に混合・溶解して試料溶液を調製するための混
合手段Cを備えている。The above-mentioned automatic analyzer includes a sample separation means A that separates a prescribed amount of liquid sample from the process flow path shown in the lower left of the figure.
, a diluent liquid separating means B for separating a specified amount of diluted liquid containing an internal standard substance, and a mixing means for preparing a sample solution by mixing and dissolving each separated liquid sample in the diluting liquid. It is equipped with C.
また、上記自動分析装置は、調製した試料溶液を上記ガ
スクロマトグラフlの注入部3に移送する試料溶液の移
送手段(後述する)、移送された試料溶液の所定量をガ
スクロマトグラフ1のカラム(図示せず)に注入する自
動注入装置(注入手段、図示せず)、及び注入後の上記
混合手段C乃至注入部3の内部を洗浄するための洗浄手
段りを備えている。The automatic analyzer also includes a sample solution transfer means (described later) that transfers the prepared sample solution to the injection section 3 of the gas chromatograph 1, and a column of the gas chromatograph 1 (see Fig. The apparatus includes an automatic injection device (injection means, not shown) for injecting into a liquid (not shown), and a cleaning means for cleaning the inside of the mixing means C to the injection part 3 after injection.
上記自動分析装置は、以上の各手段及び上記ガスクロマ
トグラフ1が配管(図中実線で示す)を介して有機的に
連結されているものである。そして、上記自動分析装置
は、上述の各手段をコンピュータ(図示せず)によりオ
ンライン制御して、上記プロセス流路から逐次分取する
試料溶液を上記ガスクロマトグラフ1で連続的に分析し
、その結果を上記データ処理部2で自動的に処理するこ
とが可能なように構成されている。In the automatic analyzer, each of the above means and the gas chromatograph 1 are organically connected via piping (indicated by a solid line in the figure). Then, the automatic analyzer controls each of the above-mentioned means online by a computer (not shown), and continuously analyzes the sample solution sequentially taken from the process flow path using the gas chromatograph 1, and the results are The data processing section 2 is configured to automatically process the data processing section 2.
続いて、上記自動分析装置について詳述する。Next, the automatic analyzer will be described in detail.
試料分取手段Aは、図中太線で示す計量管4、流路を切
り換えるためのロータリーバルブ5及び廃液貯槽6で構
成されている。The sample separation means A is composed of a measuring tube 4 shown by a thick line in the figure, a rotary valve 5 for switching the flow path, and a waste liquid storage tank 6.
希釈液分取手段Bは、計量管7、ロータリーバルブ5、
所定濃度の標準物質が溶解されている希釈液を貯溜して
おくための希釈液貯槽9、及び該貯槽9から希釈液を送
出するためのポンプ10で構成されており、上記計量管
7は中空球状の容積拡張部7aを有している。The diluted liquid separation means B includes a measuring tube 7, a rotary valve 5,
It consists of a diluent storage tank 9 for storing a diluent in which a standard substance of a predetermined concentration is dissolved, and a pump 10 for delivering the diluent from the storage tank 9, and the measuring tube 7 is hollow. It has a spherical volume expansion part 7a.
混合手段Cは、中空球状の混合槽11、ロータリーバル
ブ12及び廃液貯槽13で構成され、また、洗浄手段り
は、洗浄液貯槽14及び該貯槽14内に導入する加圧ガ
スの圧力、流量を調整するための電磁弁15で構成され
ている。The mixing means C is composed of a hollow spherical mixing tank 11, a rotary valve 12, and a waste liquid storage tank 13, and the cleaning means is configured to adjust the cleaning liquid storage tank 14 and the pressure and flow rate of the pressurized gas introduced into the storage tank 14. It is composed of a solenoid valve 15 for
そして、上述の試料分取手段A及び希釈液分取手段Bは
互いに連通し、また、該試料分取手段Aは切換バルブ1
6を介してプロセス流路に連通し、該切換バルブ16を
右方向に90°ずつ回転させることにより、4つのプロ
セス流路の何れか一つからプロセス液体(試料液体)を
分取することが可能なように構成されている。The sample separation means A and the diluted liquid separation means B described above communicate with each other, and the sample separation means A is connected to the switching valve 1.
6, and by rotating the switching valve 16 clockwise by 90 degrees, it is possible to separate the process liquid (sample liquid) from any one of the four process channels. configured so that it is possible.
また、上記試料分取手段A、混合手段C及びガスクロマ
トグラフIは三方向の切換バルブ17を介して何れか二
つを相互に連通可能に構成され、また、ガスクロマトグ
ラフ1及び上記洗浄手段りは、六方向の切換バルブ18
を介して連通可能に構成されている。Further, the sample separation means A, the mixing means C, and the gas chromatograph I are configured so that any two can communicate with each other via a three-way switching valve 17, and the gas chromatograph 1 and the cleaning means , six-way switching valve 18
It is configured to be able to communicate via.
