JPH02153893A - Mbe apparatus - Google Patents

Mbe apparatus

Info

Publication number
JPH02153893A
JPH02153893A JP30932988A JP30932988A JPH02153893A JP H02153893 A JPH02153893 A JP H02153893A JP 30932988 A JP30932988 A JP 30932988A JP 30932988 A JP30932988 A JP 30932988A JP H02153893 A JPH02153893 A JP H02153893A
Authority
JP
Japan
Prior art keywords
detector
laser beam
substrate
output
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30932988A
Other languages
Japanese (ja)
Inventor
Naoki Oda
直樹 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30932988A priority Critical patent/JPH02153893A/en
Publication of JPH02153893A publication Critical patent/JPH02153893A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an MBE apparatus capable of measuring the film thickness of growing crystal in situ by irradiating a substrate in a vacuum chamber with laser beam, separating the reflected light with a half-mirror and monitoring the reflected light wit a detector. CONSTITUTION:The intensity of a laser beam emitted from a laser source 1 is controlled with a neutral density filter 2 to a level to get the output of a detector 8 falling within a proper range. The intensity-controlled laser beam is transmitted through a half mirror 3 and a window 5 and radiated to a substrate 6 during the growth of crystal. The laser beam is reflected on the interface between the substrate and the grown film and on the surface of the grown film, passed through the window 5, reflected perpendicularly on the mirror 3, passed through a filter 7 adjusted to the wavelength of the laser beam and introduced into a detector 8. The output of the detector 8 is recorded with an output monitor 9. Since the interference condition of two laser beams changes with the growth of the film, the detector output recorded by the monitor has a pattern shown in the figure (lambda0 is wavelength of laser beam; n is refractive index of grown layer; Vg is rate of growth; DELTAt is time interval of interference pattern).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMBE装置に関し、特に成長中の膜厚をその場
観測できる機能を有するMBE装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an MBE apparatus, and more particularly to an MBE apparatus having a function of in-situ observation of film thickness during growth.

〔従来の技術〕[Conventional technology]

従来、MBE装置において、結晶成長中の膜厚をその場
観測する機能としては、ワイ デメ(Y、Demay)
等によりジャーナル オブクリスタル グロース(Jo
unal  ofcrystal  growth)第
81巻(1987)97頁に報告されたものがある。
Conventionally, in MBE equipment, the function for in-situ observation of film thickness during crystal growth is the Y Demay (Y, Demay) function.
Journal of Crystal Growth (Jo
81 (1987), page 97.

この装置は第3図に示すように、キセノンランプ10、
回転ポラライザー11、アナライザー12、分光器又は
フィルター13及び検出器8から成るエリプソメーター
を、真空チェインバー4内に平面鏡14を設けたMBE
装置と組み合わせることにより、基板6上に成長中の膜
厚をその場観測する機能を持たせているものである。こ
こで、回転ポラライザーで偏光されたキセノンランプの
光は、真空チェインバーの窓5から導入された後、基板
6で反射されて平面鏡14に照射される。この平面鏡1
4で反射した光は、基板6によって再び反射され窓5を
通って、アナライザー12、分光器又はフィルター13
及び検出器8を含むエリプソメーターに戻ってくる。
As shown in FIG. 3, this device includes a xenon lamp 10,
An ellipsometer consisting of a rotating polarizer 11, an analyzer 12, a spectrometer or filter 13, and a detector 8 is an MBE in which a plane mirror 14 is provided in a vacuum chamber 4.
When combined with a device, it has the ability to observe the thickness of a film being grown on the substrate 6 on the spot. Here, the light from the xenon lamp polarized by the rotating polarizer is introduced through the window 5 of the vacuum chamber, reflected by the substrate 6, and irradiated onto the plane mirror 14. This plane mirror 1
The light reflected by 4 is reflected again by the substrate 6 and passes through the window 5 to the analyzer 12, spectrometer or filter 13.
and returns to the ellipsometer containing the detector 8.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記した膜厚観測機能を有すMBE装置
では、真空チェインバー窓5の直径が小さいので、入射
光と出射光を同時に窓の中に納めようとすると、平面鏡
14の角度を微妙に調整する必要が生じる0周知のよう
に、MBE装置にはクライオポンプのように機械的な振
動を引き起こす真空ポンプがあるため、微妙に調整され
た平面鏡14の設定角度がずれるといった欠点がある。
However, in the MBE device having the above-mentioned film thickness observation function, the diameter of the vacuum chamber window 5 is small, so if you try to fit the incident light and the output light into the window at the same time, you have to delicately adjust the angle of the plane mirror 14. As is well known, the MBE apparatus includes a vacuum pump such as a cryopump that causes mechanical vibrations, so there is a drawback that the finely adjusted set angle of the plane mirror 14 may be deviated.

