JPH02153804A - High-temperature treatment of mineral - Google Patents

High-temperature treatment of mineral

Info

Publication number
JPH02153804A
JPH02153804A JP30697388A JP30697388A JPH02153804A JP H02153804 A JPH02153804 A JP H02153804A JP 30697388 A JP30697388 A JP 30697388A JP 30697388 A JP30697388 A JP 30697388A JP H02153804 A JPH02153804 A JP H02153804A
Authority
JP
Japan
Prior art keywords
furnace
metal oxide
temperature
metal oxides
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30697388A
Other languages
Japanese (ja)
Inventor
Masayasu Sakai
正康 坂井
Isamu Motomura
本村 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30697388A priority Critical patent/JPH02153804A/en
Publication of JPH02153804A publication Critical patent/JPH02153804A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain highly purified and sub-micron sized various metal oxides in low cost by bursting mineral particles containing various metal oxides together with fuel and oxygen into a furnace from a nozzle, separating it into metal oxide of each composition by utilizing the difference of vapor pressures of metal oxides of each composition, and recovering them. CONSTITUTION:Mineral particles 1 (e.g., fly ash) containing various metal oxides are bursted together with the fuel 4 and oxygen 5 into the furnace 3 from the nozzle. Then, temperature in the furnace 3 is kept at a temperature generating vapor pressure of the recovery-target metal oxide (e.g., Fe2O3), thus vapor generated from the metal oxide is introduced into the condenser part 6 and quenched with air 7 for cooling, then fine particles metal oxide 9 are separated and recovered with the cyclone 8. Next, temperature in the furnace is raised and fine particles 13 of another metal oxide (e.g., SiO2) are separated and recovered in the same method. Further, metal oxide (e.g., Al2O3) having higher temperature generating vapor pressure is caught from the bottom of the furnace to the scavenging part 15 as fine particles 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複数の金属酸化物を含有する鉱物、例えばフラ
イアッシュ(石炭微粉灰)、ケイ石などを高温下で処理
して鉱物の組成金属酸化物を分割して得る方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention processes minerals containing a plurality of metal oxides, such as fly ash (pulverized coal ash), silica stone, etc. at high temperatures to reduce the composition metals of the minerals. This invention relates to a method of dividing and obtaining an oxide.

〔従来の技術〕[Conventional technology]

複数の酸化物を含有する鉱物とみられるフライアッシュ
は、ごく一部をセメントに混入して使用され、その大半
は埋立に使用されているが、溶出物があるため環境問題
と彦ることがあり、またケイ石等の原鉱石はミμで粉砕
して建材原料として使用されているが、建材原料組成は
鉱物組成によって決るため、均質な鉱物しか使用できず
、この量の確保と同時に輸送費も割高になる欠点のほか
、微粉砕費も必要であるという問題点があった。
Fly ash, which is thought to be a mineral containing multiple oxides, is used by mixing a small portion with cement, and most of it is used in landfills, but it can pose an environmental problem due to leachables. In addition, raw ores such as silica stone are crushed in micro-mills and used as raw materials for building materials, but since the composition of raw materials for building materials is determined by the mineral composition, only homogeneous minerals can be used. In addition to the disadvantage that it is relatively expensive, there is also the problem that fine grinding costs are also required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、複数の金属酸化物を含有する鉱物の有
効利用の技術は未だ確立していないのが現状である。そ
こで本発明はそのま−では有効利用の道の極めて狭い複
数の金属酸化物を含有する鉱物を合目的に処理して、有
効利用し得る材料を得ることのできる方法を提供しよう
とするものである。
As mentioned above, the current state is that a technology for effectively utilizing minerals containing multiple metal oxides has not yet been established. Therefore, the present invention aims to provide a method that can process minerals containing multiple metal oxides, which until now have extremely limited possibilities for effective use, to obtain materials that can be used effectively. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は炉内に各種金属酸化物を含有する鉱物粒子を燃
料および酸素とともにノズルから任意の時間噴出させ、
炉内温度を回収対象金属酸化物の任意の蒸気圧発生温度
に維持することKより生成した金属酸化物の蒸気を炉外
に誘導し、急冷して金属酸化物の微粒子を分離回収する
第1工程と、上記第1工程の金属酸化物を分離回収後、
鉱物粒子の炉内への供給を停止し炉内温度を上記第1工
程にくらべ高い任意の温度に維持することにより生成す
る上記第1工程以外の金属酸化物の微粒子を上記第1工
程と同じ方法で少なくとも1回以上繰返して分離回収す
る第2工程と、上記第1工程と第2工程で回収された以
外の金属酸化物を炉底から分離回収する第3工程とから
なることを特徴とする鉱物の高温処理法である。
The present invention allows mineral particles containing various metal oxides to be ejected from a nozzle together with fuel and oxygen in a furnace for an arbitrary period of time,
The first step is to maintain the temperature inside the furnace at an arbitrary vapor pressure generation temperature of the metal oxide to be recovered.The first step is to guide the metal oxide vapor generated from K to the outside of the furnace and rapidly cool it to separate and recover fine particles of the metal oxide. After separating and recovering the metal oxide from the first step,
Fine particles of metal oxide other than the first step, which are generated by stopping the supply of mineral particles into the furnace and maintaining the temperature inside the furnace at an arbitrary temperature higher than that in the first step, are the same as in the first step. a second step in which the method is repeated at least once to separate and recover; and a third step in which metal oxides other than those recovered in the first and second steps are separated and recovered from the bottom of the furnace. This is a high-temperature treatment method for minerals.