更に、上記切換バルブ18は、真空系、大気及び加圧ガ
ス導入用電磁弁19に接続されており、装置内を上記何
れかに連通可能に構成されている。Further, the switching valve 18 is connected to a vacuum system, the atmosphere, and a solenoid valve 19 for introducing pressurized gas, so that the inside of the apparatus can be communicated with any of the above.
また、上記装置では、調製した試$4溶液を混合槽11
からガスクロマトグラフ1の注入部3へ移送するだめの
移送手段は、該注入部3及び切換バルブ18を互いに連
通ずる配管内を減圧状態にすることができる該切換バル
ブ18に連通されている真空装置(図示せず)で構成さ
れている。尚、図中20も加圧ガス導入用141弁であ
り、これは上述の混合手段Cの一部をも成している。In addition, in the above device, the prepared sample $4 solution is transferred to the mixing tank 11.
The transfer means for transferring the liquid from the injection part 3 to the injection part 3 of the gas chromatograph 1 is a vacuum device that is connected to the switching valve 18 and is capable of reducing the pressure in the piping that communicates the injection part 3 and the switching valve 18 with each other. (not shown). In addition, 20 in the figure is also a pressurized gas introduction valve 141, which also forms a part of the above-mentioned mixing means C.
次に、本実施例の作用を、前記第1図及び第2図(a)
〜(d)を参照しながら説明する。Next, the effect of this embodiment will be explained as shown in FIG. 1 and FIG. 2(a).
This will be explained with reference to (d).
先ず、第1図に示した状態において、試料分取手段Aで
は、図中最上位のプロセス流路から切換バルブ16を通
してプロセス液体(液体試料)を矢印方向に送出し、ロ
ータリーバルブ5を通して該プロセス液体が計量管4内
を流動通過するようにし、最終的に廃液貯槽6に流出す
るようにする。First, in the state shown in FIG. 1, the sample separation means A sends out the process liquid (liquid sample) in the direction of the arrow from the uppermost process channel in the figure through the switching valve 16, and through the rotary valve 5 to the process liquid. The liquid is allowed to flow through the metering tube 4 and finally flows into the waste liquid storage tank 6.
こうして、上記計量管4内をある程度の量の上記プロセ
ス液体を通過させることにより、該計量管4内に該プロ
セス液体のみを充満させることができ、その結果規定量
の上記プロセス液体の分取が達成される。In this way, by passing a certain amount of the process liquid through the measuring tube 4, the measuring tube 4 can be filled with only the process liquid, and as a result, a predetermined amount of the process liquid can be taken out. achieved.
また、希釈液分取手段Bでは、ポンプ10で希釈液を計
量管7の方向に送出し、矢印で示すように該希釈液を循
環させることにより上記計量管7に充満させ、該計量管
7による規定量の希釈液の分取・計量をも行う。In addition, in the diluted liquid separation means B, the diluted liquid is sent out in the direction of the measuring tube 7 by the pump 10, and the diluted liquid is circulated as shown by the arrow to fill the measuring tube 7. Also performs fractionation and measurement of a specified amount of diluted solution.
上述の試料分取手段A及び希釈液分取手段Bにおけるそ
れぞれの分取・計量操作を行いながら、その一方で混合
手段C乃至注入部3の内部を洗浄する操作を行う。While performing the sampling and measuring operations in the above-mentioned sample fractionating means A and diluted liquid fractionating means B, the interiors of the mixing means C and the injection section 3 are also cleaned.
即ち、電磁弁15を開き、加圧ガスで洗浄液貯槽14内
を加圧し、洗浄液を切換バルブ18を通して矢印方向に
送出し、切換バルブ17及びロータリーバルブ12を経
て混合槽11内を下方から通過させ、洗浄液を廃液貯槽
13に流出させることにより、該混合槽11、パルプ1
2及び配管等の内部を洗浄する。尚、その際、上記洗浄
液の送出中に該洗浄液をカラム内に自動注入装置で注入
し、該カラム内の洗浄を行うこともできる。That is, the solenoid valve 15 is opened, the inside of the cleaning liquid storage tank 14 is pressurized with pressurized gas, and the cleaning liquid is sent out in the direction of the arrow through the switching valve 18 and passed through the inside of the mixing tank 11 from below via the switching valve 17 and the rotary valve 12. , by draining the cleaning liquid into the waste liquid storage tank 13, the mixing tank 11 and the pulp 1
2. Clean the inside of the pipes, etc. In this case, the inside of the column can also be washed by injecting the washing liquid into the column using an automatic injection device while the washing liquid is being sent out.
次いで、切換バルブ18及びロータリーバルブ】2をそ
れぞれ右方向に60°及び90°回転させて第2図(a
)に示した状態にすると同時に、電磁弁19を開放し、
残存している上記洗浄液を加圧ガスで圧送し、廃液貯槽
13に排出させ、−回目の洗浄操作が完了する。Next, the switching valve 18 and the rotary valve 2 are rotated 60° and 90° to the right, respectively, as shown in FIG.
), simultaneously open the solenoid valve 19,
The remaining cleaning liquid is force-fed with pressurized gas and discharged into the waste liquid storage tank 13, and the -th cleaning operation is completed.
