JPH02153951A - Polyolefin resin composition for adhesive and coating - Google Patents

Polyolefin resin composition for adhesive and coating

Info

Publication number
JPH02153951A
JPH02153951A JP63303981A JP30398188A JPH02153951A JP H02153951 A JPH02153951 A JP H02153951A JP 63303981 A JP63303981 A JP 63303981A JP 30398188 A JP30398188 A JP 30398188A JP H02153951 A JPH02153951 A JP H02153951A
Authority
JP
Japan
Prior art keywords
copolymer
alkenylsilane
adhesive
resin composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63303981A
Other languages
Japanese (ja)
Inventor
Tadashi Asanuma
正 浅沼
Kazuhiko Yamamoto
一彦 山本
Junko Onaka
淳子 大仲
Yoshiko Tokura
十倉 由子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63303981A priority Critical patent/JPH02153951A/en
Publication of JPH02153951A publication Critical patent/JPH02153951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the title composition which is effective for adhesions between polyolefin and polar group-containing polymer or metal, and between metals to each other by using a copolymer from an alpha-olefin and an alkenylsilane in the presence of a specific catalyst. CONSTITUTION:In the presence of a catalyst which is composed of a transition metal compound such as titanium halide, vanadium halide and an organometallic compound such as organoaluminum compound e.g., trialkylaluminum, an alpha-olefin such as ethylene, propylene, butene-1 or pentene-1 and an alkenylsilane such as vinylsilane, allyl silane are copolymerized, and the copolymer is used to give the subject composition.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は接着用、及び塗装用ポリオレフィン樹脂組成物
に関する。詳しくは、α−オレフィンとアルケニルシラ
ンの共重合体を含有する樹脂組成物であって、極性基金
をポリマー、金属などとポリオレフィンとの接着用のポ
リオレフィン樹脂組成物、或いは、種々の塗料に対する
塗装用ポリオレフィン樹脂組成物に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a polyolefin resin composition for adhesives and coatings.Specifically, the present invention relates to a resin composition containing a copolymer of an α-olefin and an alkenylsilane. The present invention relates to polyolefin resin compositions for adhering polar bases between polymers, metals, etc. and polyolefins, or polyolefin resin compositions for coating various paints.

〔従来技術〕[Prior art]

ポリオレフィンの特性を生かしさらにガスバリヤ−性等
のポリオレフィンが元来持たない特性を付与する目的で
他の、特に極性基を含有するエチレン−酢酸ビニル共重
合体鹸化物(エバール)、ナイロン、ポリエステル等の
極性基を含有するポリマーと多層構造にするとか、アル
ミニウム、鉄などの金属と多層構造にすることは広く行
われている0元来ポリオレフィンと極性基含有ポリマー
は相溶性が無いため、またポリオレフィンと金属はなじ
みが悪いため、単に張り合わすだけでは接着せず、間に
接着用の樹脂を挟むことが行われている。この目的のた
めポリオレフィンに無水マレイン酸をグラフトした重合
体を含有する樹脂組成物が利用されている。また、ポリ
オレフィンはその特性を生かし、さらに表面に適当な塗
料を塗布することで戸外での種々の用途に使用すること
が行われている。ポリオレフィンは元来、種々の塗料に
対して塗装性が不良であり、そのままではすぐに塗膜が
剥がれてくる等の問題がある。そのため、ポリオレフィ
ンの成形物の表面に塗膜とポリオレフィンの接着性を持
たすための物質を予め塗布したり、成形物の表面をプラ
ズマ処理するこ七などが行われている。
In order to take advantage of the properties of polyolefins and further provide properties that polyolefins do not originally have, such as gas barrier properties, we use other materials such as saponified ethylene-vinyl acetate copolymers (EVAL) containing polar groups, nylon, and polyesters. Multilayer structures with polymers containing polar groups or multilayer structures with metals such as aluminum and iron are widely practiced.Originally, polyolefins and polymers containing polar groups are not compatible; Because metals do not blend well, they are not bonded by simply pasting them together, but instead an adhesive resin is sandwiched between them. For this purpose, a resin composition containing a polymer in which maleic anhydride is grafted onto a polyolefin is used. In addition, polyolefins are used for various outdoor purposes by taking advantage of their properties and applying appropriate paints to their surfaces. Polyolefins originally have poor paintability with various paints, and there are problems such as the paint film peeling off immediately if left as is. For this reason, methods such as pre-coating the surface of a polyolefin molded product with a substance to provide adhesion between the coating film and the polyolefin, or plasma-treating the surface of the molded product are being carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ポリオレフィンに無水マレイン酸をグラフトした重合体
はポリオレフィンと極性基含有ポリマーとの接着性改良
に一定の効果を有するが、特にエバールとポリオレフィ
ンの接着用、あるいは金属との接着用などには未だ不充
分であり、また対金属用に利用する時には腐食性の問題
がありさらに接着性の改良された接着用の樹脂組成物の
開発が望まれていた。また、−力量装用についは、上記
方法は塗布する前に他の物質を塗布する必要があり、操
作が煩雑となるという問題、プラズマによる処理ではさ
らにそのための特別の設備が必要であるという問題があ
る。そのため、ポリオレフィンの物性を損なわず単にポ
リオレフィンに混合するだけで塗装性を改良できる組成
物が望まれてい〔!!題を解決するための手段〕 本発明者らは上記課題を解決したポリオレフィンと他の
極性基含有ポリマーあるいは金属との接着性に優れた樹
脂組成物、及びポリオレフィンの塗装性を改良した組成
物について鋭意探索し、接着性、塗装性に優れたポリオ
レフィン樹脂組成物を見出し、発明を完成した。
Polymers obtained by grafting maleic anhydride onto polyolefins have certain effects on improving the adhesion between polyolefins and polar group-containing polymers, but they are still insufficient, especially for adhesion between EVAL and polyolefins, or for adhesion to metals. Moreover, when used for metals, there is a problem of corrosion, and there has been a desire to develop a resin composition for adhesives with improved adhesiveness. In addition, - with regard to forceful application, the above method requires the application of another substance before application, which makes the operation complicated, and the plasma treatment requires special equipment for this purpose. be. Therefore, there is a desire for a composition that can improve coating properties simply by mixing with polyolefin without impairing the physical properties of polyolefin. ! Means for Solving the Problem] The present inventors have proposed a resin composition that solves the above problems and has excellent adhesiveness between polyolefin and other polar group-containing polymers or metals, and a composition that improves the paintability of polyolefin. After extensive research, they discovered a polyolefin resin composition with excellent adhesiveness and paintability, and completed the invention.

即ち、本発明は遷移金属化合物と有機金属化合物からな
る触媒を用いてα−オレフィンとアルケニルシランを共
重合して得た共重合体を含有する接着用ポリオレフィン
樹脂組成物である0本発明はまた、遷移金属化合物と有
機金属化合物からなる触媒を用いてα−オレフィンとア
ルケニルシランを共重合して得た共重合体を含有する塗
装用ポリオレフィン樹脂組成物である。
That is, the present invention is an adhesive polyolefin resin composition containing a copolymer obtained by copolymerizing an α-olefin and an alkenylsilane using a catalyst consisting of a transition metal compound and an organometallic compound. , a polyolefin resin composition for coating containing a copolymer obtained by copolymerizing an α-olefin and an alkenylsilane using a catalyst consisting of a transition metal compound and an organometallic compound.