そして、本発明は上記構成の各工程から排出される廃熱
ガスを、炉に供給する燃料及び酸素の予熱用として利用
した後、ボイラに送って発電用として熱回収することを
好ましい実施態様とするものである。
In a preferred embodiment of the present invention, waste heat gas discharged from each process of the above configuration is used for preheating fuel and oxygen to be supplied to the furnace, and then sent to a boiler to recover heat for power generation. It is something to do.

〔作用〕[Effect]

本発明は複数の金属酸化物を含有する鉱物を、組成金属
酸化物の蒸気圧の差を利用して任意の金属酸化物組成材
料を分離回収するため、得られる金属酸化物は高純度か
つ、サブミクロン粒径の粒子として得られ、夫々の金属
酸化物の種類に応じて広範囲の用途がひらける。
The present invention separates and recovers minerals containing a plurality of metal oxides into any metal oxide composition material by utilizing the difference in vapor pressure of the composition metal oxides, so the obtained metal oxides have high purity and It is obtained as submicron-sized particles and has a wide range of uses depending on the type of metal oxide.

また、本発明の各工程から排出される廃熱ガスは廃熱回
収装置、例えばボイラに送って有効に廃熱をエネμギ、
例えば電気に変えることができ熱的経済性にも優れる。
In addition, the waste heat gas discharged from each process of the present invention is sent to a waste heat recovery device, such as a boiler, to effectively convert waste heat into energy μ.
For example, it can be converted into electricity and has excellent thermal economy.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described below with reference to FIG.

鉱物の粒子(例えばフライアッシュ)1をホッパー2か
ら高温炉3内に燃料4および酸素5といっしよく供給し
高温炉3内の温度を1,800〜2,000℃に維持す
ると、フライアッシュ中のye、o、  (蒸気圧10
−” atm )は蒸気となり、冷却部6で冷却用空気
7によって急冷された後、サイクロンセパレータ8でI
Fe、O,の微粒子が捕集され、製品Fe1Oj9とし
て回収される。サイクロンセパレータ8からの廃ガス1
oはボイラ11に供給する。(第1工程) 次に鉱物粒子の炉内への供給を停止した後、炉3内温度
を2300〜25oo℃に維持すると、フライアッシュ
中の8fog(蒸気圧10−!atm )は蒸気となり
、冷却部6で冷却用空9C7によって急冷された後、サ
イクロンセパレータ12でsto、の微粒子が捕集され
、製品810゜13として回収される。サイクロンセパ
レータ12からの廃ガス14はボイラ11に供給する。
When mineral particles (for example, fly ash) 1 are supplied together with fuel 4 and oxygen 5 from the hopper 2 into the high temperature furnace 3 and the temperature inside the high temperature furnace 3 is maintained at 1,800 to 2,000°C, the fly ash ye, o, (vapor pressure 10
-"atm) becomes steam, and after being rapidly cooled by cooling air 7 in the cooling section 6, it is turned into steam in the cyclone separator 8.
Fine particles of Fe, O, are collected and recovered as product Fe1Oj9. Waste gas 1 from cyclone separator 8
o is supplied to the boiler 11. (First step) Next, after stopping the supply of mineral particles into the furnace, if the temperature inside the furnace 3 is maintained at 2300 to 250°C, 8 fog (vapor pressure 10-!atm) in the fly ash becomes steam, After being rapidly cooled by the cooling air 9C7 in the cooling section 6, fine particles of sto are collected by the cyclone separator 12 and recovered as a product 810°13. The waste gas 14 from the cyclone separator 12 is fed to the boiler 11.

(第2工程) 次にフライアッシュ中のTtO,、OaOを含むAkO
s  (蒸気圧10−” atm )は炉底から微粒子
として捕集部15で捕集され、製品人t@0.16とし
て回収される。捕集部15から排出される廃熱ガス17
は熱交換器18で燃料4および酸素5と熱交換されたの
ちボイラ11に供給、熱回収される。(第3工程) なお、上記実施例は第1工程で?elO3を、第2工程
でs t o、を製品として回収した例であつ九が、第
2工程を複数回繰υ返すことにより、純度の高い各種の
酸化物、例えばMgO、(1!ao、T l 01 t
  A40H等を得ることもできる。
(Second step) Next, TtO, AkO containing OaO in the fly ash
s (vapor pressure 10-" atm) is collected from the bottom of the furnace as fine particles in the collection section 15 and recovered as a product t@0.16. Waste heat gas 17 discharged from the collection section 15
After being heat exchanged with fuel 4 and oxygen 5 in a heat exchanger 18, it is supplied to a boiler 11, where the heat is recovered. (Third step) In addition, the above example is the first step? In this example, elO3 is recovered as a product in the second step. By repeating the second step multiple times, various oxides of high purity, such as MgO, (1!ao, T l 01 t
A40H etc. can also be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明により、高純度の金属酸化物の超微粒子を製造す
ることができ、それ自体、用途の少ない鉱物の有効利用
を計ることができる。
According to the present invention, ultrafine particles of highly pure metal oxides can be produced, and as such, it is possible to effectively utilize minerals that have few uses.