更に、MBE装置内は、種々の材料によってコーティン
グされ易いため、平面鏡14の反射率が悪くなり、つい
にはエリプソメーターが機能しなくなるという欠点もあ
る。
Furthermore, since the inside of the MBE apparatus is likely to be coated with various materials, the reflectance of the plane mirror 14 becomes poor, and the ellipsometer eventually stops functioning.

本発明の目的は、MBE装置内に上記のような平面鏡を
設置することなしに、レーザー光を直接基板に照射し、
基板で反射したレーザー光を検出することによって、結
晶成長中の膜厚をその場観測することのできるMBE装
置を提供することにある。
The purpose of the present invention is to directly irradiate a substrate with a laser beam without installing a plane mirror as described above in an MBE apparatus,
An object of the present invention is to provide an MBE apparatus that allows on-site observation of film thickness during crystal growth by detecting laser light reflected by a substrate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMBE装置は、窓を有する真空チェインバーと
、前記窓の前方に設けられニュートラルデンシティフィ
ルターと半透鏡と前記窓を通して前記真空チェインバー
内に載置された基板にレーザ光を照射するためのレーザ
光源と、前記半透鏡により分離された基板からの反射レ
ーザ光をフィルターを介して検出する検出器と、前記検
出器からの出力を記録するモニターとを含んで構成され
る。
The MBE apparatus of the present invention includes a vacuum chamber having a window, a neutral density filter provided in front of the window, a semi-transparent mirror, and a substrate placed in the vacuum chamber for irradiating a laser beam through the window. The device includes a laser light source, a detector that detects the reflected laser light from the substrate separated by the semi-transparent mirror via a filter, and a monitor that records the output from the detector.

〔作用〕[Effect]

第1図は、本発明の一実施例の構成図である。 FIG. 1 is a block diagram of an embodiment of the present invention.

第1図において、従来例と同じ構成要素には第3図と同
じ番号を付して説明する。
In FIG. 1, the same components as in the conventional example are given the same numbers as in FIG. 3 and will be explained.

本発明のMBE装置は、レーザー光源1、ニュートラル
デンシティフィルター2、半透鏡3、真空チェインバー
4、真空チェインバー窓5、基板6、フィルター7、検
出器8及び検出器出力モニター9で構成されている。
The MBE apparatus of the present invention is composed of a laser light source 1, a neutral density filter 2, a semi-transparent mirror 3, a vacuum chamber 4, a vacuum chamber window 5, a substrate 6, a filter 7, a detector 8 and a detector output monitor 9. There is.

第1図において、レーザー光源1のレーザー光の強度は
、検出器8の出力を適切な範囲に収まるように、ニュー
トラルデンシティフィルター2によって調節される。こ
のように調節されたレーザー光は、半透鏡3及びMBE
装置の真空チェインバー窓5を通って、結晶成長中の基
板6に照射される。そしてレーザー光は、基板・成長膜
の界面並びに成長膜表面で反射され、再び窓5を通って
半透鏡3に到達する。この半透鏡3によりレーザー光は
直角に曲げられ、レーザー光の波長に合わせたフィルタ
ー7を通って検出器8に導がれる。
In FIG. 1, the intensity of the laser light from a laser light source 1 is adjusted by a neutral density filter 2 so that the output of a detector 8 falls within an appropriate range. The laser beam adjusted in this way is transmitted through the semi-transparent mirror 3 and the MBE.
Irradiation passes through the vacuum chamber window 5 of the apparatus and onto the substrate 6 during crystal growth. The laser beam is then reflected at the interface between the substrate and the grown film and the surface of the grown film, passes through the window 5 again, and reaches the semi-transparent mirror 3. The semi-transparent mirror 3 bends the laser beam at right angles and guides it to the detector 8 through a filter 7 matched to the wavelength of the laser beam.