本発明において用いるアルケニルシランとエチレンとを
遷移金属化合物と有機金属化合物の存在下に重合して得
られるアルケニルシランとα−オレフィンの共重合体に
ついては、米国特許3,223゜686号に開示されて
おり、この共重合体が架橋ポリマーとして有用であるこ
とは同3,644.306号に示されているが接着用或
いは塗装用の樹脂組成物用のポリマーとして有用である
ことは知られていない。
The copolymer of alkenylsilane and α-olefin obtained by polymerizing alkenylsilane and ethylene in the presence of a transition metal compound and an organometallic compound used in the present invention is disclosed in U.S. Pat. No. 3,223°686. It is shown in No. 3,644.306 that this copolymer is useful as a crosslinked polymer, but it is not known that it is useful as a polymer for resin compositions for adhesives or coatings. do not have.

本発明において共重合に用いるアルケニルシランとは、
一般式、HIC=CI−(CHl)rlsiHJs−a
 (式中、1はO〜12、−は1〜2、Itはメチル基
、フェニル基を表す、)、あるいは一般式、H,C=C
1l−(CHx)nsiHpcIs−p  (式中、n
はO〜12、pは1〜3、Rはメチル基、フェニル基を
表す、)で表される化合物が用いられ、例えば、ビニル
シラン、アリルシラン、ブテニルシラン、ペンテニルシ
ランあるいはこれらのモノマーの5i−H5の水素の1
〜2個がアルキル基で置換された化合物あるいはSl−
■結合の水素の1〜3個がクロルでItaされた化合物
などが例示できる。
The alkenylsilane used for copolymerization in the present invention is
General formula, HIC=CI-(CHl)rlsiHJs-a
(In the formula, 1 represents O-12, - represents 1-2, It represents a methyl group or a phenyl group), or the general formula, H, C=C
1l-(CHx)nsiHpcIs-p (wherein, n
is O-12, p is 1-3, R is a methyl group or a phenyl group), for example, vinylsilane, allylsilane, butenylsilane, pentenylsilane or 5i-H5 of these monomers Hydrogen 1
Compounds in which ~2 groups are substituted with alkyl groups or Sl-
(2) Compounds in which 1 to 3 of the hydrogen atoms in a bond are replaced with chloro can be exemplified.

本発明においてα−オレフィンとしては炭素数1〜12
個のα−オレフィンの1種または2種以上の混合物が例
示でき、具体的にはエチレン、プロピレン、ブテン−1
1ペンテン−1、ヘキセン−1,2メチルペンテン−1
が例示される。
In the present invention, the α-olefin has 1 to 12 carbon atoms.
Examples include one or a mixture of two or more α-olefins, specifically ethylene, propylene, butene-1
1 pentene-1, hexene-1,2 methylpentene-1
is exemplified.

本発明において用い得る遷移金属化合物と有機金属化合
物からなる触媒としては、上記米国特許に記載されたも
のばかりでな(、その後開示された多くの性能が改良さ
れたα−オレフィンの重合用の触媒を支障無く使用する
ことができる。
Catalysts consisting of transition metal compounds and organometallic compounds that can be used in the present invention include not only those described in the above-mentioned U.S. patents (but also many catalysts for the polymerization of α-olefins with improved performance that have been disclosed since then). can be used without any problems.

重合法としても不活性溶媒を使用する溶媒法によるのが
一般的であるが、塊状重合法、気相重合法も採用できる
。ここで遷移金属化合物と有機金属化合物からなる触媒
としては、遷移金属化合物としてはハロゲン化チタン、
あるいはハロゲン化バナジウムが、有機金属化合物とし
て有機アルミニウム化合物が好ましく用いられる0例え
ば四塩化チタンを金属アルミニウム、水素或いは有機ア
ルミニウムで還元して得た三塩化チタン又はそれらを電
子供与性化合物で変性処理したものと有機アルミニウム
化合物さらに必要に応じ含酸素有機化合物などの電子供
与性化合物からなる触媒系、ハロゲン化バナジウム、あ
るいはオキシハロゲン化バナジウムと有機アルミニウム
からなる触媒系、或いはハロゲン化マグネシウム等の担
体或いはそれらを電子供与性化合物で処理したものにハ
ロゲン化チタン、あるいはハロゲン化バナジウム、オキ
シハロゲン化バナジウムを担持して得た遷移金属化合物
触媒と有機アルミニウム化合物、必要に応じ含酸素有機
化合物などの電子供与性化合物からなる触媒系、あるい
は塩化マグネシウムとアルコールの反応物を炭化水素溶
媒中に溶解し、ついで四塩化チタンなどの沈澱剤で処理
することで炭化水素溶媒に不溶化し、必要に応じエステ
ル、エーテルなどの電子供与性の化合物で処理し、つい
でハロゲン化チタンで処理する方法などによって得られ
る遷移金属化合物触媒と有機アルミニウム化合物、必要
に応じ含酸素有機化合物などの電子供与性化合物からな
る触媒系等が例示される(例えば、以下の文献に種々の
例が記載されている、 Ziegler−Natta 
Catalysts and Po13nseriza
tionby John Boor Jr(Acade
mic Press)、Journal  。
The polymerization method is generally a solvent method using an inert solvent, but bulk polymerization methods and gas phase polymerization methods can also be employed. Here, as a catalyst consisting of a transition metal compound and an organometallic compound, the transition metal compound is titanium halide,
Alternatively, the vanadium halide is preferably an organoaluminium compound as the organometallic compound. For example, titanium trichloride obtained by reducing titanium tetrachloride with metallic aluminum, hydrogen, or organoaluminum, or titanium trichloride obtained by modifying them with an electron-donating compound. and an organoaluminum compound, and if necessary, a catalyst system consisting of an electron-donating compound such as an oxygen-containing organic compound, a catalyst system consisting of vanadium halide, or vanadium oxyhalide and organoaluminium, or a carrier such as magnesium halide, or the like. A transition metal compound catalyst obtained by supporting titanium halide, vanadium halide, or vanadium oxyhalide on a material treated with an electron-donating compound, an organoaluminum compound, and an electron-donating compound such as an oxygen-containing organic compound if necessary. A catalyst system consisting of a compound or a reaction product of magnesium chloride and alcohol is dissolved in a hydrocarbon solvent, and then treated with a precipitant such as titanium tetrachloride to make it insoluble in the hydrocarbon solvent, and if necessary, ester, ether, etc. A catalyst system consisting of a transition metal compound catalyst obtained by treatment with an electron-donating compound, followed by treatment with a titanium halide, an organoaluminum compound, and an electron-donating compound such as an oxygen-containing organic compound if necessary. For example, Ziegler-Natta
Catalysts and Po13nseriza
by John Boor Jr. (Acade)
mic Press), Journal.

f  Macromorecular  5ience
  Reviews  in  Macromolec
ular  Chemlstry  and  Phy
sics、C24(3)  355−385(1984
)、同C25(1) 57B−597(1985))。
f Macromorecular 5ience
Reviews in Macromolec
ular chemistry and phy
sics, C24(3) 355-385 (1984
), C25(1) 57B-597 (1985)).

ここで電子供与性化合物としては通常エーテル、エステ
ル、オルソエステル、アルコキシ硅素化合物などの含酸
素化合物が好ましく例示でき、さらにアルコール、アル
デヒド、水なども使用可能である。
As the electron-donating compound, oxygen-containing compounds such as ethers, esters, orthoesters, and alkoxy silicon compounds are generally preferred, and alcohols, aldehydes, water, and the like can also be used.

