JPH02153851A - Cement composite material having electromagnetic wave shielding property - Google Patents

Cement composite material having electromagnetic wave shielding property

Info

Publication number
JPH02153851A
JPH02153851A JP30712588A JP30712588A JPH02153851A JP H02153851 A JPH02153851 A JP H02153851A JP 30712588 A JP30712588 A JP 30712588A JP 30712588 A JP30712588 A JP 30712588A JP H02153851 A JPH02153851 A JP H02153851A
Authority
JP
Japan
Prior art keywords
paper
carbon fiber
cement
shielding
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30712588A
Other languages
Japanese (ja)
Inventor
Akira Kojima
昭 小島
Sugiro Otani
大谷 杉郎
Masaki Miwa
正記 三羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP30712588A priority Critical patent/JPH02153851A/en
Publication of JPH02153851A publication Critical patent/JPH02153851A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Abstract

PURPOSE:To provide a composite material having high electromagnetic shielding properties and strength by mixing carbon fiber paper in a specific amount or more with cement. CONSTITUTION:The above-mentioned cement material is obtained by mixing >=0.7vol.% carbon fiber paper with cement. The aforementioned carbon fiber paper refers to carbon fiber having a two-dimensional extent and includes nonwoven fabric-like paper, paper produced by a sheet forming method, woven fabric-like paper, etc. The above-mentioned cement composite material has the following advantages. Lightweight and high electromagnetic wave shielding properties and strength relative to a low carbon fiber content, good dispersion of the carbon fiber and moldability, excellent in corrosion resistance and high deformability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、インテリジェントビルの外壁、コンピュータ
ルーム等の構成部材に用いられる電磁波遮蔽性を有する
セメント複合材(CFRC)に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cement composite material (CFRC) having electromagnetic wave shielding properties and used for structural members of external walls of intelligent buildings, computer rooms, etc.

(従来の技術) 高度情報化社会の進展の中で各種通信機器及びエレクト
ロニクス機器が職場、工場は勿論の事、各家庭の中にも
設置されつつある。
(Prior Art) With the development of an advanced information society, various communication devices and electronic devices are being installed not only in workplaces and factories but also in each home.

これらエレクトロニクス機器は各種の人工雑音(ノイズ
)を発生させると同時に、大気雑音との関連等において
ノイズ対策の必要性が近年極めて重要となっている。
These electronic devices generate various kinds of artificial noise (noise), and in recent years, the need for noise countermeasures has become extremely important in relation to atmospheric noise.

又最近ではインテリジェントビルが数多く建設され、ピ
ル全体を有害な電磁波等の外来ノイズから守る必要も生
じてきており、電波シールド特性を有する外壁材の開発
が望まれている。
Furthermore, in recent years, many intelligent buildings have been constructed, and it has become necessary to protect the entire building from external noise such as harmful electromagnetic waves, and there is a desire to develop exterior wall materials that have radio wave shielding properties.

尚、建築用素材として広範囲に用いられるセメント・コ
ンクリートは、比抵抗が1010Ω・C以上であり、そ
れ自身、導電性がなく、電波シールド性はない、そのた
め、一般にはシールド特性を有する材料、即ち導電性を
有する金属(鉄、亜鉛、銅、アルミ、ステンレス)を板
状1箱状の形状で、セメント・コンクリート建材と複層
化したり、導電性のフィラー(金属繊維、カーボン繊維
)を混入したりしてシールド特性を持たせているのが実
状である。
Cement and concrete, which are widely used as building materials, have a specific resistance of 1010 Ω・C or more, and are not conductive or have radio wave shielding properties. Therefore, they are generally used as materials with shielding properties, i.e. It is made of conductive metals (iron, zinc, copper, aluminum, stainless steel) in the form of a plate or box, and is multi-layered with cement and concrete building materials, or mixed with conductive fillers (metal fibers, carbon fibers). The reality is that it has shielding properties.

この中でカーボン繊維(以下、CFと略す、)をシール
ド材として用いたセメント・コンクリート建材(CFR
C)は、CFの機械的、化学的特性の優秀性から構造材
を兼ねたシールド建材としての可能性を秘めた素材とし
て注目されてきている。このCFRCは最近、各方面で
研究されてきており、一部ではカーテンウオールとして
実用化も成諮れてきている。又、CFRCのシールド特
性に゛ついても検討されてきているが、現状では比抵抗
が数10Ω・σ以上であり、充分なシールド効果を得る
までには至っていない、従って、よりシールド効果の高
いCFRC建材の出現が望まれている。
Among these, cement concrete building materials (CFR) using carbon fiber (hereinafter abbreviated as CF) as a shielding material.
C) is attracting attention as a material with potential as a shield building material that also serves as a structural material due to the excellent mechanical and chemical properties of CF. Recently, CFRC has been researched in various fields, and in some cases, it has even been possible to put it into practical use as a curtain wall. In addition, the shielding characteristics of CFRC have been studied, but currently the resistivity is several tens of Ω・σ or more, and sufficient shielding effect has not yet been obtained.Therefore, CFRC, which has a higher shielding effect, is It is hoped that construction materials will emerge.