検出器8の出力は、出力モニター9に記録される。The output of the detector 8 is recorded on an output monitor 9.

膜の成長に伴い2つの反射レーザー光の干渉条件が変化
するので、出力モニター9には第2図のような検出器出
力が得られる。ここで、λ0はレーザー光の波長、nは
成長膜の屈折率、Vgは成長速度及びΔtは干渉パター
ンの時間間隔である。従って、Vgと成長時間の積が、
成長膜の厚みとなる。
Since the interference conditions between the two reflected laser beams change as the film grows, the output monitor 9 obtains a detector output as shown in FIG. Here, λ0 is the wavelength of the laser beam, n is the refractive index of the grown film, Vg is the growth rate, and Δt is the time interval of the interference pattern. Therefore, the product of Vg and growth time is
This is the thickness of the grown film.

〔実施例〕〔Example〕

次に、本発明の実施例を第1図と第2図によって説明す
る。
Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図の実施例において、1は波長λ0が10,6μm
のCo2レーザー光源、2は減光率が0.01〜0.1
%のニュートラルデンシティフィルター 3は透過率・
反、耐重ともに50%の金蒸着の半透鏡、4はRibe
r社のMBE装置の真空チェインバー 5はZn5eの
窓、6はCdTeの基板、7は波長10.6μ!nに合
わせた狭帯域干渉フィルター 8は低雑音アンプを備え
たHgCdTe赤外線検出器及び9はチャートレコーダ
ーである。
In the embodiment shown in FIG. 1, 1 means that the wavelength λ0 is 10.6 μm.
Co2 laser light source, 2 has a light attenuation rate of 0.01 to 0.1
% neutral density filter 3 is transmittance/
Gold-deposited semi-transparent mirror with 50% weight resistance, 4 is Ribe
Vacuum chamber of company R's MBE equipment 5 is a Zn5e window, 6 is a CdTe substrate, 7 is a wavelength of 10.6μ! 8 is a HgCdTe infrared detector with a low noise amplifier and 9 is a chart recorder.

このように構成された本実施例により、HgCdTe結
晶成長中の膜厚をモニターした。実験においては結晶成
長を7時間行った。チャートレコーダーに記録されたデ
ータから求めたΔtが49分であること並に002レー
ザーの波長λ。
Using this example configured as described above, the film thickness during HgCdTe crystal growth was monitored. In the experiment, crystal growth was performed for 7 hours. The Δt calculated from the data recorded on the chart recorder is 49 minutes, and the wavelength λ of the 002 laser.

が10.6μm及びHgCdTe結晶の屈折率が約3.
6であることを考慮すると、成長したHgCdTe結晶
の厚みは12.6μmと計算される。この値は、臂開し
た結晶の断面観察によって得られた厚み13.0μmと
よく一致している。このように、本実施例による膜厚モ
ニターを有するMBE装置は、結晶成長におけるその場
観察において非常に有効である。
is 10.6 μm and the refractive index of the HgCdTe crystal is approximately 3.
6, the thickness of the grown HgCdTe crystal is calculated to be 12.6 μm. This value agrees well with the thickness of 13.0 μm obtained by cross-sectional observation of the opened crystal. As described above, the MBE apparatus having the film thickness monitor according to this embodiment is very effective in in-situ observation of crystal growth.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、MBE装置におい
て、真空チェインバー内の基板にレーザー光を照射し、
その反射光を検出器でモニターすることによって、結晶
成長中の膜厚をその場観測することができるという効果
がある。
As explained above, according to the present invention, in an MBE apparatus, a substrate in a vacuum chamber is irradiated with a laser beam,
By monitoring the reflected light with a detector, the film thickness during crystal growth can be observed on the spot.