有機アルミニウム化合物としては、トリアルキルアルミ
ニウム、ジアルキルアルミニウムハライド、アルキルア
ルミニウムセスキハライド、アルキルアルミニウムシバ
ライドが使用でき、アルキル基としてはメチル基、エチ
ル基、プロピル基、ブチル基、ヘキシル基などが例示さ
れ、ハロゲンとしては塩素、臭素、沃素が例示される。
As the organoaluminum compound, trialkylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, alkyl aluminum civalide can be used, and examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, hexyl group, etc. Examples of halogen include chlorine, bromine, and iodine.

ここでアルケニルシランとα−オレフィンの重合割合と
しては、他のポリオレフィンと混合が容易であり混合し
た組成物中のアルケニルシラン含量が接着用としてはl
 wtpp量以上、塗装用としてはlowtpp■以上
とすることが可能であるかぎり特に制限は無いが、通常
アルケニルシランが30wt%以下とするのが重合時の
触媒活性、或いは、以下に示すアルケニルシランを含有
しないポリオレフィンとの溶融混合のため好ましい、ま
た、下限としては共重合体をそのまま接着用ポリオレフ
ィンとして用いるとして接着用としては1 wtpρ鳳
程度、塗装用としてはlQwtpp−程度である0重合
体の分子量としては特に制限はないが極めて高い分子量
、例えば135℃テトラリン溶液で測定した極限粘度と
して10以上にならないようするのが他のポリオレフィ
ンとの混合という観点からも好ましく、通常極限粘度と
して0.1〜5程度である。
Here, the polymerization ratio of alkenylsilane and α-olefin is such that it is easy to mix with other polyolefins, and the alkenylsilane content in the mixed composition is l
There is no particular restriction as long as the amount is wtpp or more, and for coatings it is lowtpp■ or more, but usually the alkenylsilane content is 30wt% or less because of the catalytic activity during polymerization, or the following alkenylsilanes are used. It is preferred because it is melt-mixed with a polyolefin that does not contain the copolymer, and the lower limit is about 1 wtpρ for adhesives and about 1Qwtpp- for coatings if the copolymer is used as it is as an adhesive polyolefin, and the molecular weight of the polymer is about 0. Although there is no particular restriction on the molecular weight, it is preferable that the molecular weight is extremely high, for example, from the viewpoint of mixing with other polyolefins, the intrinsic viscosity measured in a tetralin solution at 135° C. is not more than 10, and the intrinsic viscosity is usually 0.1 to 0.1. It is about 5.

本発明において上記アルケニルシランとα−オレフィン
を遷移金属化合物と有機金属化合物からなる触媒を用い
て重合して得た共重合体を含有する組成物とは、好まし
くはアルケニルシランを含有する共重合体と他のアルケ
ニルシランを含有しないポリオレフィンを混合すること
で製造される、ここで混合されるアルケニルシランを含
有しないポリオレフィンとしては特に制限は無く必要に
応じ種々の分子量の重合体、あるいはオレフィン相互の
ランダム或いはブロック共重合体が利用でき、接着する
ポリオレフィンと同様の組成、分子量のものを用いるの
も一法である。ポリオレフィンを形成するα−オレフィ
ンとしては上述のアルケニルシランとの共重合に用いる
α−オレフィンとして例示したものが用いられ、それぞ
れの単独重合体、あるいは単量体相互のランダムあるい
はブロック共重合体の他にさらに少量の炭素数のより多
いα−オレフィンとの共重合体も例示できる、これらの
重合体は、上述のアルケニルシランの共重合に用いるの
と同様の触媒系で、また同様の条件で重合することがで
き、また市場で種々の種類のポリオレフィンを入手し利
用することができる。
In the present invention, the composition containing a copolymer obtained by polymerizing the alkenylsilane and α-olefin using a catalyst consisting of a transition metal compound and an organometallic compound preferably refers to a copolymer containing an alkenylsilane. The alkenylsilane-free polyolefin to be mixed here is not particularly limited, and polymers of various molecular weights or random combinations of olefins can be used as needed. Alternatively, a block copolymer can be used, and one method is to use one having the same composition and molecular weight as the polyolefin to be bonded. As the α-olefin forming the polyolefin, those exemplified as the α-olefin used in copolymerization with alkenylsilane mentioned above are used, and homopolymers of each, random or block copolymers of mutual monomers, etc. Examples include copolymers with a small amount of α-olefin having a larger number of carbon atoms.These polymers can be polymerized using the same catalyst system and under the same conditions as those used for the copolymerization of alkenylsilanes described above. Various types of polyolefins are available and available on the market.

本発明の組成物は必要に応じ酸化防止剤、紫外線吸収剤
等の通常のポリオレフィンに添加される種々の添加剤を
添加することができる。さらに必要に応じ、有機酸、ま
たはその塩、あるいは有機塩基、或いは、アルカリ金属
、アルカリ土類金属のアルコキシ化合物、或いは水酸化
物、酸化物あるいはパラジウム、白金などの貴金属類か
ら選ばれた化合物を併用することもできるが特に、この
ような5i−Nを活性化する触媒を存在させなくても通
常の目的には充分な接着力があり、通常の目的には充分
な塗装性がある。
The composition of the present invention may contain various additives that are commonly added to polyolefins, such as antioxidants and ultraviolet absorbers, if necessary. Furthermore, if necessary, organic acids, salts thereof, organic bases, alkoxy compounds of alkali metals and alkaline earth metals, hydroxides, oxides, and compounds selected from noble metals such as palladium and platinum may be added. Although they can be used in combination, in particular, even without the presence of such a catalyst for activating 5i-N, there is sufficient adhesion for ordinary purposes and sufficient paintability for ordinary purposes.

本発明において、アルケニルシランを含有する共重合体
と該シラン化合物を含有しないポリオレフィンの混合割
合としてはアルケニルシランを含有する共重合体中に存
在するアルケニルシランの量により異なるが、混合後ア
ルケニルシラン単位が全組成物中接着用で1wt%〜1
wtpp−程度、塗装用で1wt%〜10wtpp+s
程度存在するようにするのが一般的である。またアルケ
ニルシランを含有する共重合体に安定剤等の添加剤のみ
を加え組成物とすることもできる0組成物を製造する際
の混合方法としては特に制限はなく、ヘンシェルミキサ
ー等で均一に混合した後、押出機などで溶融混合し造粒
するのが一般的である。混合と溶融を同時に行うプラベ
ンダーなどによる方法あるいは溶融後そのまま利用する
形態に応じフィルム、シートなどに成形することも勿論
可能である。
In the present invention, the mixing ratio of the copolymer containing alkenylsilane and the polyolefin not containing the silane compound varies depending on the amount of alkenylsilane present in the copolymer containing alkenylsilane, but after mixing the alkenylsilane unit is 1 wt% to 1 for adhesive use in the entire composition.
wtpp- level, 1wt% to 10wtpp+s for painting
It is common to make it exist to some extent. In addition, a composition can be made by adding only additives such as stabilizers to a copolymer containing alkenylsilane. There are no particular restrictions on the mixing method when producing a composition, and the mixture is uniformly mixed using a Henschel mixer etc. After that, it is common to melt-mix and granulate using an extruder or the like. Of course, it is also possible to use a method such as a plastic bender in which mixing and melting are performed at the same time, or to form a film, sheet, etc. according to the form in which it is used as it is after melting.