(発明が解決しようとする課題) 現在、多方面で研究開発あるいは実用化きれているCF
RCは全てチョツプドファイバーCFがセメントマトリ
ックス中に分散された系であり、その補強効果には、そ
の含有量の限界及び−次元補強の点でも自ずと限界があ
る。
(Problems to be solved by the invention) CFs that are currently being researched and developed or put into practical use in various fields
All RCs are systems in which chopped fibers CF are dispersed in a cement matrix, and their reinforcing effects naturally have limits in terms of their content and -dimensional reinforcement.

一方、これらチョツプドファイバーで補強きれたCFR
Cは、CFの導電性自体がファイバー間で切断された状
態になっており、CFRC全体の導電性、即ち比抵抗は
ファイバーの接点によって決定され、ファイバー自体の
分散性、含有量の限界を考えると、これら既存のCFR
Cの電波シールド特性、即ち導電性にはある程度の限界
があるのはやむをえない。
On the other hand, CFR reinforced with these chopped fibers
In C, the conductivity of CF itself is cut between the fibers, and the conductivity of the entire CFRC, that is, the specific resistance, is determined by the contact points of the fibers, considering the dispersibility of the fiber itself and the limit of the content. and these existing CFRs.
It is unavoidable that C has a certain limit in its radio wave shielding properties, that is, its conductivity.

こういった点を鑑み鋭意研究の結果、本発明では補強用
CFとして炭素繊維ペーパーを利用することで上記課題
を解決するに至った。
In view of these points, as a result of intensive research, the present invention has solved the above problems by using carbon fiber paper as the reinforcing CF.

(尚、ここでいう炭素繊維ペーパーとは、二次元的な広
がりを持った炭素繊維のことを言い、不織布状のもの、
抄紙法で作られたもの、或いは織物状のもの等を含み、
所謂ベーパー、フェルト。
(Carbon fiber paper here refers to carbon fiber with a two-dimensional spread, such as non-woven fabric,
Including those made by papermaking method or woven ones,
So-called vapor, felt.

マット、シート、クロス等と一般的に呼ばれているもの
全てを含む、) さらには、炭素繊維ペーパーに用いるfI&維の長さ、
径、特性、及びペーパーとしての特性、構造等をコント
ロールすることにより、高いt磁波遮蔽効果を実現する
ことを技術的課題とするものである。
Including everything commonly called mat, sheet, cloth, etc.) Furthermore, fI & fiber length used in carbon fiber paper,
The technical challenge is to achieve a high t magnetic wave shielding effect by controlling the diameter, properties, paper properties, structure, etc.

(課題を解決するための手段) 上記課題解決のための技術的手段は、を磁波遮蔽性を有
するセメント複合材を、Q 、7 vo1%以上の戻素
a維ペーパーをセメントに混入して得ることであり、よ
り具体的には炭素繊維ペーパーの繊維長さが少なくとも
6mn以上あり、更に炭素fa維ペーパーに使用されて
いるバインダーの一部を導電性を有する炭素質バインダ
ーで構成することにより電磁波遮蔽性を向上させること
である。
(Means for Solving the Problems) The technical means for solving the above problems is to obtain a cement composite material having magnetic wave shielding properties by mixing Q, 7 VO 1% or more of returned fiber A-fiber paper into cement. More specifically, the fiber length of the carbon fiber paper is at least 6 mm or more, and a part of the binder used in the carbon fa fiber paper is made of a conductive carbonaceous binder, so that electromagnetic waves can be suppressed. The goal is to improve shielding performance.

(作用) 上記構成のセメント複合材によると、セメントに混入さ
れた炭素繊維ペーパーが電磁波遮蔽性を生み出し、かつ
炭素繊維ペーパーにより建材の軽量化、高強度化を図る
ことができる。
(Function) According to the cement composite material having the above structure, the carbon fiber paper mixed into the cement produces electromagnetic wave shielding properties, and the carbon fiber paper makes it possible to reduce the weight and increase the strength of the building material.

(実施例) 以下、本発明の実験例及び実施例を説明する。(Example) Experimental examples and examples of the present invention will be described below.

電磁遮蔽効果SEは、5chelkunoffの理論で
は試料内伝搬による減衰呼吸損失A、試料表面と空気の
間の反射損失RE、試料板反復反射による多重反射損失
Mの総計であり、次の式で示される。
According to Chelkunoff's theory, the electromagnetic shielding effect SE is the sum of the attenuated breathing loss A due to propagation within the sample, the reflection loss RE between the sample surface and the air, and the multiple reflection loss M due to repeated reflections on the sample plate, and is expressed by the following formula. .

5E=A+RE+M   [dB] t [CT11] :試料の厚さ、p[Ω1cm]:比
抵抗f’[MHzコニ周波数、μ、:比透磁率。
5E=A+RE+M [dB] t [CT11]: Thickness of sample, p [Ω1cm]: Specific resistance f' [MHz Koni frequency, μ,: Relative permeability.

