JPH02153227A - Compound engine - Google Patents

Compound engine

Info

Publication number
JPH02153227A
JPH02153227A JP63306830A JP30683088A JPH02153227A JP H02153227 A JPH02153227 A JP H02153227A JP 63306830 A JP63306830 A JP 63306830A JP 30683088 A JP30683088 A JP 30683088A JP H02153227 A JPH02153227 A JP H02153227A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion furnace
steam
exhaust
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63306830A
Other languages
Japanese (ja)
Inventor
Kunihiko Shimoda
下田 邦彦
Yozo Tosa
土佐 陽三
Masayasu Sakai
正康 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63306830A priority Critical patent/JPH02153227A/en
Publication of JPH02153227A publication Critical patent/JPH02153227A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To increase a whole thermal efficiency in a compound engine consisting of an internal combustion engine and a steam cycle utilizing the exhaust gas heat therefrom by providing a reduction combustion furnace in an exhaust gas line of the internal combustion engine, and also providing an exhaust gas turbine down the reduction combustion furnace. CONSTITUTION:An internal combustion engine 10 drives a generator 11. The exhaust gas from the internal combustion engine 10 passes through an exhaust gas line 13 to drive the exhaust gas turbine 21 of a supercharger 20. The NOx in the exhaust gas is reduced thereafter in a reduction combustion furnace 30, and the gas is delivered through an exhaust gas boiler 40 to the atmosphere. The exhaust gas heat is then recovered in the exhaust gas boiler 40 and used for generating steam, and a steam turbine is driven by the steam to obtain power. In this compound engine, an exhaust gas turbine 60 is provided also down the reduction combustion furnace 30 to drive a generator 61. Further the exhaust gas from the exhaust gas turbine 60 flows into the exhaust gas boiler 40, and power is recovered by a steam cycle as is used conventionally. Thus a hole thermal efficiency can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関と同内燃機関の排気熱を利用する蒸
気サイクルとから動力を得る複合機関に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compound engine that obtains power from an internal combustion engine and a steam cycle that utilizes the exhaust heat of the internal combustion engine.

〔従来の技術〕[Conventional technology]

第5図は従来の複合機関の一例を示すズロンク図である
FIG. 5 is a diagram showing an example of a conventional compound engine.

内燃機関(1(Iは発電機αDを駆動して発電する。内
燃機関αO)の排気は排気管(■3)を通り、排気ター
ボ過給機□□□の排気タービン(2I)を駆動したのち
、還元燃焼炉(至)に導かれる。還元燃焼炉□□□では
、炭化水素系燃料の1)が加えられ、その還元性雰囲気
により排気中のNOxが低減され、クリーンな排気とな
って排ガスボイラ顛をへて大気へ放出される。排ガスボ
イラ(40では、排気熱が回収され蒸気を発生して、蒸
気タービン(4I)により動力が得られる。(44は発
電機である。蒸気タービン(4I)を駆動した蒸気は、
コンデンサー(4艶により水となって排ガスボイラ(4
0)に供給され、蒸気サイクルを作動させる。また、排
気タービンel)により同軸上のコンプレッサー(22
)が駆動され、大気が圧縮されて高圧の給気となり、給
気管(121を経由して内燃機関00)へ供給される。
The exhaust gas of the internal combustion engine (1 (I drives the generator αD to generate electricity. Internal combustion engine αO) passes through the exhaust pipe (■3) and drives the exhaust turbine (2I) of the exhaust turbo supercharger □□□ Afterwards, it is led to the reduction combustion furnace (to). In the reduction combustion furnace □□□, the hydrocarbon fuel 1) is added, and its reducing atmosphere reduces NOx in the exhaust, resulting in clean exhaust. The exhaust gas passes through the boiler system and is released into the atmosphere. In the exhaust gas boiler (40), exhaust heat is recovered and steam is generated, and power is obtained by the steam turbine (4I). (44 is a generator. The steam that drove the steam turbine (4I) is
Condenser (4
0) to operate the steam cycle. In addition, the exhaust turbine el) is connected to the coaxial compressor (22
) is driven, the atmospheric air is compressed and becomes high-pressure air supply, which is supplied to the internal combustion engine 00 via the air supply pipe (121).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の複合機関においては、還元燃焼炉c30)に
投入された炭化水素系燃料Oυの発生熱が、排ガスボイ
ツ0@で回収され蒸気サイクルにより出力となるが、蒸
気サイクルの熱効率は内燃機関にくらべて低いため、還
元燃焼炉−で投入される炭化水素系燃料011が多い場
合は、全体の熱効率が低かった。
In the conventional combined engine, the heat generated from the hydrocarbon fuel Oυ input into the reduction combustion furnace (c30) is recovered by the exhaust gas and used as output through the steam cycle, but the thermal efficiency of the steam cycle is different from that of the internal combustion engine. Because of this, when a large amount of hydrocarbon fuel 011 was input into the reduction combustion furnace, the overall thermal efficiency was low.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記従来の課題を解決するために、内燃機関
の排気管の途中に設けられた還元燃焼炉と、同還元燃焼
炉の後流に設けられて発電機を駆動する排気タービンと
を有することを特徴とする複合機関、および内燃機関の
排気管の途中に設けられた還元燃焼炉と、同還元燃焼炉
の後流に設けられて発電機を駆動する排気タービンと、
上記還元燃焼炉と上記排気タービンとの間に設けられて
蒸気を加熱する熱交換器とを有することを特徴とする複
合機関を提案するものである。
In order to solve the above-mentioned conventional problems, the present invention provides a reduction combustion furnace installed in the middle of an exhaust pipe of an internal combustion engine, and an exhaust turbine installed downstream of the reduction combustion furnace to drive a generator. and a reduction combustion furnace provided in the middle of an exhaust pipe of the internal combustion engine, and an exhaust turbine provided downstream of the reduction combustion furnace to drive a generator;
The present invention proposes a composite engine characterized by having a heat exchanger provided between the reduction combustion furnace and the exhaust turbine to heat steam.