〔実施例〕〔Example〕

以下に実施例を挙げ本発明をさらに説明する。 The present invention will be further explained with reference to Examples below.

実施例1 直径12m−の鋼球9kgの入った内容積42の粉砕用
ポットを4個装備した振動ミルを用意する。各ポットに
窒素雰囲気下で塩化マグネシウム300g、テトラエト
キシシラン60M1、α、α、α−トリクロロトルエン
45−を加え40時間粉砕した。こうして得た共粉砕物
300gを51のフラスコに入れ、四塩化チタン1.5
1、トルエン1.512を加えた後、100℃で30分
間撹拌処理し、次いで上澄液を除き、同様に四塩化チタ
ン1.5 ffi、トルエン1.51を加え、100℃
で30分間撹拌処理し、再び上澄液を除去し、得られた
固形分をn−へキサンで繰り返し洗浄して遷移金属触媒
スラリーを得た。一部をサンプリングし固型分のチタン
を分析したところ1.9wt%であった。
Example 1 A vibratory mill equipped with four grinding pots each having an internal volume of 42 and containing 9 kg of steel balls each having a diameter of 12 m was prepared. 300 g of magnesium chloride, 60M1 of tetraethoxysilane, and 45-α,α,α-trichlorotoluene were added to each pot under a nitrogen atmosphere and pulverized for 40 hours. 300 g of the co-pulverized material obtained in this way was put into a flask of 51, and 1.5 g of titanium tetrachloride was added.
1. After adding 1.512 toluene, stir at 100°C for 30 minutes, then remove the supernatant, add 1.5 ffi of titanium tetrachloride and 1.51 toluene, and stir at 100°C.
The mixture was stirred for 30 minutes, the supernatant liquid was removed again, and the resulting solid content was washed repeatedly with n-hexane to obtain a transition metal catalyst slurry. When a part of the sample was sampled and the solid content of titanium was analyzed, it was found to be 1.9 wt%.

内容積200dの耐圧ガラスオートクレーブに窒素雰囲
気下トルエン40ae、上記遷移金属触媒20■g、ジ
エチルアルミニウムクロライド0.128d、 p−)
ルイル酸メチル0.06dおよびトリエチルアルミニウ
ム0.20−を加え、ついでビニルシラン2.Ogを圧
入し、次いでプロピレンを5 kg/cjになるまで装
入し、70℃で圧カ一定で2時間重合した。その後スラ
リーを取り出し濾過乾燥して43gのパウダーを得た。
In a pressure-resistant glass autoclave with an internal volume of 200 d, under a nitrogen atmosphere, 40 ae of toluene, 20 g of the above transition metal catalyst, 0.128 d of diethylaluminum chloride, p-)
Add 0.06 d of methyl ruylate and 0.20 d of triethylaluminum, then add 2.0 d of vinylsilane. Og was introduced under pressure, and then propylene was charged until the amount reached 5 kg/cj, and polymerization was carried out at 70° C. for 2 hours at a constant pressure. Thereafter, the slurry was taken out, filtered and dried to obtain 43 g of powder.

得られたパウダーの135°Cのテトラリン溶液で測定
した極限粘度(以下、Iと略記する)は1.45a/g
であり、示差熱分析装置を用い10″C/minで昇温
或いは降温することで融点及び結晶化温度を最大ピーク
温度として測定した所、融点は156℃であり、結晶化
温度は118℃であった。なお、このものの元素分析に
よればビニルシラン単位を1.6wtχ含有していた。
The intrinsic viscosity (hereinafter abbreviated as I) of the obtained powder measured in a tetralin solution at 135°C was 1.45a/g.
When the melting point and crystallization temperature were measured as the maximum peak temperature by increasing or decreasing the temperature at 10"C/min using a differential thermal analyzer, the melting point was 156 °C and the crystallization temperature was 118 °C. According to elemental analysis of this product, it contained 1.6 wt x of vinylsilane units.

また別途プロピレンと少量のエチレンを上記重合と同様
に重合してエチレン含量2.5wtχ、ηが1゜60d
l/g、ソックスレー抽出器で抽出した時の抽出残率(
以下、■夏と略記する。抽出後パウダー重量/抽出前パ
ウダー重量を100分率で表示したもの)が91.5%
、融点が154°Cのポリプロピレンの共重合体を得た
Separately, propylene and a small amount of ethylene were polymerized in the same manner as the above polymerization, and the ethylene content was 2.5wtχ and η was 1°60d.
l/g, extraction residual rate when extracted with a Soxhlet extractor (
Hereinafter, it will be abbreviated as ■Summer. Powder weight after extraction/powder weight before extraction (expressed as a 100% ratio) is 91.5%
, a polypropylene copolymer having a melting point of 154°C was obtained.

ここで得たプロピレンの共重合体パウダー200gに上
記で得たビニルシランの共重合体10g、フェノール系
の安定剤10/10000重量比及びステアリン酸カル
シウム15/10000重量比を加え造粒して接着用の
樹脂組成物を得た。
To 200 g of the propylene copolymer powder obtained here, 10 g of the vinyl silane copolymer obtained above, a phenolic stabilizer in a weight ratio of 10/10,000, and calcium stearate in a weight ratio of 15/10,000 were added and granulated to form an adhesive. A resin composition was obtained.

接着強度を測定するため、エバール(クラレ■製EP−
F)の厚み0.2−嘗のシートとポリプロピレンの共重
合体の厚さ0.2m−のシート (上記ポリプロピレン
の共重合体で製造したもの)の間に上記接着用の組成物
のシート(厚さ0.1膳Il)を挟み、220℃、4 
g/cj、3m+nで圧着した。この多層のシートの剥
離強度(インストロン引っ張り試験機を用い、中2.5
1の試験片について23°Cs  1100a/驕in
の引っ張り速度でのT型剥離強度を測定した)は2Kg
八−へ上であった。
To measure the adhesive strength, we used EVAL (Kuraray EP-
A sheet of the above-mentioned adhesive composition ( 220℃, 4
g/cj, 3m+n. The peel strength of this multilayer sheet (using an Instron tensile tester, medium 2.5
23°Cs 1100a/in for test piece 1
The T-peel strength was measured at a tensile speed of 2 kg.
It was up to eight.

比較例1 ビニルシランの共重合体のシートを用いなかった他は実
施例1と同様にしたきころ自然に剥離し、接着強度は測
定できなかった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the vinyl silane copolymer sheet was not used. The adhesive peeled off naturally and the adhesive strength could not be measured.

実施例2 実施例1と同様にしてエチレンのみを重合して、ηが1
.75d1/gのポリエチレンを得た。このポリエチレ
ンと実施例1で得た、ビニルシランとプロピレンの共重
合体を実施例1と同様に混合して得たシート(厚さ0.
1mm)を接着層とし、同様にして得たポリエチレンの
厚さ0.2mmのシートとエバールのシート七の接着性
のテストを行ったところ剥離強度は2Kg/c−以上で
あった。
Example 2 Only ethylene was polymerized in the same manner as in Example 1, and η was 1.
.. Polyethylene of 75 d1/g was obtained. A sheet obtained by mixing this polyethylene and the copolymer of vinylsilane and propylene obtained in Example 1 in the same manner as in Example 1 (thickness 0.
1 mm) was used as the adhesive layer, and an adhesion test was conducted between a 0.2 mm thick polyethylene sheet obtained in the same manner and EVAL Sheet 7, and the peel strength was 2 kg/c- or more.