S:電波浸透深さ 但し、k = Z s / Xω Xω=  0 c Geg4に対する比導電率、r[m]:送電端子と試料
の距離、c[m/s]:電波の速度M= 201og(
1−m”l O−”’θ)  [dBコそして上記式に
よると、試料(CFRC)の電磁遮蔽効果は、比抵抗が
小さく、厚さが厚いほど高くなることがわかる。
S: Radio wave penetration depth However, k = Z s / Xω
According to the above equation, it can be seen that the electromagnetic shielding effect of the sample (CFRC) becomes higher as the resistivity becomes smaller and the thickness becomes thicker.

以下、電磁遮蔽性の高いセメント複合材料を得るための
各実験について説明する。
Each experiment to obtain a cement composite material with high electromagnetic shielding properties will be described below.

1、実験方法 (1)素材 CFペーパー(炭素繊維ペーパー)として、PAN系の
高性能炭素繊維(HPCF)2種類と汎用グレードのピ
ッチ系炭素繊維(GPCF)2種類を用いた。これらは
、何れもバインダーが有機質のものである。又、長繊維
の連続したCFプリプレグシートを作るために、PAN
系の高性能度素繊維(HPCF)と高弾性率炭素a維(
HMCF)、ピッチ系の高性能炭素4tA維(HPCF
)と高弾性率炭素繊維(HMCF)をそれぞれ用いた。
1. Experimental method (1) Two types of PAN-based high-performance carbon fiber (HPCF) and two types of general-purpose grade pitch-based carbon fiber (GPCF) were used as the CF paper (carbon fiber paper). In all of these, the binder is organic. In addition, in order to make a CF prepreg sheet with continuous long fibers, PAN
High performance fiber (HPCF) and high modulus carbon a fiber (
HMCF), pitch-based high performance carbon 4tA fiber (HPCF)
) and high modulus carbon fiber (HMCF) were used, respectively.

又、セメントは、普通ポルトランドセメントを使用した
Moreover, ordinary Portland cement was used as the cement.

(2)作製及び測定方法 各種CFペーパー(15cmX 15cm)を、所定W
/C比(40%)のセメントペースト中に漬は込み、手
でよく含浸させた後、3m[11型枠中に1枚或いは6
枚を積層した。又、長繊維のCFプリプレグシートは、
型枠(15cmX 15cm)に28本の6にのCFト
ウを5cm間隔で一方向に配列させることにより作製し
た。このCFプリプレグシートにセメントペースト(W
/C比、40%)を含浸させ、これを2層或いは4B積
層した。これらの供試体は、水中で2週間養生し、厚さ
3BのCFRC板を作製した。
(2) Production and measurement method Various CF papers (15cm x 15cm) are
/C ratio (40%) and thoroughly impregnated by hand.
The sheets were stacked. In addition, the long fiber CF prepreg sheet is
It was produced by arranging 28 CF tows of No. 6 in one direction at 5 cm intervals in a mold (15 cm x 15 cm). Cement paste (W) is applied to this CF prepreg sheet.
/C ratio, 40%), and this was laminated in two layers or 4B. These specimens were cured in water for two weeks to produce CFRC boards with a thickness of 3B.

次に、各試料について100MHz 〜1000MHz
までの周波数域における電磁波遮蔽性(電界シールド及
び磁界シールド)を、アトパンテスト法で測定した。又
、CFRC板の両端部を削ってCF部を露出させ、その
各面に銀ペーストを塗り、電気抵抗を測定した。
Next, for each sample 100MHz ~ 1000MHz
The electromagnetic shielding properties (electric field shielding and magnetic field shielding) in the frequency range up to were measured using the Atopan test method. In addition, both ends of the CFRC board were shaved to expose the CF part, each surface was coated with silver paste, and the electrical resistance was measured.

2、実験結果及び考案 (1)CFペーパーの種類及び積属枚数による影lid
2. Experimental results and ideas (1) Shadow depending on the type of CF paper and the number of stacked sheets
.

各種CFペーパーを使用し、ポルトランドセメントから
作られたCFRCの、電界及び磁界シールド特性を表1
に示す。
Table 1 shows the electric field and magnetic field shielding characteristics of CFRC made from Portland cement using various CF papers.
Shown below.

CFRCのシールド性は、何れの場合にも高周波域に移
るにつれてやや減衰した。CFベーパーを1枚使用した
CFRCの500 MHzにおける電界シールド効果は
、6〜17dBであった。又、磁界シールド効果も同程
度であった。しかし繊維長が長い50a11の場合には
20dBまで高くなり、′やや良い」といわれる電界及
び磁界シールド効果を示した。セメン凝結物のみでは、
シールド効果は「全くない」ことに比べても、0.6〜
0 、7 vo1%程度の低いCF含有率であるにも拘
らず、その効果の高いことがわかる。
The shielding performance of CFRC was slightly attenuated as the frequency range increased in both cases. The electric field shielding effect of a CFRC using one CF vapor at 500 MHz was 6 to 17 dB. Moreover, the magnetic field shielding effect was also at the same level. However, in the case of 50a11, which has a long fiber length, the shielding effect was as high as 20 dB, showing an electric field and magnetic field shielding effect that was said to be 'slightly good'. With cement coagulum alone,
The shielding effect is 0.6~ compared to "not at all"
It can be seen that the effect is high despite the low CF content of about 0.7 vol.