〔作用〕[Effect]

本発明においては、還元燃焼炉に投入された燃料の発生
熱の一部は排気タービンによって回収されるので、蒸気
サイクルよりも熱効率がよい。
In the present invention, a part of the heat generated by the fuel input into the reduction combustion furnace is recovered by the exhaust turbine, so the heat efficiency is better than that of the steam cycle.

また、還元燃焼炉と排気タービンとの間に蒸気加熱用の
熱交換器を設けた場合は、この熱交換器により、排気タ
ービンに流入する排気の温度を低下させることができる
。さらに、この熱交換器で排気から蒸気へ伝えられた熱
エネルギーは蒸気タービンで回収されるので、全体のサ
イクルの熱効率の低下は小さい。
Further, when a heat exchanger for steam heating is provided between the reduction combustion furnace and the exhaust turbine, the temperature of the exhaust gas flowing into the exhaust turbine can be lowered by this heat exchanger. Furthermore, since the thermal energy transferred from the exhaust gas to the steam in this heat exchanger is recovered in the steam turbine, the reduction in thermal efficiency of the entire cycle is small.

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示すブロック図である。 FIG. 1 is a block diagram showing a first embodiment of the present invention.

この図において、前記第5図により説明した従来のもの
と同じ部分については、同一の符号を付け、詳しい説明
を省略する。
In this figure, the same parts as those of the conventional device explained with reference to FIG. 5 are given the same reference numerals, and detailed explanation will be omitted.

還元燃焼炉C30,lには従来同様炭化水素系燃料01
)が加えられ、排気中のNOxが低減されるが、本実施
例では、この還元燃焼炉−の後流にも排気タービン−を
設置し、この排気タービン−により発電機−を駆動する
。排気タービン田から出た排気は、排ガスボイラ顛に流
入し、従来と同様、蒸気サイクルにより出力が回収され
る。
The reduction combustion furnace C30, l uses hydrocarbon fuel 01 as before.
) is added to reduce NOx in the exhaust gas, but in this embodiment, an exhaust turbine is also installed downstream of this reduction combustion furnace, and the generator is driven by this exhaust turbine. Exhaust gas from the exhaust turbine field flows into the exhaust gas boiler system, where power is recovered by the steam cycle, as in the conventional system.

第2図は、本実施例と従来のものとにおける排気の熱の
利用状況の差異を、理想サイクルの温度とエントロピー
の線図で示したものである。
FIG. 2 shows the difference in the usage of exhaust heat between this embodiment and the conventional one, using a diagram of temperature and entropy of an ideal cycle.