比較例2 とニルシランの共重合体のシートを用いなかった他は実
施例2と同様にしたところ自然に剥離し、接着強度は測
定できなかった。
Comparative Example 2 The same procedure as Example 2 was carried out except that the sheet of the copolymer of Nylsilane and Nylsilane was not used, but the adhesive peeled off naturally and the adhesive strength could not be measured.

実施例3 共重合に際し、とニルシランに代えアリルシランを用い
た他は実施例1と同様にして、アリルシラン含量2.1
wt%、融点152℃、1.28のポリマーを得、実施
例1と同様に接着性を評価したところ、剥離強度は2k
g八−へ上であった。
Example 3 Copolymerization was carried out in the same manner as in Example 1, except that allylsilane was used instead of nylsilane, and the allylsilane content was 2.1.
When a polymer with wt%, melting point of 152°C, and 1.28 was obtained, and the adhesiveness was evaluated in the same manner as in Example 1, the peel strength was 2k.
It was on g8-he.

実施例4 実施例1のプロピレンにかえエチレンを用いてエチレン
とビニルシランの共重合を行った。内容積200adの
耐圧ガラスオートクレーブに窒素雰囲気下トルエン40
−2実施例1で用いた遷移金属触媒50■、ジエチルア
ルミニウムクロライド0.128dSp−トルイル酸メ
チル0.06dおよびトリエチルアルミニウム0.20
ggを入れ、ついでビニルシラン4、Ogを圧入した後
、水素を0.2kg/d、エチレンを1 kg/cjに
なるまで装入し、70℃で圧カ一定で2時間重合した。
Example 4 Ethylene was used instead of propylene in Example 1 to copolymerize ethylene and vinylsilane. Toluene was added to a pressure-resistant glass autoclave with an internal volume of 200 ad under a nitrogen atmosphere.
-2 Transition metal catalyst used in Example 1 50μ, diethylaluminum chloride 0.128dSp-methyl toluate 0.06d and triethylaluminum 0.20
Then, vinylsilane 4 and Og were introduced under pressure, then hydrogen was charged to 0.2 kg/d and ethylene was charged to 1 kg/cj, and polymerization was carried out at 70° C. for 2 hours at a constant pressure.

その後スラリーを取り出し、濾過乾燥して63gのパウ
ダーを得た。得られたパウダーは、lが1.81dl/
gであり、融点126℃、結晶化温度104℃であるエ
チレンととニルシランの共重合体であった。尚、元素分
析によればビニルシラン単位を1.3wt%含有してい
た。
Thereafter, the slurry was taken out, filtered and dried to obtain 63 g of powder. The obtained powder has a l content of 1.81 dl/
It was a copolymer of ethylene and nylsilane with a melting point of 126°C and a crystallization temperature of 104°C. According to elemental analysis, it contained 1.3 wt% of vinylsilane units.

また別途エチレンを単独重合し、ηが1.88であるポ
リエチレンを得た。
Separately, ethylene was homopolymerized to obtain polyethylene having η of 1.88.

得られたポリエチレンパウダー200gに上記共重合体
10g、フェノール系の安定剤10/10000重量比
(対ポリエチレン)およびステアリン酸カルシウム15
/10000重量比(対ポリエチレン)を加え、造粒し
て、接着用の樹脂組成物を得た。
To 200 g of the obtained polyethylene powder, 10 g of the above copolymer, a phenolic stabilizer at a weight ratio of 10/10,000 (to polyethylene), and calcium stearate 15
/10,000 weight ratio (to polyethylene) was added and granulated to obtain an adhesive resin composition.

この組成物を用い実施例1と同様に評価したところ剥離
強度は2Kg/cs以上であった。
When this composition was evaluated in the same manner as in Example 1, the peel strength was 2 kg/cs or more.

比較例3 ビニルシランの共重合体のシートを用いなかった他は実
施例2と同様にしたところ自然に剥離し、接着強度は測
定できなかった。
Comparative Example 3 The same procedure as Example 2 was carried out except that the vinyl silane copolymer sheet was not used, but the adhesive peeled off naturally and the adhesive strength could not be measured.

実施例5 実施例1で得たプロピレンと少量のエチレンの共重合体
を実施例4で得たビニルシランを含有するポリエチレン
と混合して組成物とした。この組成物を接着層とし、プ
ロピレンとエチレンの共重合体のシートの層とエバール
のシートの層との接着試験を実施例1と同様にしたとこ
ろ剥離強度は2Kg/c−以上であった。
Example 5 A copolymer of propylene and a small amount of ethylene obtained in Example 1 was mixed with polyethylene containing vinylsilane obtained in Example 4 to prepare a composition. Using this composition as an adhesive layer, an adhesion test between a propylene and ethylene copolymer sheet layer and an EVAL sheet layer was performed in the same manner as in Example 1, and the peel strength was 2 kg/c- or more.

実施例6 共重合に際しビニルシランに代えアリルシランを用いた
他は実施例4と同様にして、アリルシラン含量1.81
賀t%、融点123°C1η1.31のポリマーを得、
エチレンとビニルシランの共重合体に代え、アリルシラ
ンとビニルシランの共重合体を用いた他は、実施例4と
同様に評価したところ、剥離強度は2kg/c−以上で
あった。
Example 6 The same procedure as Example 4 was carried out except that allylsilane was used instead of vinylsilane during copolymerization, and the allylsilane content was 1.81.
obtained a polymer with a melting point of 123°C1η1.31,
When evaluated in the same manner as in Example 4, except that a copolymer of allylsilane and vinylsilane was used instead of a copolymer of ethylene and vinylsilane, the peel strength was 2 kg/c- or more.

実施例7 実施例1で得たプロピレンとビニルシランの共重合体2
重量部に対し、ηが1.65、■!が97.1%である
ポリプロピレン97重量部、フェノール系の安定剤10
/10000重量比(対ポリプロピレン)およびステア
リン酸カルシウム15/10000重量比(対ポリプロ
ピレン)をヘンシェルミキサーで5分間混合し、ついで
201φの押出機で220℃で造粒した。
Example 7 Copolymer 2 of propylene and vinylsilane obtained in Example 1
η is 1.65, ■! 97 parts by weight of polypropylene with a content of 97.1%, 10 parts by weight of a phenolic stabilizer
/10,000 weight ratio (to polypropylene) and 15/10,000 weight ratio (to polypropylene) of calcium stearate were mixed in a Henschel mixer for 5 minutes, and then granulated at 220°C in a 201φ extruder.

こうして得たベレットを220℃、100kg/cm”
で圧縮成形して200μ園のシートを得た。接着強度を
測定するため、このシートにアセトンで脱脂した厚さ1
00.−のアルミニウム板をアルミニウム板−シート−
アルミニウム板の順に重ね220℃で10kg/cm”
で10分間加圧後水冷して積層板を得た。この積層板の
剥離強度は)、Bk11cmであった。
The pellet thus obtained was heated to 220℃ and 100kg/cm.
Compression molding was performed to obtain a 200 μm sheet. To measure the adhesive strength, this sheet was degreased with acetone to a thickness of 1
00. - aluminum plate - aluminum plate - sheet -
10kg/cm at 220℃ by stacking aluminum plates in order
After pressurizing for 10 minutes, the laminate was cooled with water to obtain a laminate. The peel strength of this laminate was Bk 11 cm.