次に、CFペーパーを6枚積層させた場合には、PAN
系でもピッチ系でもCFRCのシールド効果は電界、磁
界ともに22−29dBへと3−4倍程度増加し、rや
や良いシールド効果、から1平均的なシールド効果」を
示した。又、表の右側にはCFRCの電気抵抗を示した
。これらの値は、数1Ω、Cm〜100Ω、CTnまで
広く分布しており、電気比抵抗の低いものほど高いシー
ルド効果を示した。
Next, when 6 sheets of CF paper are stacked, PAN
In both systems and pitch systems, the shielding effect of CFRC increased by about 3-4 times to 22-29 dB for both electric and magnetic fields, showing a moderately good shielding effect to an average shielding effect. Furthermore, the electrical resistance of CFRC is shown on the right side of the table. These values were widely distributed from several Ω, Cm to 100 Ω, and CTn, and the lower the electrical resistivity, the higher the shielding effect.

又、この時の曲げ強度を測定したところ、何れも12〜
35MPaの範囲にあり、弾性率も6GPaの程度で、
機械的特性の点においても建材として優れた特性を示し
た。
Also, when the bending strength at this time was measured, it was 12~
It is in the range of 35 MPa, and the elastic modulus is about 6 GPa,
It also showed excellent mechanical properties as a building material.

ちなみに、普通ポルトランドセメント100部、ケイ砂
150部、水70部、CF2部をミキサーで混練し、流
込み成形で150X150X3(1ml)の供試体を作
製し、シールド特性を測定したところ、電界シールド性
(500MH2)は10dB程度の低い値であった。
By the way, 100 parts of ordinary Portland cement, 150 parts of silica sand, 70 parts of water, and 2 parts of CF were mixed in a mixer, and a 150 x 150 x 3 (1 ml) specimen was made by casting, and the shielding properties were measured. (500MH2) was a low value of about 10 dB.

表1 CFペーパーの種類及び積層枚数による電界及び塵界シ
ールド特性への影響電界シールド         磁
界 CF    積層 σ含有率     周波数(M&)
    比抵抗 シールド。
Table 1 Effect of type of CF paper and number of layers on electric field and dust field shielding characteristics Electric field shield Magnetic field CF Lamination σ content Frequency (M&)
Resistivity shield.

枚数 (volX)   100 250 500 7
50 1000  (Ω・cm)  500MHz単位
(dB) PANAI   O,61886560763,733
−44312422189,020B  1  0.6
  32−42 24 17 13  9  60  
  106  3.5  35−47 32 27 2
2 16  8.0  20ピツfc1 1  0.7
  2111 32 18  6  6  4  15
.0   56  4.2  33−45 30 22
 20 15  8.4  15C210,732−3
72820151021,01964,22g−523
52924195,727A: PAN(HPCF、厚
さ0.3Irrn、目付33g/m” 、繊維長5nv
n)B: PAN(HPCF、30g/n”、10m)
C1:ピッチ(GPCF 、0.3nn、4011./
m”、6+m+)C2:ピッfCGPCF、0.7MB
、40gJが、50mm)(2)炭素質バインダーのC
Fペーパーを使用した場合。
Number of sheets (volX) 100 250 500 7
50 1000 (Ω・cm) 500MHz unit (dB) PANAI O,61886560763,733
-44312422189,020B 1 0.6
32-42 24 17 13 9 60
106 3.5 35-47 32 27 2
2 16 8.0 20 pits fc1 1 0.7
2111 32 18 6 6 4 15
.. 0 56 4.2 33-45 30 22
20 15 8.4 15C210,732-3
72820151021,01964,22g-523
52924195,727A: PAN (HPCF, thickness 0.3 Irrn, basis weight 33 g/m", fiber length 5 nv
n) B: PAN (HPCF, 30g/n", 10m)
C1: Pitch (GPCF, 0.3nn, 4011./
m”, 6+m+)C2:Pi fCGPCF, 0.7MB
, 40gJ is 50mm) (2) C of carbonaceous binder
When using F paper.

CFRCの電界シールド効果は、上記(1)の実験結果
から導電性に関係していることがわかったので、比抵抗
の小さい黒鉛化処理を行なった炭素繊維を、炭素質バイ
ンダーを使用して作ったCFペーパー(ピッチ系G’P
 CF 、 0.3in 、 40g/m” 、 10
m1)を用いた。
The electric field shielding effect of CFRC was found to be related to electrical conductivity from the experimental results in (1) above, so we made graphitized carbon fibers with low resistivity using a carbonaceous binder. CF paper (pitch type G'P
CF, 0.3in, 40g/m", 10
m1) was used.

CFペーパーにはポリエチレン樹脂、エポキシ樹脂、P
VA樹脂、フェノール樹脂、ピッチ等の有機質バインダ
ーが使用されている。
CF paper contains polyethylene resin, epoxy resin, P
Organic binders such as VA resin, phenol resin, and pitch are used.

炭素質バインダーとは、この有機質バインダーで作られ
たCFペーパーを1000℃以上の高温で処理すること
により、有機質バインダーを炭素化させたもののことを
言う。
The carbonaceous binder refers to a CF paper made of this organic binder that is carbonized by treating it at a high temperature of 1000° C. or higher.