従来の複合機関では、実線で示す大気圧力線PA上の点
Bの状態の排気に還元燃焼炉−で熱が加えられてCの状
態になり、排ガスボイラ(401で熱が回収されて、大
気温度線TAよりも下の面積A−D−E−F−Aの熱が
/ンデンサー(43で系外にすてられる。本実施例では
、排気タービン団により排気が絞られて圧力が高くなっ
た一点鎖線PE上の点B′の状態の排気に、還元燃焼炉
(7)で熱が加えられてC′の状態になり、排ガスボイ
ラ(4Gで熱が回収されて、面積A −D’−E’−F
 −Aの熱がコンデンサー(43で系外にすてられる。
In a conventional combined engine, heat is added to the exhaust gas at point B on the atmospheric pressure line PA shown by the solid line in a reduction combustion furnace to bring it to state C, and the heat is recovered in the exhaust gas boiler (401) and released into the atmosphere. The heat in the area A-D-E-F-A below the temperature line TA is thrown out of the system by the /densor (43).In this example, the exhaust gas is throttled by the exhaust turbine group and the pressure is increased. Heat is added to the exhaust gas in the state of point B' on the dashed line PE in the reduction combustion furnace (7) to bring it into the state of C', and the heat is recovered in the exhaust gas boiler (4G), and the area A - D'-E'-F
-The heat of A is dissipated out of the system through a condenser (43).

ここで還元燃焼炉例で加えられる熱量は従来と同じなの
で、面積B’−C’−E’−G −B’とB−0−E−
G−Bとは同じである。したがって、点B;C′が点B
、(3よりも上にある分だけ、C’−D −E’の線は
C−D4よりも左側になる。この結果。
Since the amount of heat added in the reduction combustion furnace example is the same as in the conventional case, the area B'-C'-E'-G-B' and B-0-E-
It is the same as G-B. Therefore, point B; C' is point B
, (The line C'-D-E' is to the left of C-D4 by the amount above 3. This result.

糸外圧すてる熱量が面積D −E −E’−D’−D 
の分だけ少なくなり、全体の熱効率が高くなる。
The amount of heat dissipated from the thread external pressure is the area D -E -E'-D'-D
, which increases the overall thermal efficiency.

次に第3図は本発明の第2実施例を示すブロック図であ
る。この図においても、前記第1図および第5図におけ
るものと同じ部分については、同一の符号を付け、詳し
い説明を省略する。
Next, FIG. 3 is a block diagram showing a second embodiment of the present invention. In this figure as well, the same parts as in FIGS. 1 and 5 are given the same reference numerals and detailed explanations will be omitted.

本実施例では、内燃機関部のすぐ後の排気管a3の途中
に還元燃焼炉団を設置し、炭化水素系燃料0υを供給し
てNOxを低減する。 そして、この還元燃焼炉Qから
の排気を、発電機σふも駆動する排気ターボ過給機σQ
の排気タービンσυに導く。排気タービンσυは同軸上
のコンプレッサーσ2も駆動する。
In this embodiment, a reduction combustion furnace is installed in the middle of the exhaust pipe a3 immediately after the internal combustion engine section, and NOx is reduced by supplying hydrocarbon fuel 0υ. The exhaust gas from this reduction combustion furnace Q is then used to drive the exhaust turbo supercharger σQ that drives the generator σ foot.
leads to the exhaust turbine συ. The exhaust turbine συ also drives a coaxial compressor σ2.

本実施例では、前記第1実施例よりもさらに高い圧力レ
ベルの排気に、還元燃焼炉■で熱を加えることになるの
で、全体の熱効率はさらに高くなる。この場合排気ター
ビンσ℃は、還元燃焼炉間排気の高温に耐えられるよう
、空冷翼等、特殊な耐熱構造とする必要がある。
In this embodiment, heat is added to the exhaust gas at a higher pressure level than in the first embodiment in the reduction combustion furnace (2), so that the overall thermal efficiency is further increased. In this case, the exhaust turbine σ°C needs to have a special heat-resistant structure, such as air-cooled blades, so that it can withstand the high temperature of the exhaust gas between the reduction combustion furnaces.