続いて、ロータリーバルブ12を第1図に示したと同様
の状態にすると同時に切換バルブ18を更に右方向に6
0°回転させ(図示せず)、電磁弁15を開放して洗浄
液を再度送出し、再び混合槽11、バルブI2及び配管
等の内部の洗浄を行う。その後、ロータリバルブ12を
第2図(a)と同様の状態にすると同時に切換バルブ1
日を更に右方向に60°回転させ(図示せず)、上述と
同様の方法で残存している洗浄液を廃液貯槽13に排出
させ、二回目の洗浄操作を完了する。Next, the rotary valve 12 is brought into a state similar to that shown in FIG.
It is rotated by 0° (not shown), the electromagnetic valve 15 is opened, the cleaning liquid is sent out again, and the inside of the mixing tank 11, valve I2, piping, etc. is cleaned again. Thereafter, the rotary valve 12 is brought into a state similar to that shown in FIG. 2(a), and at the same time the switching valve 1
The filter is further rotated 60° to the right (not shown), and the remaining cleaning liquid is discharged into the waste liquid storage tank 13 in the same manner as described above, completing the second cleaning operation.
上述の如く、プロセス液体の分取・計量操作、希釈液の
分取・計量操作及び混合槽11の内部等の洗浄操作が完
了した時点で、切換バルブ18を60°右方向に回転さ
せて装置内を大気圧とし、ロータリーバルブ5及びロー
タリーバルブ8を何れも右方向に60°回転させ、ロー
タリーバルブ12を第1図の場合と同じ状態にし、更に
切換バルブ17を回転させて上記ロータリーバルブ5及
びロータリーバルブ12を互いに連通させ、計量管4、
計量管5及び混合槽11が直線的に連通した第2図(b
)に示した状態にする。As mentioned above, when the process liquid separation/measurement operation, the dilution liquid separation/measurement operation, and the cleaning operation of the inside of the mixing tank 11, etc. are completed, the switching valve 18 is rotated 60 degrees to the right to close the device. The interior of the rotary valve is set to atmospheric pressure, both the rotary valve 5 and the rotary valve 8 are rotated 60° to the right, the rotary valve 12 is brought into the same state as in FIG. 1, and the switching valve 17 is further rotated to and the rotary valve 12 are communicated with each other, and the metering pipe 4,
Figure 2 (b
).
次いで、電磁弁20を開放し、加圧ガスを導入して上記
計量管4及び計量管7にそれぞれ充満されている試料液
体及び希釈液を上記混合槽11に移動させ、該混合槽+
1内にガスを流してバブリングを継続して該試料液体を
希釈液に完全に混合・熔解させ、試料溶液を調製する。Next, the electromagnetic valve 20 is opened and pressurized gas is introduced to move the sample liquid and diluent that are filled in the measuring tubes 4 and 7, respectively, to the mixing tank 11, and the mixing tank +
Bubbling is continued by flowing gas into the diluent to completely mix and dissolve the sample liquid in the diluent, thereby preparing a sample solution.
尚、上記のように加圧ガスで希釈液を押し出すことによ
り、該希釈液が計量管4内を通過するため該計量管4内
及びそれに連続する配管等の内部は希釈液で洗浄される
ことになる。In addition, by pushing out the diluent with pressurized gas as described above, the diluent passes through the measuring tube 4, so the inside of the measuring tube 4 and the piping etc. connected thereto are cleaned with the diluent. become.
上述の如くして試料溶液の調製が完了した後、第2図(
C)に示した状態に切換バルブ17を切り換えると同時
に切換バルブ18を右方向に60°回転させて真空に連
通させ、装置内部を減圧にし、その吸引力により上記試
料溶液を混合槽11からガスクロマトグラフ】の注入部
3に移送し、次いで、該試料溶液の一定量を正確に自動
注入装置によりカラム内に注入する。上記注入と同時に
通常のガスクロマトグラフによる分析操作が開始され、
その分析結果はデータ処理装置で適切に処理され、デイ
スプレィ(図示せず)等に外部信号として出力される。After completing the preparation of the sample solution as described above, as shown in Fig. 2 (
At the same time as switching the switching valve 17 to the state shown in C), the switching valve 18 is rotated 60 degrees to the right to communicate with the vacuum, the pressure inside the device is reduced, and the sample solution is transferred from the mixing tank 11 to the gas chroma by the suction force. Then, a certain amount of the sample solution is accurately injected into the column using an automatic injection device. Simultaneously with the above injection, analysis operations using a normal gas chromatograph are started.
The analysis results are appropriately processed by a data processing device and output as an external signal to a display (not shown) or the like.
また、上記第2図(C)の段階で切換バルブ16を右方
向に90°回転させ、次の分析対象である図中最下位の
プロセス流路の選択が行われ、該流路におけるプロセス
液体の分取・計量操作及び希釈液の分取・計量操作が前
述と同様の方法に従って開始される。Further, in the step shown in FIG. 2(C) above, the switching valve 16 is rotated 90 degrees to the right to select the process flow path at the lowest position in the figure, which is the next target for analysis, and the process flow in the flow path is selected. The preparative/measuring operations for the sample and the preparative/measuring operations for the diluent are started in the same manner as described above.