本実験ではピッチ系GPCFを1500〜2000℃で
処理して炭素質バインダーとしたCFペーパーを用いた
。これを1枚、6枚、又、表1の有機質バインダーのC
Fペーパーとを同時に組み合わせて使用し、厚t31m
のCFRC板を作製した。これらのCFRCのシールド
特性と比抵抗との関係を表2に示す。
In this experiment, CF paper was used in which pitch-based GPCF was treated at 1,500 to 2,000°C to form a carbonaceous binder. 1 sheet, 6 sheets, or C of the organic binder in Table 1.
Used in combination with F paper at the same time, thickness t31m
A CFRC board was produced. Table 2 shows the relationship between the shielding characteristics and specific resistance of these CFRCs.

R素質バインダーのCFペーパーの積層枚数を、1,2
.6枚と増すに連つれて、電気比抵抗は3.3Ω・印か
ら1.4Ω・口へと低下し、それに伴って電界シールド
効果は19dBから40dB、磁界シールド効果は2d
Bから46dBへと高められ、「良いシールド性」を示
した。
The number of laminated sheets of CF paper with R quality binder is 1 or 2.
.. As the number of sheets increases to 6, the electrical resistivity decreases from 3.3Ω to 1.4Ω, and the electric field shielding effect decreases from 19dB to 40dB, and the magnetic field shielding effect decreases by 2dB.
B to 46 dB, demonstrating "good shielding performance."

さらに、CFRCの電気比抵抗を低下させるために、セ
メントペースト中に黒鉛微粉末(平均粒子径2μm)を
1%添加し、これを上記実験中履も高いシールド効果を
示した炭素質バインダーのペーパー6枚中に含浸し、C
FRC板を作製した。
Furthermore, in order to lower the electrical resistivity of CFRC, 1% of fine graphite powder (average particle size 2 μm) was added to the cement paste, and this was added to the carbonaceous binder paper, which also showed a high shielding effect during the above experiment. Impregnated into 6 sheets, C
An FRC board was produced.

黒鉛粉末の添加により、電気比抵抗は1.4Ω・■から
0.8Ω・唾へと低下し、電界及び磁界シールド特性は
共に高くなり、48dBと52dBになった。特に磁界
シールド特性は本実験中最高の値であった。
By adding graphite powder, the electrical resistivity decreased from 1.4 Ω·■ to 0.8 Ω·s, and both the electric field and magnetic field shielding properties increased to 48 dB and 52 dB. In particular, the magnetic field shielding property was the highest value in this experiment.

表2 炭素質バインダーのCFペーパーによる電界及び磁界シ
ールド特性(dB)への影響積層枚数 電界シールド 周波数(化) lIi位(dB) 比抵抗 磁界シールド ピッチ系CFペーパー、ポルトランドセメント(W/C
=40X)×)グラファイト粉末1%添加した ポルトランドセメントペースト(W/C=40%)使用
(3)CFの、a維長さによる影響。
Table 2 Effect of carbonaceous binder CF paper on electric field and magnetic field shielding characteristics (dB) Number of laminated sheets Electric field shielding frequency (dB) Resistivity magnetic field shielding pitch system CF paper, Portland cement (W/C)
=40X)×)Using Portland cement paste (W/C=40%) with 1% graphite powder added (3) Effect of a-fiber length on CF.

CFRCの比抵抗を低下させることが、シールド効果に
対して極めて効果が見られたので、連続したフィラメン
ト状、即ちCFトウを配置させたCFRCの電界及び磁
界シールド効果と比抵抗とを表3に示す。
Since reducing the specific resistance of CFRC was extremely effective for the shielding effect, Table 3 shows the electric field and magnetic field shielding effect and specific resistance of CFRC in which continuous filament-like CF tows are arranged. show.

PAN系HPCFのフィラメントから作られたCFレシ
ート2層配置したCFRC(CF含有率2.2■o1%
)の、500MHzでの電界シールド特性は41dB、
磁界シールド特性は24dBであった。それに対し、ピ
ッチ系のHPCFを用いた場合(CF含有率1 、3 
volX)には、1.1Ω。
CF receipt made from PAN-based HPCF filament CFRC with two layers (CF content 2.2 o 1%)
), the electric field shielding characteristic at 500MHz is 41dB,
The magnetic field shielding characteristic was 24 dB. On the other hand, when pitch-based HPCF is used (CF content 1, 3
volX) is 1.1Ω.

任の比抵抗と40dBの電界シールド特性と27dBの
磁界シールド特性とを示した。さらに、PAN系HPC
Fを4層積層させたCFRC(CF含有率4 、4 v
olX)では、0.7Ω、cTrIの比抵抗と、57 
d B(500MHz>の電界シールド特性と34dB
の磁界シールド特性とを示し、「金属に相当するシール
ド性」を示した。
It showed a specific resistivity, an electric field shielding characteristic of 40 dB, and a magnetic field shielding characteristic of 27 dB. Furthermore, PAN-based HPC
CFRC with 4 layers of F (CF content 4, 4v
olX), the specific resistance of cTrI is 0.7Ω, and 57
dB (500MHz> electric field shielding characteristics and 34dB
It exhibited magnetic field shielding properties of ``shielding properties equivalent to those of metals''.