さらに本発明の処理加工熱源はボイラに供給し、発電用
などとして回収されるため省エネルギーをはかることが
できる。
Furthermore, the processing heat source of the present invention is supplied to a boiler and recovered for use in power generation, etc., so energy can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための概略図であ
る。
FIG. 1 is a schematic diagram for explaining one embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)炉内に各種金属酸化物を含有する鉱物粒子を燃料
および酸素とともにノズルから任意の時間噴出させ、炉
内温度を回収対象金属酸化物の任意の蒸気圧発生温度に
維持することにより生成した金属酸化物の蒸気を炉外に
誘導し、急冷して金属酸化物の微粒子を分離回収する第
1工程と、上記第1工程の金属酸化物を分離回収後、鉱
物粒子の炉内への供給を停止し炉内温度を上記第1工程
にくらべ高い任意の温度に維持することにより生成する
上記第1工程以外の金属酸化物の微粒子を上記第1工程
と同じ方法で少なくとも1回以上繰返して分離回収する
第2工程と、上記第1工程と第2工程で回収された以外
の金属酸化物を炉底から分離回収する第3工程とからな
ることを特徴とする鉱物の高温処理法。
(1) Generated by ejecting mineral particles containing various metal oxides from a nozzle together with fuel and oxygen for a desired period of time in a furnace, and maintaining the temperature inside the furnace at a desired vapor pressure generation temperature of the metal oxide to be recovered. The first step is to guide the metal oxide vapor out of the furnace and rapidly cool it to separate and recover fine metal oxide particles.After separating and recovering the metal oxide in the first step, the mineral particles are transferred into the furnace. Repeating the same method as the first step at least once to produce fine particles of metal oxide other than the first step by stopping the supply and maintaining the furnace temperature at an arbitrary temperature higher than the first step. A method for high-temperature treatment of minerals, comprising: a second step of separating and recovering metal oxides from the furnace bottom; and a third step of separating and recovering metal oxides other than those recovered in the first and second steps from the bottom of the furnace.
(2)各工程で排出される廃熱ガスをボイラに送つて熱
回収する特許請求の範囲(1)記載の鉱物の高温処理法
(2) The method for high-temperature treatment of minerals according to claim (1), wherein waste heat gas discharged in each process is sent to a boiler for heat recovery.
JP30697388A 1988-12-06 1988-12-06 High-temperature treatment of mineral Pending JPH02153804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30697388A JPH02153804A (en) 1988-12-06 1988-12-06 High-temperature treatment of mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30697388A JPH02153804A (en) 1988-12-06 1988-12-06 High-temperature treatment of mineral

Publications (1)

Publication Number Publication Date
JPH02153804A true JPH02153804A (en) 1990-06-13

Family

ID=17963495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30697388A Pending JPH02153804A (en) 1988-12-06 1988-12-06 High-temperature treatment of mineral

Country Status (1)

Country Link
JP (1) JPH02153804A (en)

Similar Documents

Publication Publication Date Title
US3295924A (en) Process for recovering iron, titanium and aluminum from the red slurries obtained in processing bauxite by the bayer process
CN108863114B (en) Method for recycling waste heat in magnesite light burning process
US10829413B2 (en) Process and apparatus for manufacture of calcined compounds for the production of calcined products
JPH04219324A (en) Manufacture of glass
CN112174547A (en) Device and method for producing magnesium oxide and recovering carbon dioxide
JPH1045444A (en) Treatment of coal ash
SE300960B (en)
US2522639A (en) Process and apparatus for thermal treatment of solids
JPH02153804A (en) High-temperature treatment of mineral
JP3616165B2 (en) Method and apparatus for treating dust in exhaust gas from cement kiln
US1873642A (en) Process of recovering alumina from coal and its ashes
JP2002128548A (en) Cement production system
CN112985064A (en) Sintering device and sintering method based on plasma hot blast stove
CN114751665B (en) Method for trapping CO2 gas generated by decomposing cement raw material, cement production method and system
JP4158860B2 (en) Method and apparatus for treating dust in exhaust gas from cement kiln
US3427127A (en) Process for recovering aluminum values from heat expandable materials
JPH0372027B2 (en)
KR20100110220A (en) Method for treating slag and apparatus used by the same
US1874186A (en) Process of making portland cement from coal ashes
JPS62297406A (en) Production of spheroidized reduced iron powder
JPS60110348A (en) Method of crushing and cooling clinker
JPS62247035A (en) Blast furnace for sintered ore
JPH0625724A (en) Treatment of blast furnace dust
CN116553579A (en) Collaborative disposal technology for waste incineration fly ash coal-fired boiler
US1239616A (en) Process of recovering alkalis from cement materials.