試料溶液をカラムに注入した後、ロータリーバルブ12
及び切換バルブ17を第2図(d)に示した状態にする
と同時に、電磁弁20を開放して加圧ガスを導入し、混
合手段C内に残存している試#1熔液を廃液貯槽13に
排出させることにより、つのプロセス液体に対する一連
の分析操作が終了する。その後、前述の方法に従って、
混合手段C乃至注入部3の洗浄操作を開始し、次のプロ
セス液体(図中最下位のプロセスガスクロマトグラフ流
路)を分析する為の準備を行う。After injecting the sample solution into the column, the rotary valve 12
At the same time, the switching valve 17 is set to the state shown in FIG. 2(d), the solenoid valve 20 is opened, pressurized gas is introduced, and the sample #1 molten liquid remaining in the mixing means C is transferred to the waste liquid storage tank. 13, a series of analysis operations for one process liquid is completed. Then, according to the method mentioned above,
The cleaning operation of the mixing means C and the injection section 3 is started, and preparations are made for analyzing the next process liquid (the lowest process gas chromatograph channel in the figure).
以上詳述した操作をオンライン制御の下で繰り返すこと
により、各プロセス流路のプロセス液体を順次自動的に
分析し、そのデータ処理を連続的に実施することができ
る。By repeating the operations detailed above under online control, the process liquid in each process flow path can be automatically analyzed in sequence and the data processing can be performed continuously.
本実施例の自動分析装置を更に詳述すると、プロセス液
体としては制限はないが、例えば、自動分析するために
は蒸留工程における供給液、留出液、缶液のような同系
列の種類のものが望ましい。To explain the automatic analyzer of this embodiment in more detail, there is no limit to the process liquid, but for example, in order to automatically analyze it, it is necessary to analyze similar types of liquid such as feed liquid, distillate liquid, and bottom liquid in the distillation process. Something is desirable.
また、成分数にも制限はないが、分析サイクル時間や組
成成分の違いにもよるが6点位が好ましい。Further, there is no limit to the number of components, but it is preferably about 6 points, although it depends on the analysis cycle time and the difference in composition components.
更に、プロセス液体は常温で液体であるものが好ましい
が、加温すれば液体となるものも用いることは出来る。Further, it is preferable that the process liquid is liquid at room temperature, but it is also possible to use a process liquid that becomes liquid when heated.
電磁弁15.19又は20から導入する加圧ガスとして
は空気、窒素等を用いることができ、その圧力は0.5
〜5kgG/c4が好ましい。Air, nitrogen, etc. can be used as the pressurized gas introduced from the solenoid valve 15.19 or 20, and the pressure is 0.5
~5 kgG/c4 is preferred.
前述したそれぞれの切換バルブやロータリーバルブは空
気圧等で駆動し且つ正確に制御可能であるものを挙げる
ことができる。また、配管、各種バルブ等を形成する材
料は特に制限はなく、ステンレススチールやフン素樹脂
等の耐腐食型の材料を好ましい例として挙げることがで
きる。Each of the aforementioned switching valves and rotary valves can be driven by pneumatic pressure or the like and can be accurately controlled. Furthermore, there are no particular limitations on the materials for forming the pipes, various valves, etc., and preferred examples include corrosion-resistant materials such as stainless steel and fluoroplastics.
また、カラムへの自動注入装置(注入手段)は注射型の
外部信号による空気圧駆動型の自動注入装置が好適であ
る。そして、この自動注入装置が試料溶液や洗浄液の一
部をカラムに自動注入すると気化室で蒸発し、キャリヤ
ーガスに同伴され通常のガスクロマトグラフ分析が開始
されるように構成されていることは前述の通りである。Further, as the automatic injection device (injection means) into the column, an injection type automatic injection device driven by pneumatic pressure using an external signal is preferable. As mentioned above, this automatic injection device is configured so that when a part of the sample solution or cleaning solution is automatically injected into the column, it evaporates in the vaporization chamber, is entrained by the carrier gas, and normal gas chromatography analysis begins. That's right.
前記計量管7及び4も、ステンレススチール又はフッ素
樹脂等の任意のもので形成でき、計量管7と計量管4と
の比は容量で3〜1000、好ましくはlO〜200で
ある。混合槽11の容量は計量管7及び計量管4の合計
容量と比べて1〜3倍で、好ましくは1.1〜2.5倍
である。尚、具体例としては計量管4の容量は0.2
d〜5戚が用いられ、好ましくは0.3〜2dが用いら
れる。また、計量管7を中間に容積拡張部7aを有する
構造にし、且つ該拡張部7aを垂直(図では水平状態で
示しであるが)に配設することにより希釈液が計量管7
に残留することを防止できる利点もある。The metering tubes 7 and 4 can also be made of any material such as stainless steel or fluororesin, and the ratio of the metering tube 7 to the metering tube 4 is 3 to 1000 in terms of capacity, preferably 10 to 200. The capacity of the mixing tank 11 is 1 to 3 times, preferably 1.1 to 2.5 times, the total capacity of the metering tube 7 and the metering tube 4. In addition, as a specific example, the capacity of the measuring tube 4 is 0.2
d to 5 relatives are used, preferably 0.3 to 2d. In addition, by making the measuring tube 7 have a structure having a volume expansion part 7a in the middle, and arranging the expansion part 7a vertically (although shown in a horizontal state in the figure), the diluent can flow into the measuring tube 7.