比較例4 プロピレンとビニルシランの共重合体を用いなかった他
は実施例7と同様にしたところアルミニウム板は自然に
剥離し接着強度は測定できなかった。
Comparative Example 4 The same procedure as Example 7 was carried out except that the copolymer of propylene and vinylsilane was not used, but the aluminum plate peeled off naturally and the adhesive strength could not be measured.

実施例8 実施例3で得たプロピレンとアリルシランの共重合体を
ビニルシランとプロピレンの共重合体に代えて使用した
他は実施例7と同様に評価したところ剥離強度は1.7
kg/cmであった。
Example 8 Evaluation was carried out in the same manner as in Example 7, except that the copolymer of propylene and allylsilane obtained in Example 3 was used instead of the copolymer of vinylsilane and propylene, and the peel strength was 1.7.
kg/cm.

実施例9 実施例7で得たシート(厚さ0,1霞蒙)を接着層とし
て実施例−7と同様の操作で亜鉛鍍金板(JIS−J−
3302)との接着強度を測定した剥離強度は1.1K
g/cmであった。
Example 9 A galvanized plate (JIS-J-
3302), the peel strength measured was 1.1K.
g/cm.

比較例5 アルミニウム板に代え亜鉛鍍金板を用いた他は比較例4
と同様にしたところ亜鉛鍍金板は自然に剥離し接着強度
は測定できなかった。
Comparative Example 5 Comparative Example 4 except that a galvanized plate was used instead of the aluminum plate.
When the same procedure as above was carried out, the zinc-plated plate peeled off naturally and the adhesive strength could not be measured.

実施例IO 実施例8で得たシートを接着層として用い、実施例7と
同様の操作で軟鉄板との接着強度を測定したところ、剥
離強度は1.1kg7cmであった。
Example IO Using the sheet obtained in Example 8 as an adhesive layer, the adhesive strength with a soft iron plate was measured in the same manner as in Example 7, and the peel strength was 1.1 kg 7 cm.

比較例J%6 アルミニウム板に代え軟鉄板を用いた他は比較例4と同
様にしたところ軟鉄板は自然に剥離し接着強度は測定で
きなかった。
Comparative Example J%6 Comparative Example 4 was repeated except that a soft iron plate was used instead of the aluminum plate, but the soft iron plate peeled off naturally and the adhesive strength could not be measured.

実施例11 実施例1で得た、プロピレンとビニルシランの共重合体
10gと実施例1の触媒でエチレンを重合してポリエチ
レンを得た。このηが1.88a/gであるポリエチレ
ンパウダー200gと、フェノール系の安定剤10/1
0000!(i)比(対ポリオレフィン)およびステア
リン酸カルシウム15/10000重量比(対ポリオレ
フィン)を加え、造粒して、塗装用の樹脂組成物を得た
Example 11 Ethylene was polymerized using 10 g of the copolymer of propylene and vinylsilane obtained in Example 1 and the catalyst of Example 1 to obtain polyethylene. 200g of polyethylene powder whose η is 1.88a/g and a phenolic stabilizer of 10/1
0000! (i) ratio (to polyolefin) and calcium stearate 15/10000 weight ratio (to polyolefin) were added and granulated to obtain a resin composition for coating.

塗装強度を測定するため、上記組成物をさらに220℃
、40KIC/Cl1lで圧縮成形し、厚さ1mmのシ
ートを得た。このシートに2種の塗料(ウレタン系の塗
料としてオレスター11182 (三井東圧化学■製、
商品名)、アクリル系塗料としてユニロツタ(ロックペ
イント■製、商品名)を刷毛で塗布し、次いで60℃で
30分間エアーオーブンに入れて焼付乾燥した。この塗
料を塗布した試験片についてJISK−5400の方法
(基盤目セロファンテープ試験法)で塗膜の密着強度を
測定したところ、基盤目塗膜残数はいずれも100個(
基盤目塗膜数100個に対し)と良好であった。
To measure coating strength, the above composition was further heated at 220°C.
, 40 KIC/1 liter of Cl to obtain a sheet with a thickness of 1 mm. This sheet was coated with two types of paint (urethane paint: Orester 11182 (manufactured by Mitsui Toatsu Chemicals);
(trade name) and Unirotsuta (manufactured by Rock Paint ■, trade name) as an acrylic paint was applied with a brush, and then baked and dried in an air oven at 60° C. for 30 minutes. When the adhesion strength of the paint film was measured on the test pieces coated with this paint using the JISK-5400 method (cellophane tape test method for base grains), the number of paint films remaining on the base grains was 100 (
(based on 100 coatings).

比較例7 プロピレンとビニルシランの共重合体を用いなかった他
は実施例12と同様にしたところ、基盤目塗膜残数は5
個、10個(基盤目塗膜数100個に対し)と不良であ
った。
Comparative Example 7 The same procedure as Example 12 was carried out except that the copolymer of propylene and vinylsilane was not used, and the number of coatings remaining on the base was 5.
There were 10 defective coatings (compared to 100 coatings on the base plate).

実施例12 実施例4における共重合に際し、ビニルシランの代わり
にアリルシランを用いて水素の使用量を0.1 kg/
dとした他は実施例4と同様にして得た、アリルシラン
含量1.7wt%、融点126°C1ηが1.48a/
gであるエチレンとアリルシランの共重合体を用い、ポ
リオレフィンとしてエチレンとブテン−1の共重合体(
ブテン−1含!6.5@tχ)を用いる他は実施例11
と同様にし、実施例11と同様に評価したところ、基盤
目塗膜残数はいずれも100個と良好であった。
Example 12 During the copolymerization in Example 4, allylsilane was used instead of vinylsilane, and the amount of hydrogen used was 0.1 kg/
d was obtained in the same manner as in Example 4, the allylsilane content was 1.7 wt%, the melting point was 126° C1η was 1.48 a/
g, a copolymer of ethylene and allylsilane, and a copolymer of ethylene and butene-1 as the polyolefin (
Contains 1 butene! Example 11 except that 6.5@tχ) is used.
When evaluated in the same manner as in Example 11, the number of coating films remaining on the base plate was 100, which was good.

実施例13 内容積200−の耐圧ガラスオートクレーブに窒素雰囲
気下トルエン40d、実施例1で得た遷移金属触媒50
■、ジエチルアルミニウムクロライド0.128d、 
p−トルイル酸メチル0.06dおよびトリエチルアル
ミニウム0.20dを入れ、ついでビニルシラン4.O
gを圧入した後、水素を0.2kg/c−d、エチレン
を1 kg/cjになるまで装入し、70°Cで圧カ一
定で2時間重合した。その後スラリーを取り出し、濾過
乾燥して63gのパウダーを得た。ηは1゜81、融点
126℃、結晶化温度114℃である結晶性のエチレン
の共重合体であった。尚、元素分析によればビニルシラ
ン単位を1.3wtχ含有していた。
Example 13 40 d of toluene and 50 d of the transition metal catalyst obtained in Example 1 were placed in a pressure-resistant glass autoclave with an internal volume of 200 ml under a nitrogen atmosphere.
■, diethyl aluminum chloride 0.128d,
Add 0.06 d of methyl p-toluate and 0.20 d of triethylaluminum, then add 4.0 d of vinylsilane. O
After pressurizing the reactor, hydrogen was charged to 0.2 kg/c-d and ethylene was charged to 1 kg/cj, and polymerization was carried out at 70°C for 2 hours at a constant pressure. Thereafter, the slurry was taken out, filtered and dried to obtain 63 g of powder. It was a crystalline ethylene copolymer with η of 1°81, melting point of 126°C, and crystallization temperature of 114°C. According to elemental analysis, it contained 1.3wtχ of vinylsilane units.