さらにCFRCの電気比抵抗を下げるために、炭素繊維
自体の電気比抵抗の小さい、即ち2000℃以上の高温
で熱処理を行なった2種類の高弾性率R素繊維の連続フ
ィラメントを使用してCFRCを作った。それらの電気
比抵抗とシールド特性を表3の下側に示す。
Furthermore, in order to lower the electrical resistivity of CFRC, we use continuous filaments of two types of high-modulus R fibers that have been heat-treated at a high temperature of 2000°C or higher, which has a low electrical resistivity of the carbon fiber itself. Had made. Their electrical resistivity and shielding characteristics are shown at the bottom of Table 3.

PAN系のHMCDフィラメントから作られたCFRC
は0.7Ωmの電気比抵抗と、44dBの電界シールド
特性と、45dBの磁界シールド特性とを示した。又、
ピッチ系のHMCFフィラメントから作られたCFRC
(CF含有率5.0vo1%)では、0.6Ω口の電気
比抵抗と、60dBの電界シールド特性、45dBの磁
界シールド特性をそれぞれ示した。これらの値は本実験
中における最も高い値であった。
CFRC made from PAN-based HMCD filament
exhibited an electrical resistivity of 0.7 Ωm, an electric field shielding characteristic of 44 dB, and a magnetic field shielding characteristic of 45 dB. or,
CFRC made from pitch-based HMCF filament
(CF content 5.0vo1%) showed an electrical resistivity of 0.6 Ω, an electric field shielding property of 60 dB, and a magnetic field shielding property of 45 dB. These values were the highest values during this experiment.

これらのことより、ペーパー状CFの組織、構造及び#
i維長等を調節することにより、1〜4v。
From these facts, the organization, structure, and
1 to 4v by adjusting i fiber length etc.

1%程度の低CF含有率であるにも係わらず、極めて高
い電界シールド及び磁界シールド特性を付与させること
ができた。尚、次素質バインダー使用の機械的特性は、
通常の有機質バインダー使用CFRCと同じ程度であっ
た。
Despite having a low CF content of about 1%, extremely high electric field shielding and magnetic field shielding properties could be imparted. In addition, the mechanical properties of using the next elementary binder are as follows:
It was about the same level as CFRC using a normal organic binder.

表3 連続したフィラメント状CFによる電界及び磁界シール
ド特性(a)への影響F F 含有率 (volX) 電界シールド 周波数(MHz) 単位(dB) PAN系(Pσ)2.2 4.4 ピッチ系(Pσ)18 PAN系(HMG”) 5.0 ピッチ系(■σ)3.6 5.0 ポルトランドセメント(W/C=40%)磁界 比抵抗  トルト。
Table 3 Effect of continuous filamentary CF on electric field and magnetic field shielding characteristics (a) F F content (volX) Electric field shielding frequency (MHz) Unit (dB) PAN system (Pσ) 2.2 4.4 Pitch system ( Pσ) 18 PAN system (HMG”) 5.0 Pitch system (■σ) 3.6 5.0 Portland cement (W/C=40%) magnetic field resistivity Tort.

1000  (Ω−clTl) (500MHz)以上
のような実験結果から明らかなように、炭素繊維ペーパ
ーを混入したCFRCにおいては優れた電磁遮蔽性を示
す。この場合、使用するセメントは普通ポルトランドセ
メントの他に、アルミナセメント、高炉セメント等でも
良く、骨材を混入することもできる。黒鉛微粉末等の導
電性を有する骨材やファイバーを混入することにより、
電磁シールド特性は更に高いものとすることができる。
As is clear from the experimental results such as 1000 (Ω-clTl) (500 MHz) or more, CFRC mixed with carbon fiber paper exhibits excellent electromagnetic shielding properties. In this case, the cement used may be ordinary Portland cement, alumina cement, blast furnace cement, etc., and aggregate may also be mixed. By mixing conductive aggregates and fibers such as graphite fine powder,
The electromagnetic shielding properties can be made even higher.