It also has the advantage of preventing it from remaining in the water.
希釈液としては通常使用するプロセス液体を希釈する溶
剤であれば制限なく利用できる。希釈液の具体例として
は、アセトン、メタノール、エタノール、ブタノール、
メチルアセテート、エチルアセテート、ブチルアセテー
ト、メチルエチルケトン、メチルブチルケトン、インブ
タノール、プロピルアセテート、イソブチルアセテート
、トリクロロエチレン、テトラクロロエチレン、ヘキサ
ン、シクロベンクン、シクロヘキサン、シクロブタン、
ベンゼン、トルエン、エチルヘンゼン、オルトキシレン
、メチルスチレン、メチルセルソルブ、エチルセルソル
ブ、ブチルセルソルブ、メチルセルソルブアセテート、
エチルセルソルブアセテートが挙げられる。これらの希
釈液の純度は98%以上であることが好ましく、それを
単独で又は二種類を混合して用いる。As the diluent, any solvent that dilutes a commonly used process liquid can be used without any restriction. Specific examples of diluent include acetone, methanol, ethanol, butanol,
Methyl acetate, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl butyl ketone, inbutanol, propyl acetate, isobutyl acetate, trichlorethylene, tetrachloroethylene, hexane, cyclobencune, cyclohexane, cyclobutane,
Benzene, toluene, ethylhenzene, orthoxylene, methylstyrene, methylcellosolve, ethylcellosolve, butylcellosolve, methylcellosolve acetate,
Ethyl cellosolve acetate is mentioned. The purity of these diluted liquids is preferably 98% or higher, and they are used alone or in combination.
上記希釈液を用いることにより、注入精度を改善させる
だめの低粘度化、ガスクロマトグラフの気化室での低温
蒸発気化、及び高温で熱分解する物質の低温蒸発気化さ
せることが可能となり安定した分析が達成される。By using the above diluent, it is possible to lower the viscosity of the fluid to improve injection accuracy, perform low-temperature evaporation in the vaporization chamber of a gas chromatograph, and perform low-temperature evaporation of substances that thermally decompose at high temperatures, resulting in stable analysis. achieved.
内部標準物質としてはガスクロマトグラフ分析で通常使
用される物質を利用できるが、使用する希釈液に熔解す
るとともに分析対象の組成及び希釈液の組成がガスクロ
マトグラムの検出位置と重ならない位置にあることが必
要である。この位置の検討は予めガスクロマトグラフ分
析を行って決定される。具体的には、内部標準物質は、
分析対象であるプロセス液体と用いられる希釈液を考慮
して決定されるが、最も簡単な例としては、希釈液が内
部標準物質となり且つ希釈液として用いられる場合を挙
げることができる。Substances commonly used in gas chromatography analysis can be used as internal standard substances, but they must be dissolved in the diluent used, and the composition of the target to be analyzed and the composition of the diluent must be at a position that does not overlap with the detection position on the gas chromatogram. is necessary. This position is determined by performing gas chromatography analysis in advance. Specifically, the internal standard material is
It is determined by considering the process liquid to be analyzed and the diluent used, and the simplest example is when the diluent serves as an internal standard substance and is used as the diluent.
内部標準物質を含む希釈液は希釈液に規定量の内部標準
物質を含むものである。この内部標準物質の規定量はプ
ロセス液体の組成により相対的に決まる。従って、希釈
液としては一種類で種々のプロセス液体を分析出来る内
部標準物質を含むものを用いるほうが好ましい。即ち、
プロセス液体に含まれる有機物を分析する場合は、同系
列の有機物を含むプロセス液体を分析出来るようにした
ほうが良い。A diluent containing an internal standard substance is a diluent containing a specified amount of the internal standard substance. The specified amount of this internal standard substance is relatively determined by the composition of the process liquid. Therefore, it is preferable to use a diluent containing an internal standard substance that can be used to analyze various process liquids. That is,
When analyzing organic substances contained in a process liquid, it is better to be able to analyze process liquids containing organic substances of the same series.
洗浄液は混合槽II等における残液を洗浄・除去するこ
とができるものであれば特に制限はなく、希釈液(内部
標準物質を含まないもの)と同一種類の溶剤であっても
、又は異っていてもよい。There are no particular restrictions on the cleaning solution as long as it can clean and remove the residual liquid in mixing tank II, etc., and it may be the same type of solvent as the diluent (not containing an internal standard substance) or a different one. You can leave it there.