また別途エチレンを重合し、ηが1.88dl/gであ
るポリエチレンを得た。
In addition, ethylene was separately polymerized to obtain polyethylene having η of 1.88 dl/g.

得られたポリエチレンパウダー2008に上記共重合体
10g用いた他は実施例11と同様にして、塗装用の樹
脂組成物を評価したところ基盤目塗膜残数はそれぞれ1
00個であった。
The resin composition for coating was evaluated in the same manner as in Example 11 except that 10 g of the above copolymer was used for the obtained polyethylene powder 2008, and the number of coatings remaining on each base was 1.
There were 00 pieces.

比較例8 エチレンとビニルシランの共重合体を用いなかった他は
実施例13と同様にしたところ 基盤目塗膜残数は5個
、10個(基盤目塗膜数100個に対し)と不良であっ
た。
Comparative Example 8 The same procedure as Example 13 was carried out except that the copolymer of ethylene and vinyl silane was not used. The number of coatings remaining on the base was 5 and 10 (for 100 coatings on the base), which were poor. there were.

実施例14 実施例12で得た、アリルシラン含量]、7wt%、融
点126°C5ηが1.48dl/、gである共重合体
を用い、ポリオレフィンとしてポリプロピレン(三井東
圧化学株式会社製、三井ノーブレンJHH−G)を用い
、実施例13と同様に評価したところ、基盤目塗膜残数
はそれぞれ100個であった。
Example 14 Using the copolymer obtained in Example 12, which has an allylsilane content of 7 wt% and a melting point of 126°C5η of 1.48 dl/g, polypropylene (manufactured by Mitsui Toatsu Chemical Co., Ltd., Mitsui Noblen) was used as the polyolefin. JHH-G) and evaluated in the same manner as in Example 13, the number of coating films remaining on each base was 100.

比較例9 エチレンと7リルシランの共重合体を用いなかった他は
実施例14と同様にしたところ 基盤目塗膜残数は5個
、5個(基盤目塗膜数100個に対し)と不良であった
Comparative Example 9 The same procedure as Example 14 was performed except that the copolymer of ethylene and 7lylsilane was not used. The number of coatings remaining on the base was 5 and 5 (for 100 coatings on the base), which was poor. Met.

実施例15 アリルシラン含量1.7wt%の共重合体の使用量を5
8とした他は実施例14と同様にしたところ基盤目!!
!!膜残数はそれぞれ85個、90個であった。
Example 15 The amount of copolymer with an allylsilane content of 1.7 wt% was
The same procedure as in Example 14 was made except that it was changed to 8, and the result was the base! !
! ! The number of membranes remaining was 85 and 90, respectively.

実施例16 リチウムエトキシド0.1gをさらに添加した他は実施
例15と同様に評価したところ、基盤目塗膜残数はそれ
ぞれ100個であった。
Example 16 Evaluation was carried out in the same manner as in Example 15 except that 0.1 g of lithium ethoxide was further added, and the number of coating films remaining on each base was 100.

実施例17 実施例1と同様にしてプロピレンとビニルシランの共重
合体を得た。また別途プロピレンを同じ触媒を用いて重
合して、ηが1.65dl/g、 IIが97.1%で
あるポリプロピレンを得た。
Example 17 A copolymer of propylene and vinylsilane was obtained in the same manner as in Example 1. Separately, propylene was polymerized using the same catalyst to obtain polypropylene having η of 1.65 dl/g and II of 97.1%.

得られたポリプロピレンパウダー200gに上記共重合
体log、フェノール系の安定剤10/10000重量
比(対ポリプロピレン)およびステアリン酸カルシウム
15/10000重量比(対ポリプロピレン)を加え、
造粒して、塗装用の樹脂組成物を得、実施例11と同様
に評価したところ、基盤目塗膜残数はそれぞれ100個
であった。
To 200 g of the obtained polypropylene powder, add the above copolymer log, a phenolic stabilizer at a weight ratio of 10/10,000 (to polypropylene), and calcium stearate at a weight ratio of 15/10,000 (to polypropylene),
When the resin compositions for coating were granulated and evaluated in the same manner as in Example 11, the number of coating films remaining on each base was 100.

比較例10 プロピレンとビニルシランの共重合体を用い無かった他
は実施例17と同様にしたところ基盤目塗膜残数はそれ
ぞれ5個、10個であった。
Comparative Example 10 The same procedure as Example 17 was carried out except that the copolymer of propylene and vinylsilane was not used, and the number of coating films remaining on the base was 5 and 10, respectively.

実施例18 プロピレンとビニルシランの共重合体の使用量を5gと
した他は実例17と同様にしたところ基盤目塗膜残数は
それぞれ90.95であった。
Example 18 The same procedure as Example 17 was carried out except that the amount of the propylene and vinylsilane copolymer used was 5 g, and the number of coatings remaining on each base was 90.95.

実施例19 実施例18で得た接着用の樹脂組成物をシート状にした
後エタノール中で40℃で1時間処理し、次いで実施例
1と同様に評価したところ、基盤目塗膜残数はそれぞれ
100個であった。
Example 19 The adhesive resin composition obtained in Example 18 was formed into a sheet, treated in ethanol at 40°C for 1 hour, and then evaluated in the same manner as in Example 1. There were 100 pieces each.

実施例20 内容積2001dの耐圧ガラスオートクレーブに窒素雰
囲気下トルエン40m、実施例1で得た遷移金属触媒5
0鴫、ジエチルアルミニウムクロライド0.128d、
p4ルイル酸メチル0.06IIlおよびトリエチルア
ルミニウム0.20m1を入れ、ついでビニルトリクロ
ルシラン4.0gを圧入した後、プロピレンを5 kg
/cdになるまで装入し、70℃で圧カ一定で2時間重
合した。その後スラリーを取り出し、濾過乾燥して28
gのパウダーを得た。得られたパウダーは、ηが1.4
1であり、融点148℃、結晶化温度102℃である結
晶性のプロピレンの共重合体であった。尚、元素分析に
よればビニルトリクロルシラン単位を1.8ut%含有
していた。また別途プロピレンを重合し、ηが1.6!
M!/g、 IIが97.1%であるポリプロピレンを
得た。
Example 20 In a pressure-resistant glass autoclave with an internal volume of 2001 d, 40 m of toluene was placed in a nitrogen atmosphere, and the transition metal catalyst 5 obtained in Example 1 was placed.
0.128d, diethylaluminum chloride,
Add 0.06 IIl of p4 methyl ruylate and 0.20 ml of triethylaluminum, then press-fit 4.0 g of vinyltrichlorosilane, and then add 5 kg of propylene.
/cd, and polymerization was carried out at 70° C. under constant pressure for 2 hours. After that, the slurry was taken out, filtered and dried.
g of powder was obtained. The obtained powder has an η of 1.4
It was a crystalline propylene copolymer with a melting point of 148°C and a crystallization temperature of 102°C. According to elemental analysis, it contained 1.8 ut% of vinyltrichlorosilane units. Separately, propylene was polymerized and η was 1.6!
M! A polypropylene having an II of 97.1% was obtained.