又、炭素繊維ペーパーにおいては、繊維長が長いものが
好ましく、5mm以上、好ましくは10m以上のものが
良い。尚、連続したフィラメント状のものは最も優れた
特性を示す。炭素繊維ペーパーの混入量としては、特に
限定されないが、0 、7 vo1%以上が好ましい、
炭素a維ペーパーとしてはPAN系、ピッチ系のどちら
でも良く、高性能戻素繊維、高弾性炭素繊維、その他の
炭素繊維でも電磁遮蔽性には影響を与えない、但し、高
温で熱処理する等して電気比抵抗を小さくした炭素lI
#&維で作られたCFペーパーを使用することにより、
電磁遮蔽効果をより一層高めることができる。さらに、
炭素fa維ペーパーを1000℃以上の高温、好ましく
は1500℃以上の高温で処理して、有機質バインダー
を炭素化あるいは黒鉛化させて炭素質バインダーとした
CFペーパーを使用することにより、より高い電磁遮蔽
効果を生み出す。
In addition, carbon fiber paper preferably has long fiber length, preferably 5 mm or more, preferably 10 m or more. Incidentally, a continuous filament-like material exhibits the most excellent properties. The amount of carbon fiber paper mixed is not particularly limited, but preferably 0.7 vol% or more.
The carbon a-fiber paper may be either PAN-based or pitch-based, and high-performance returned fibers, high-modulus carbon fibers, and other carbon fibers do not affect electromagnetic shielding, but they must be heat-treated at high temperatures, etc. Carbon lI with reduced electrical resistivity
By using CF paper made of #& fiber,
The electromagnetic shielding effect can be further enhanced. moreover,
Higher electromagnetic shielding can be achieved by using CF paper, which is treated with carbon fa fiber paper at a high temperature of 1000°C or higher, preferably 1500°C or higher, to carbonize or graphitize the organic binder and use it as a carbonaceous binder. produce an effect.

上記のようなことにより、比抵抗が下がり、電磁遮蔽性
が向上する理由は、炭素繊維をペーパー状にすることに
よる炭素繊維の接点の増加と、繊維長さによる切断点の
減少である。又、炭素繊維及び使用するバインダーに導
電性を持たせることによっても電磁遮蔽性が向上するこ
とは実験例からも証明される。
The reason why the resistivity is lowered and the electromagnetic shielding property is improved by the above-mentioned factors is that the number of contact points of the carbon fibers is increased by making the carbon fibers paper-like, and the number of cutting points is decreased due to the length of the fibers. Experimental examples also prove that electromagnetic shielding properties can be improved by imparting conductivity to the carbon fibers and the binder used.

(発明の効果) 以上のように本発明によれば、炭素a維ペーパーをセメ
ントに混入することにより、!磁遮蔽性の高いセメント
複合材を得ることができる。
(Effects of the Invention) As described above, according to the present invention, by mixing carbon a-fiber paper into cement,! A cement composite material with high magnetic shielding properties can be obtained.

又、CFペーパーを補強材に使用することにより、CF
チョツプドファイバーによるCFRCでは得られなかっ
た次のような利点が得られる。
In addition, by using CF paper as a reinforcing material, CF
The following advantages not available with chopped fiber CFRC can be obtained.

(1)含有量が/J\さいわりに強度が高く軽量である
(1) It is strong and lightweight despite its content of /J\.

(2)CFの分散が良く成形性が良い。(2) Good dispersion of CF and good moldability.

(3)耐食性に優れる。(3) Excellent corrosion resistance.

(荀変形性が大きい。(The deformability is large.

このように本発明に係るCFRCは、建材としての最重
要物性である機械的特性においても優れた物性を持つ。
As described above, the CFRC according to the present invention has excellent mechanical properties, which are the most important physical properties as a building material.

以上説明した如く、本発明によるCFRCにより全く新
しい機能性建材を得ることが可能となる。従って、イン
テリジェントビルの外壁、コンピュータールーム、クリ
ーンルーム、手術室等の構成部材、発電所、変電所、送
電所の床材、高電圧送電鉄塔の地下構築物等極めて広範
囲への応用が可能となる効果を有する。
As explained above, the CFRC according to the present invention makes it possible to obtain a completely new functional building material. Therefore, the effect can be applied to an extremely wide range of areas such as the external walls of intelligent buildings, structural members of computer rooms, clean rooms, operating rooms, etc., flooring of power plants, substations, power transmission stations, and underground structures of high-voltage transmission towers. have

Claims (4)

【特許請求の範囲】[Claims] (1)炭素繊維ペーパーを0.7vol%以上セメント
に混合して得られたことを特徴とする電磁波遮蔽性を有
するセメント複合材。
(1) A cement composite material having electromagnetic wave shielding properties, which is obtained by mixing 0.7 vol% or more of carbon fiber paper with cement.
(2)炭素繊維ペーパーが少なくとも長さ6mm以上の
炭素繊維からできていることを特徴とする請求項第1項
記載の電磁波遮蔽性を有するセメント複合材。
(2) The cement composite material having electromagnetic wave shielding properties according to claim 1, wherein the carbon fiber paper is made of carbon fibers having a length of at least 6 mm or more.
(3)炭素繊維ペーパーが1000℃以上の温度で熱処
理されたものであることを特徴とする請求項第1項又は
請求項第2項記載の電磁波遮蔽性を有するセメント複合
材。
(3) The cement composite material having electromagnetic wave shielding properties according to claim 1 or claim 2, wherein the carbon fiber paper is heat-treated at a temperature of 1000° C. or higher.
(4)グラファイト,カーボンブラック等のセメント中
に導電性を有する骨材を混入することを特徴とする請求
項第1項又は請求項第2項又は請求項第3項記載の電磁
波遮蔽性を有するセメント複合材。
(4) Having electromagnetic wave shielding properties as set forth in claim 1, claim 2, or claim 3, characterized in that conductive aggregate is mixed into cement such as graphite or carbon black. Cement composite.
JP30712588A 1988-12-05 1988-12-05 Cement composite material having electromagnetic wave shielding property Pending JPH02153851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30712588A JPH02153851A (en) 1988-12-05 1988-12-05 Cement composite material having electromagnetic wave shielding property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30712588A JPH02153851A (en) 1988-12-05 1988-12-05 Cement composite material having electromagnetic wave shielding property