また、本実施例の自動分析装置では、混合槽11及び配
管内部等の洗浄、液体試料の分取・計量、試料溶液のカ
ラムへの注入、分析結果の処理等を自動的に繰り返し行
うことを可能にするために、外部信号による指示の順番
により各手段を作動させるための、所謂シーケンスプロ
グラムを予め設定しておき、ガスクロマトグラフによる
分析データーの処理まで含めた一連の分析操作を自動的
に繰り返し行うことが可能なように構成されている。In addition, the automatic analyzer of this embodiment automatically repeats cleaning of the mixing tank 11 and the inside of the piping, separation and measurement of liquid samples, injection of sample solutions into columns, processing of analysis results, etc. In order to make this possible, a so-called sequence program is set in advance to operate each means according to the order of instructions given by external signals, and a series of analysis operations including processing of analysis data by gas chromatograph is automatically repeated. It is configured so that it can be done.
以上詳述したように、本発明では計量部でプロセス液体
と内部標準物質を含む希釈液を正確に計量し混合槽で混
合することにより、プロセス液体の粘度を小さくして、
ガスクロマl−グラフ用液体自動注入装置による注入精
度を上げ、且つ蒸気圧の小さい物質の分析も可能とし、
しかもガスクロマトグラフの気化室の温度を下げること
が出来るため熱分解し易い物質の分析も可能となる。As detailed above, in the present invention, the viscosity of the process liquid is reduced by accurately measuring the process liquid and the diluent containing the internal standard substance in the measuring section and mixing them in the mixing tank.
Improves the injection precision of automatic liquid injection equipment for gas chroma l-graphs, and enables analysis of substances with low vapor pressure.
Furthermore, since the temperature of the vaporization chamber of the gas chromatograph can be lowered, it is also possible to analyze substances that are easily decomposed by heat.
また、−回の分析操作が完了する毎に洗浄を行うため、
繰り返し行う分析の精度を上げることが可能となり、品
質保証の確認のため再分析の必要がなくなる。更に、高
沸点の(蒸気圧が低い)液体、常温で粘度が大きい液体
、高温下で不安定な分解し易い液体等の有機物の自動分
析に適し、オンライン制御によるプロセスガスクロマト
グーyフ自動分析に広く利用出来る。In addition, since cleaning is performed every time - analysis operations are completed,
This makes it possible to improve the precision of repeated analyzes and eliminates the need for re-analysis to confirm quality assurance. Furthermore, it is suitable for automatic analysis of organic substances such as liquids with high boiling points (low vapor pressure), liquids with high viscosity at room temperature, and liquids that are unstable and easily decomposed at high temperatures. It can be widely used.
(実験例]
前記第1図に示したと同様の構成からなる自動分析装置
を11−シアノウンデカン酸の精製プロセスに適用した
場合について具体的に説明する。(Experimental Example) A case in which an automatic analyzer having a configuration similar to that shown in FIG. 1 is applied to a purification process of 11-cyanoundecanoic acid will be specifically described.
II−シアノウンデカン酸の精製では、不純物を除去す
るために行う第1段階の晶析と、11−シアノウンデカ
ン酸を後の工程の原料として供給するため第2段階の晶
析とが行われている。これら第1段階及び第2段階晶析
の何れの工程においても、不純物の量又は目的物の純度
等の品質を管理するために、液体中に含まれる成分を継
続して追跡することが必要である。In the purification of II-cyanoundecanoic acid, a first stage crystallization is performed to remove impurities, and a second stage crystallization is performed to supply 11-cyanoundecanoic acid as a raw material for the subsequent process. There is. In both of these first and second stage crystallization processes, it is necessary to continuously monitor the components contained in the liquid in order to control the quality such as the amount of impurities or the purity of the target product. be.
そこで、上記両工程における液体を二つのプロセス流路
を流れるプロセス液体(液体試料)とし、該液体を交互
にガスクロマトグラフで分析できるようにする。尚、残
りの二つのプロセス流路は、一つは検量線検定用とし、
他の一つは予備として残した。Therefore, the liquids in both of the above steps are used as process liquids (liquid samples) flowing through two process channels, and the liquids can be analyzed alternately with a gas chromatograph. In addition, the remaining two process flow paths, one for calibration curve verification,
The other one was left as a spare.
また、自動分析装置の具体的構成としては、計量管4が
0.3 mlのループ管からなり、計量管7が中間にガ
ラス製の中空球が連結されたループ管からなり、その容
量は15雁である。また、混合槽11の容量は、35m
1である。In addition, as for the specific configuration of the automatic analyzer, the measuring tube 4 consists of a 0.3 ml loop tube, and the measuring tube 7 consists of a loop tube with a glass hollow sphere connected in the middle, and the capacity is 15 ml. It's a wild goose. In addition, the capacity of the mixing tank 11 is 35 m
It is 1.
そして、希釈液貯槽9には、内部標準物質としてパルミ
チン酸100. OOgを溶解した20ffiの99%
ブタノールを貯留し、この希釈液を送出するポンプ10
としては、送出能力20 ml / +sin、のチュ
ーブポンプを使用した。The diluent storage tank 9 contains 100% palmitic acid as an internal standard substance. 99% of 20ffi dissolved OOg
Pump 10 that stores butanol and delivers this diluted solution
A tube pump with a delivery capacity of 20 ml/+sin was used.