得られたポリプロピレンパウダー900gに上記共重合
体20g1フエノール系の安定剤10/10000重量
比(対ポリプロピレン)およびステアリン酸カルシウム
15/10000重量比を加え、造粒して、塗装用の樹
脂組成物を得、実施例11と同様に評価したところ基盤
目塗膜残数はそれぞれ100個であった。
To 900 g of the obtained polypropylene powder, 20 g of the above copolymer, 10/10,000 weight ratio of phenolic stabilizer (to polypropylene) and 15/10,000 weight ratio of calcium stearate were added and granulated to obtain a resin composition for coating. When evaluated in the same manner as in Example 11, the number of coating films remaining on each base was 100.

実施例21 プロピレンとビニルトリクロルシランの共重合体の使用
量を10.とじた他は実施例20と同様にしたところ基
盤目塗膜残数はそれぞれ70個、80個であった。
Example 21 The amount of copolymer of propylene and vinyltrichlorosilane used was 10. Except for binding, the procedure was the same as in Example 20, and the number of coating films remaining on the base was 70 and 80, respectively.

実施例22 実施例21で得た接着用の樹11m11成物をシート状
にした後エタノール中で40℃で1時間処理し、次いで
実施例11と同様に評価したところ、基盤目塗膜残数は
それぞれ100個であった。
Example 22 The adhesive wood 11m11 product obtained in Example 21 was formed into a sheet, treated in ethanol at 40°C for 1 hour, and then evaluated in the same manner as in Example 11. were 100 pieces each.

実施例23 実施例20と同様の方法において、共重合に際しビニル
トリクロルシランの代わりにアリルトリクロルシランを
用いて得た、アリルトリクロルシラン含量2.3wt%
、融点135℃、η1.34dl/gであるポリマーを
用い、実施例20と同様に評価したところ、基盤目塗膜
残数はそれぞれ100個であった。
Example 23 Allyltrichlorosilane content 2.3 wt% obtained by using allyltrichlorosilane instead of vinyltrichlorosilane during copolymerization in the same manner as in Example 20.
When evaluated in the same manner as in Example 20 using polymers having a melting point of 135° C. and a η of 1.34 dl/g, the number of coating films remaining on each base was 100.

〔発明の効果〕〔Effect of the invention〕

本発明の接着用ポリオレフィン樹脂組成物はポリオレフ
ィンと極性基含有重合体、金属等との接着あるいは金属
相互の接着に有効であり、また塗装用ポリオレフィン樹
脂組成物は、格別の前処理を施さなくても塗膜が良く密
着するので、工業的に掻めて意義がある。
The polyolefin resin composition for adhesives of the present invention is effective for adhering polyolefins to polar group-containing polymers, metals, etc., or for adhering metals to each other, and the polyolefin resin composition for coatings does not require special pretreatment. Since the coating film also adheres well, it is of industrial significance.

特許出願人 三井東圧化学株式会社Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1、遷移金属化合物と有機金属化合物からなる触媒を用
いてα−オレフィンとアルケニルシランを共重合して得
た共重合体を含有する接着用ポリオレフィン樹脂組成物
。 2、遷移金属化合物と有機金属化合物からなる触媒を用
いてα−オレフィンとアルケニルシランを共重合して得
た共重合体を含有する塗装用ポリオレフィン樹脂組成物
[Scope of Claims] 1. An adhesive polyolefin resin composition containing a copolymer obtained by copolymerizing an α-olefin and an alkenylsilane using a catalyst consisting of a transition metal compound and an organometallic compound. 2. A polyolefin resin composition for coating containing a copolymer obtained by copolymerizing an α-olefin and an alkenylsilane using a catalyst consisting of a transition metal compound and an organometallic compound.
JP63303981A 1987-12-16 1988-12-02 Polyolefin resin composition for adhesive and coating Pending JPH02153951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303981A JPH02153951A (en) 1987-12-16 1988-12-02 Polyolefin resin composition for adhesive and coating

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP62-316023 1987-12-16
JP31602387 1987-12-16
JP62-324669 1987-12-22
JP62-324671 1987-12-22
JP63-22063 1988-02-03
JP63-31790 1988-02-16
JP63-85469 1988-04-08
JP63-119373 1988-05-18
JP63-124958 1988-05-24
JP63-171020 1988-07-11
JP63303981A JPH02153951A (en) 1987-12-16 1988-12-02 Polyolefin resin composition for adhesive and coating

Publications (1)

Publication Number Publication Date
JPH02153951A true JPH02153951A (en) 1990-06-13

Family

ID=26563728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303981A Pending JPH02153951A (en) 1987-12-16 1988-12-02 Polyolefin resin composition for adhesive and coating

Country Status (1)

Country Link
JP (1) JPH02153951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530659A (en) * 2015-10-12 2018-10-18 中国科学院化学研究所Institute Of Chemistry, Chinese Academy Of Sciences Use of organosilane, polyolefin resin and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530659A (en) * 2015-10-12 2018-10-18 中国科学院化学研究所Institute Of Chemistry, Chinese Academy Of Sciences Use of organosilane, polyolefin resin and method for producing the same
US10934373B2 (en) 2015-10-12 2021-03-02 Institute Of Chemistry, Chinese Academy Of Sciences Use of organosilane, and polyolefin resin and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2097110C (en) Concentrates suitable for the preparation of functionalized polyolefins and functionalization process using said concentrates
EP1375543B1 (en) Graft-modified polypropylene and process for producing the same
JP2012521454A (en) Adhesion promoters for polyolefin-surface coatings based on polyolefin-graft-poly (meth) acrylate copolymers
JPS6187706A (en) Catalyst for polymerization
US5085895A (en) Polyolefin resin composition
US5045597A (en) α-olefin block copolymers and processes for preparing the same
EP1138699A1 (en) Prepolymerization catalyst for use in gas phase polymerization of olefins and process for producing the same
JPH02153951A (en) Polyolefin resin composition for adhesive and coating
JP2885375B2 (en) Polyolefin resin composition for coating
JP2713585B2 (en) Novel poly-α-olefin resin composition and use thereof
KR910008617B1 (en) Poly olefine composition for adhesion and painting
JP3602627B2 (en) Adhesive resin powder
EP0164420B1 (en) 3-methylbutene-1 polymer, its composition, and molding thereof
JPH02153950A (en) Polyolefin resin composition for adhesive
JP2507770B2 (en) Adhesive polypropylene resin composition
WO2023068204A1 (en) Curable resin
KR960001619B1 (en) Method for preparing molded articles from cross-linked
JP4635449B2 (en) COATING COMPOSITION CONTAINING PROPYLENE POLYMERS AND METHOD OF USE
JPH01234482A (en) Bonding polypropylene resin composition
JPH0249048A (en) Polypropylene resin composition and use thereof
JPH01165683A (en) Polypropylene resin composition for bonding
JPH01263138A (en) Polypropylene resin composition
JPS5953305B2 (en) Resin composition for paint
JP3169460B2 (en) Polyolefin resin composition
JPH0554481B2 (en)