第4図は本発明の第3実施例を示すブロック図である。FIG. 4 is a block diagram showing a third embodiment of the present invention.

この図においても、前記と同じ部分については同一の符
号を付け、詳しい説明を省略する。
In this figure as well, the same parts as above are given the same reference numerals and detailed explanations are omitted.

この実施例では、前記第2実施例における還元燃焼炉■
の後流で排気タービンσυの上流に、熱交換器(80)
が設置される。この熱交換器(80)においては、排ガ
スボイラ顛で発生した蒸気が、排気タービンCIυ前の
高温の排気でさらに加熱されたのち、蒸気タービン(4
1)に導かれる。
In this embodiment, the reduction combustion furnace
Upstream of the exhaust turbine συ in the wake of the heat exchanger (80)
will be installed. In this heat exchanger (80), the steam generated in the exhaust gas boiler is further heated by the high-temperature exhaust gas in front of the exhaust turbine CIυ, and then the steam generated in the exhaust gas boiler
1).

この結果、還元燃焼炉■で高温になった排気は、熱交換
器(80)で蒸気に熱を与えて所定の温度まで低下した
のち、排気タービンσηに流入する。したがって、排気
タービンσυは、空冷翼等の特殊な耐熱構造とする必要
がなくなって、低価格のもので済む。そして、熱交換器
(80)でさらに加熱され高温になった蒸気は、蒸気タ
ービン回で、温度が上昇した分高い熱効率で、出力へ変
換される。
As a result, the exhaust gas that has reached a high temperature in the reduction combustion furnace (1) gives heat to the steam in the heat exchanger (80) to lower the temperature to a predetermined value, and then flows into the exhaust turbine ση. Therefore, the exhaust turbine συ does not need to have a special heat-resistant structure such as air-cooled blades, and can be made at a low price. The steam, which is further heated to a high temperature in the heat exchanger (80), is converted into output by a steam turbine with higher thermal efficiency corresponding to the increased temperature.

〔発明の効果〕〔Effect of the invention〕

本発明においては、高圧力の排気に還元燃焼炉で燃料が
加えられて燃焼する。そして、発生した熱の一部は排気
タービンによって回収される。その結果、系外にすてる
熱量が減り、全体の熱効率が高くなる。また、排気の圧
力が高くなるので、還元燃焼炉の大きさもその分小さく
できる。
In the present invention, fuel is added to high-pressure exhaust gas in a reduction combustion furnace and combusted. A portion of the generated heat is then recovered by the exhaust turbine. As a result, the amount of heat dissipated outside the system is reduced and the overall thermal efficiency is increased. Furthermore, since the pressure of the exhaust gas is increased, the size of the reduction combustion furnace can be reduced accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第り実施例を示すブロック図、第2図
は同実施例における排気の熱の利用状況を従来のものと
比較して示す図である。第3図は本発明の第2実施例を
示すブロック図、第4図は本発明の第3実施例を示すブ
ロック図である。第5図は従来の複合機関の一例を示す
ブロック図である。
FIG. 1 is a block diagram showing a second embodiment of the present invention, and FIG. 2 is a diagram showing how exhaust heat is utilized in this embodiment in comparison with a conventional one. FIG. 3 is a block diagram showing a second embodiment of the invention, and FIG. 4 is a block diagram showing a third embodiment of the invention. FIG. 5 is a block diagram showing an example of a conventional compound engine.

Claims (2)

【特許請求の範囲】[Claims] (1)内燃機関の排気管の途中に設けられた還元燃焼炉
と、同還元燃焼炉の後流に設けられて発電機を駆動する
排気タービンとを有することを特徴とする複合機関。
(1) A composite engine characterized by having a reduction combustion furnace provided in the middle of an exhaust pipe of an internal combustion engine, and an exhaust turbine provided downstream of the reduction combustion furnace to drive a generator.
(2)内燃機関の排気管の途中に設けられた還元燃焼炉
と、同還元燃焼炉の後流に設けられて発電機を駆動する
排気タービンと、上記還元燃焼炉と上記排気タービンと
の間に設けられて蒸気を加熱する熱交換器とを有するこ
とを特徴とする複合機関。
(2) A reduction combustion furnace installed in the middle of the exhaust pipe of the internal combustion engine, an exhaust turbine installed downstream of the reduction combustion furnace to drive the generator, and between the reduction combustion furnace and the exhaust turbine. A heat exchanger installed in a heat exchanger for heating steam.
JP63306830A 1988-12-06 1988-12-06 Compound engine Pending JPH02153227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306830A JPH02153227A (en) 1988-12-06 1988-12-06 Compound engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306830A JPH02153227A (en) 1988-12-06 1988-12-06 Compound engine