・・・キセノンランプ、11・・・回転ポラライザー1
2・・・アナライザー 13・・・分光器又はフィルタ
ー 14・・・平面鏡。
...Xenon lamp, 11...Rotating polarizer 1
2... Analyzer 13... Spectrometer or filter 14... Plane mirror.

Claims (1)

【特許請求の範囲】[Claims] 窓を有する真空チェインバーと、前記窓の前方に設けら
れニュートラルデンシティフィルターと半透鏡と前記窓
を通して前記真空チェインバー内に載置された基板にレ
ーザ光を照射するためのレーザ光源と、前記半透鏡によ
り分離された基板からの反射レーザ光をフィルターを介
して検出する検出器と、前記検出器からの出力を記録す
るモニターとを含むことを特徴とするMBE装置。
a vacuum chamber having a window; a laser light source provided in front of the window for irradiating a laser beam onto a substrate placed in the vacuum chamber through a neutral density filter, a semi-transparent mirror, and the window; An MBE apparatus comprising: a detector that detects reflected laser light from a substrate separated by a transmissive mirror via a filter; and a monitor that records the output from the detector.
JP30932988A 1988-12-06 1988-12-06 Mbe apparatus Pending JPH02153893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30932988A JPH02153893A (en) 1988-12-06 1988-12-06 Mbe apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30932988A JPH02153893A (en) 1988-12-06 1988-12-06 Mbe apparatus

Publications (1)

Publication Number Publication Date
JPH02153893A true JPH02153893A (en) 1990-06-13

Family

ID=17991708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30932988A Pending JPH02153893A (en) 1988-12-06 1988-12-06 Mbe apparatus

Country Status (1)

Country Link
JP (1) JPH02153893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247637A (en) * 1991-02-04 1992-09-03 Nichia Chem Ind Ltd Method of measuring surface condition of semiconductor crystal film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247637A (en) * 1991-02-04 1992-09-03 Nichia Chem Ind Ltd Method of measuring surface condition of semiconductor crystal film

Similar Documents

Publication Publication Date Title
Perondi et al. Minimal‐volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic sample bending
JPH06101505B2 (en) Method and apparatus for semiconductor ion implantation dose level evaluation
EP0396409A3 (en) High resolution ellipsometric apparatus
US5206710A (en) Method and apparatus for thermowave analysis
US3578866A (en) Frequency modulated optical spectrometer
JPH02153893A (en) Mbe apparatus
JPS62266439A (en) Spectral temporary optical analyzer
US5287167A (en) Method for measuring interstitial oxygen concentration
Arnone et al. Study of Photo-Induced Thin Film Growth on Cds Substrates.
SU1224766A1 (en) Method of checking effective thickness of planar optical waveguide
JP2594773B2 (en) Monitoring equipment for films by chemical vapor deposition of metal organics.
JPH0533132A (en) Method and device for forming metallic film
US5357304A (en) Image development apparatus and method
Krakau An Optical Netliod for EEG Freqnency Analysis.
JPH01320408A (en) Thin film monitor using laser and film thickness measuring method
Milam et al. Determination of laser damage thresholds by comparison with an absolute laser damage standard
JPS6082835A (en) Automatic spectrum measuring device of light and heat
KR100257610B1 (en) Apparatus for measuring reflection
JP2548960B2 (en) Laser light focus detection method and laser light focus detection device
Bermudez et al. Vibrational spectroscopy of adsorbates using a tunable diode laser
JPH07159132A (en) Device for measuring temperature of semiconductor surface and thickness of film formed on the surface
CN116466206A (en) Carrier life measuring system and method
JPH0625851A (en) Device for controlling thickness of formed film
JPS57103053A (en) Inspecting apparatus of blood
GB2290139A (en) Gas concentration measurement