希釈液及び液体試料を混合槽11へ送出し、且つ混合す
る等のための加圧ガスとしては全て5kgG/ciの空
気を用いた。Air of 5 kgG/ci was used as the pressurized gas for sending and mixing the diluted liquid and liquid sample to the mixing tank 11.
また、ガスクロマトグラフ1は、その気化室及びカラム
の温度が何れも230℃で、水素炎イオン化検出器(F
ID)を備えている。キャリアガスとしては流速60m
1/win、の窒素を用い、充填剤に対する吸着を防止
するために該窒素に蟻酸を同伴させた。そして、自動分
析装置としては容量2μ!のピストン注入型のものを使
用した。In addition, the gas chromatograph 1 has a vaporization chamber and column temperature of 230°C, and a hydrogen flame ionization detector (F
ID). Flow rate of 60m as carrier gas
1/win nitrogen was used, and formic acid was entrained in the nitrogen to prevent adsorption to the filler. And, as an automatic analyzer, the capacity is 2μ! A piston injection type was used.
また、洗浄液貯槽14には、純度99%のメタノールを
20f貯留し、混合手段Cにおける廃液貯槽13の容量
は8ONである。Furthermore, 20 f of methanol with a purity of 99% is stored in the cleaning liquid storage tank 14, and the capacity of the waste liquid storage tank 13 in the mixing means C is 8ON.
以上説明した自動分析装置を用いて、前記第1段階及び
第2段階の晶析工程における液体を交互に分析する操作
を、前記第1図及び第2図(a)〜(d)の流れに従っ
て、1日48回実行した。Using the automatic analyzer described above, the operation of alternately analyzing the liquid in the first and second crystallization steps is carried out according to the flow shown in FIGS. 1 and 2 (a) to (d). , was executed 48 times a day.
上記分析操作を30日間継続した後も分析精度は±1%
以内であった。Even after continuing the above analysis operation for 30 days, the analysis accuracy remains ±1%.
It was within
以上、本発明について具体的に説明してきたが、本発明
の自動分析装置は前記実施例に示したものに限られるの
ではなく、要旨を逸脱しない範囲で種々変更可能である
。Although the present invention has been specifically explained above, the automatic analyzer of the present invention is not limited to that shown in the above embodiments, and can be modified in various ways without departing from the gist.
例えば、実施例では、4つのプロセス流路を備えている
ものを示したが、これに限るものでなく、プロセス流路
の数は任意に変更することができる。For example, in the embodiment, a device having four process channels is shown, but the present invention is not limited to this, and the number of process channels can be changed arbitrarily.
また、希釈液貯槽には、規定濃度の標準物質が1容解さ
れている希釈液を貯留する場合を示したが、所定位置に
一定量の標準物質を希釈液中に供給することができる供
給手段を設けることもできる。In addition, although the case where the diluent containing one volume of the standard substance at a specified concentration is stored in the diluent storage tank is shown, there is also a supply at a predetermined position that can supply a certain amount of the standard substance into the diluent. Means may also be provided.
更に、自動分析装置の作用の説明において、混合槽11
等に残留している洗浄液を排除するために電磁弁19を
開放して加圧ガスを導入して行う方法を示したが、切換
パルプ17を試料分取手段Aの方向に切換え、電磁弁2
0を開放して加圧ガスを導入してもよい。Furthermore, in the explanation of the operation of the automatic analyzer, the mixing tank 11
In order to remove the cleaning liquid remaining in the solenoid valve 2, etc., a method was shown in which the solenoid valve 19 was opened and pressurized gas was introduced.
0 may be opened and pressurized gas may be introduced.
本発明の自動分析装置は、液体試料が高粘性である場合
、蒸気圧が低い場合又は熱分解し易い場合でも、オンラ
イン制御の下で確実に且つ正確にガスクロマトグラフ分
析を連続して行うことができ、しかも、その分析結果を
自動的に処理することができる。The automatic analyzer of the present invention can perform continuous gas chromatography analysis reliably and accurately under online control even when liquid samples have high viscosity, low vapor pressure, or are easily thermally decomposed. Moreover, the analysis results can be processed automatically.