Publications (1)

Publication Number Publication Date
JPH02153227A true JPH02153227A (en) 1990-06-12

Family

ID=17961771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306830A Pending JPH02153227A (en) 1988-12-06 1988-12-06 Compound engine

Country Status (1)

Country Link
JP (1) JPH02153227A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443260A1 (en) * 1994-11-23 1996-05-30 Horst Dipl Chem Hinzmann Heat engine unit with cleaner exhaust gases
EP1536116A2 (en) * 2003-11-28 2005-06-01 Armando Bianco Full saving - gear to save fuel
EP1916397A1 (en) * 2006-10-24 2008-04-30 Iveco Motorenforschung AG Engine apparatus with heat recovery system and relative heat recovery method
JP2010519457A (en) * 2007-02-22 2010-06-03 ボーマン パワー グループ リミテッド Auxiliary power generator
RU2623598C1 (en) * 2016-06-27 2017-06-28 Никишин ГмбХ Internal combustion engine control unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443260A1 (en) * 1994-11-23 1996-05-30 Horst Dipl Chem Hinzmann Heat engine unit with cleaner exhaust gases
EP1536116A2 (en) * 2003-11-28 2005-06-01 Armando Bianco Full saving - gear to save fuel
EP1536116A3 (en) * 2003-11-28 2006-05-24 Armando Bianco Full saving - gear to save fuel
EP1916397A1 (en) * 2006-10-24 2008-04-30 Iveco Motorenforschung AG Engine apparatus with heat recovery system and relative heat recovery method
US7954320B2 (en) 2006-10-24 2011-06-07 Iveco Motorenforschung Ag Engine apparatus with heat recovery system and relative heat recovery method
JP2010519457A (en) * 2007-02-22 2010-06-03 ボーマン パワー グループ リミテッド Auxiliary power generator
RU2623598C1 (en) * 2016-06-27 2017-06-28 Никишин ГмбХ Internal combustion engine control unit

Similar Documents

Publication Publication Date Title
US8051654B2 (en) Reheat gas and exhaust gas regenerator system for a combined cycle power plant
JP4754090B2 (en) Compressor discharge bleed air circuit and related method in gas turbine power plant
US5347806A (en) Cascaded advanced high efficiency multi-shaft reheat turbine with intercooling and recuperation
JP2581825B2 (en) Power plant
US6079197A (en) High temperature compression and reheat gas turbine cycle and related method
US20070256424A1 (en) Heat recovery gas turbine in combined brayton cycle power generation
US10767855B2 (en) Method and equipment for combustion of ammonia
JPH03151505A (en) Gas/steam electric power generating facility
US20190040765A1 (en) Combined cycle power plant
JP2001525033A (en) Reheat partial oxidation power plant and method
US11022040B2 (en) Backup system for supplying compressed air to a gas turbine component
JPH02153227A (en) Compound engine
CN107605618B (en) Cogeneration unit with heat energy recovery system
CA2433636C (en) Installation for the generation of energy
CN205669436U (en) Cogeneration blood circulation
CA1298615C (en) Gas turbine unit for combined production of electricity and heat and method for operating such unit
RU2747704C1 (en) Cogeneration gas turbine power plant
JPH03164526A (en) Compound internal combustion engine
JPH06212909A (en) Compound electric power plant
JP5114589B2 (en) Integrated gasification combined cycle system with nitrogen cooled gas turbine
JPH10325336A (en) Gas turbine power generating system
JPS59191809A (en) Method for reducing production of nox in steam-gas composite cycle and device thereof
JP2869070B2 (en) Gas turbine unit for electricity and heat generation and method of operation thereof
JPS62135619A (en) Heat supply power generating device using gas turbine
JPH0688502A (en) Power generating plant