Publications (1)

Publication Number Publication Date
JPH02153851A true JPH02153851A (en) 1990-06-13

Family

ID=17965334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30712588A Pending JPH02153851A (en) 1988-12-05 1988-12-05 Cement composite material having electromagnetic wave shielding property

Country Status (1)

Country Link
JP (1) JPH02153851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368644B1 (en) * 2001-11-23 2003-01-24 Intchem Co Ltd Inorganic coating composition for electro magnetic shielding of building
CN106102432A (en) * 2016-08-01 2016-11-09 江苏工程职业技术学院 The method of mobile screened room pre-control building intelligence system electromagnetism Leibo interference

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986296A (en) * 1982-11-09 1984-05-18 三菱レイヨン株式会社 Electromagnetic wave shielding sheet-shaped molding material
JPS6349405A (en) * 1986-08-20 1988-03-02 三菱マテリアル株式会社 Manufacture of calcium silicate molded form
JPS63151749A (en) * 1986-12-12 1988-06-24 三菱化学株式会社 Long fiber reinforced composite member
JPS63268299A (en) * 1987-04-24 1988-11-04 Nippon Pillar Packing Co Ltd Electromagnetic wave shielding material
JPS63268603A (en) * 1987-04-28 1988-11-07 Ohbayashigumi Ltd Manufacture of ps concrete plate using fiber stock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986296A (en) * 1982-11-09 1984-05-18 三菱レイヨン株式会社 Electromagnetic wave shielding sheet-shaped molding material
JPS6349405A (en) * 1986-08-20 1988-03-02 三菱マテリアル株式会社 Manufacture of calcium silicate molded form
JPS63151749A (en) * 1986-12-12 1988-06-24 三菱化学株式会社 Long fiber reinforced composite member
JPS63268299A (en) * 1987-04-24 1988-11-04 Nippon Pillar Packing Co Ltd Electromagnetic wave shielding material
JPS63268603A (en) * 1987-04-28 1988-11-07 Ohbayashigumi Ltd Manufacture of ps concrete plate using fiber stock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368644B1 (en) * 2001-11-23 2003-01-24 Intchem Co Ltd Inorganic coating composition for electro magnetic shielding of building
CN106102432A (en) * 2016-08-01 2016-11-09 江苏工程职业技术学院 The method of mobile screened room pre-control building intelligence system electromagnetism Leibo interference

Similar Documents

Publication Publication Date Title
Nam et al. Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites
Guan et al. Cement based electromagnetic shielding and absorbing building materials
KR101287805B1 (en) An aerogel binder for forming insulating materials of glass long fibers and forming process of insulating materials thereby
Jang et al. Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded lightweight CFRP composites
Umashankar et al. Electromagnetic shielding effectiveness of nylon-66 nanofiber interleaved carbon epoxy composites
JP4716348B2 (en) Radio wave absorber
JPH02153851A (en) Cement composite material having electromagnetic wave shielding property
CN110776658B (en) Cotton fiber-based flexible carbon composite film and preparation method thereof
Tang et al. Fabrication and study on thermal conductivity, electrical properties, and mechanical properties of the lightweight carbon/carbon fiber composite
CN1544723A (en) Wave absorbing composite nano-fiber material textile composition and its preparation process
Samkova et al. Improving electromagnetic shielding ability of plaster-based composites by addition of carbon fibers
Liu et al. Effects of EPS, Mn–Zn Ferrite, and Layers on the Electromagnetic Absorption Performance of Magnesium Phosphate Cement
DE102014017049A1 (en) Building material for shielding electromagnetic waves by absorption, process for its preparation and its use
Kagawa et al. Potential of short Si–Ti–C–O fiber-reinforced epoxy matrix composite as electromagnetic wave absorbing material
CN108357161A (en) Graphene-based electromagnetism stealth and shielding integrated material and preparation method
JP2993799B2 (en) Electromagnetic wave shielding material
Guo et al. Durable and sustainable CoFe2O4@ MXene-silver nanowires/cellulose nanofibers composite films with controllable electric–magnetic gradient towards high-efficiency electromagnetic interference shielding and Joule heating capacity
Singh et al. Electromagnetic interference shielding and ohmic heating of layered structures of activated carbon fabric and metalized fabric
JP2584497B2 (en) Carbon fiber sheet
Liu et al. The facile preparation of flexible graphene/carbon nanotubes hybrid papers for electromagnetic interference shielding
KR102648967B1 (en) Electromagnetic wave shielding concrete composition using industrial by-product and its manufacturing method
Li Silicon Carbide Whiskers Coated Carbonized Loofah Sponge Composites
JPS59202697A (en) Electromagnetic shielding material
Jothi Absorption-and Reflection-Dominated Materials for Electromagnetic Interference Shielding Applications
JPH071429A (en) Manufacture of conductive inorganic molded product