第1図は本発明の一実施例である自動分析装置を示す概
略構成図、第2図(a)〜(d)は上記自動分析装置の
作用の概略を説明する操作工程図である。
A・・・試料分取手段
B・・・希釈液分取手段
C・・・混合手段 D・
1・・・ガスクロマトグラフ
2・・・データ処理装置 3・・
4.7・・・計量管 11・・
・洗浄手段
・注入部
混合槽
(d)FIG. 1 is a schematic configuration diagram showing an automatic analyzer according to an embodiment of the present invention, and FIGS. 2(a) to 2(d) are operation process diagrams illustrating the outline of the operation of the automatic analyzer. A... Sample separation means B... Diluted liquid separation means C... Mixing means D. 1... Gas chromatograph 2... Data processing device 3... 4.7... Measuring tube 11・・Cleaning means/injection part mixing tank (d)
Claims (1)
析結果を処理するデータ処理部を備えていると共に、プ
ロセス流路から規定量の液体試料を分取する試料分取手
段、内部標準物質を含有する規定量の希釈液を分取する
希釈液分取手段、それぞれ分取した液体試料を希釈液に
混合・溶解して試料溶液を調製する混合手段、調製した
試料溶液を上記ガスクロマトグラフの注入部に移送する
試料溶液の移送手段、移送された試料溶液をガスクロマ
トグラフのカラムに注入する注入手段、及び注入後の上
記混合手段乃至注入部の内部を洗浄する洗浄手段を備え
ており、上記各手段をオンライン制御して、プロセス流
路から逐次分取する試料溶液を上記ガスクロマトグラフ
で連続的に分析し、その結果を上記データ処理部で処理
することを特徴とする自動分析装置。It is equipped with a gas chromatograph and a data processing unit that processes the analysis results obtained by the gas chromatograph, and also includes a sample separation means for separating a specified amount of liquid sample from the process flow path, and a specified amount of diluent containing an internal standard substance. a diluted liquid separating means for separating the liquid sample, a mixing means for preparing a sample solution by mixing and dissolving each separated liquid sample in a diluting liquid, and a sample solution separating means for transferring the prepared sample solution to the injection part of the gas chromatograph. A transfer means, an injection means for injecting the transferred sample solution into a column of a gas chromatograph, and a cleaning means for cleaning the inside of the mixing means or injection part after injection, and each of the above means is controlled online, An automatic analyzer characterized in that a sample solution taken sequentially from a process flow path is continuously analyzed by the gas chromatograph described above, and the results are processed by the data processing section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25166388A JPH02154150A (en) | 1988-10-05 | 1988-10-05 | Automatic analysis apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25166388A JPH02154150A (en) | 1988-10-05 | 1988-10-05 | Automatic analysis apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02154150A true JPH02154150A (en) | 1990-06-13 |
Family
ID=17226170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25166388A Pending JPH02154150A (en) | 1988-10-05 | 1988-10-05 | Automatic analysis apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02154150A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006047044A (en) * | 2004-08-03 | 2006-02-16 | Shimadzu Corp | Method of analyzing pcb in insulating oil |
CN103424494A (en) * | 2012-05-15 | 2013-12-04 | 株式会社岛津制作所 | Preparative separation-purification system |
-
1988
- 1988-10-05 JP JP25166388A patent/JPH02154150A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006047044A (en) * | 2004-08-03 | 2006-02-16 | Shimadzu Corp | Method of analyzing pcb in insulating oil |
CN103424494A (en) * | 2012-05-15 | 2013-12-04 | 株式会社岛津制作所 | Preparative separation-purification system |
CN103424494B (en) * | 2012-05-15 | 2014-12-31 | 株式会社岛津制作所 | Preparative separation-purification system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69112270T2 (en) | Decoupled flow and pressure setpoints in an extractor using compressible fluids. | |
DE69219864T2 (en) | Decoupled flow and pressure setting values in an extraction device when using compressible liquids | |
US4500432A (en) | Automated sample concentrator for trace components | |
US5322626A (en) | Decoupled flow and pressure setpoints in an extraction instrument using compressible fluids | |
JP3207866B2 (en) | Sample extraction device | |
Hedrick et al. | Quantitative supercritical fluid extraction/supercritical fluid chromatography of a phosphonate from aqueous media | |
US5714676A (en) | Method and apparatus for analyzing gas components and apparatus for collecting sample gases | |
CN1327157A (en) | Liquid phase chromatograph | |
Fogelqvist et al. | On-line liquid-liquid extraction in a segmented flow directly coupled to on-column injection into a gas chromatograph | |
JPS5940153A (en) | Device for partial extracting gel electrophoresis | |
DE602004011795T2 (en) | METHOD FOR INTRODUCING STANDARD GAS INTO A SAMPLING VESSEL | |
US7985597B2 (en) | Process and apparatus for providing a gaseous substance for the analysis of chemical elements or compounds | |
EP2210087B1 (en) | Method and apparatus for isotope-ratio analysis | |
JPH0684962B2 (en) | Sample pretreatment method | |
EP0847522A1 (en) | System and method for monitoring volatile species | |
JPH02154150A (en) | Automatic analysis apparatus | |
EP0396102B1 (en) | Method of transferring sample | |
Valcárcel et al. | Continuous liquid—liquid extraction and derivatization module coupled on-line with gas chromatographic detection | |
JPH0623743B2 (en) | Sample introduction device | |
Adams | The determination of anticonvulsants in biological samples by use of high pressure liquid chromatography | |
JPS6360863B2 (en) | ||
KR100687061B1 (en) | Method for analyzing adsorption amount with high efficiency and reproducibility | |
SU1408358A1 (en) | Automatic liquid chromatograph for selective extraction of target product from mixture of substances | |
JPS6332366A (en) | Supercritical fluid chromatography device | |
JPH087194B2 (en) | Chromatographic equipment |