JPH02152595A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPH02152595A
JPH02152595A JP63306145A JP30614588A JPH02152595A JP H02152595 A JPH02152595 A JP H02152595A JP 63306145 A JP63306145 A JP 63306145A JP 30614588 A JP30614588 A JP 30614588A JP H02152595 A JPH02152595 A JP H02152595A
Authority
JP
Japan
Prior art keywords
organic wastewater
air
sludge
contact
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63306145A
Other languages
Japanese (ja)
Other versions
JP2965159B2 (en
Inventor
Hiromi Ikechi
弘見 池知
Tatsuki Abiko
我孫子 辰毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOKUSUI PLANNING KK
Original Assignee
KIYOKUSUI PLANNING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOKUSUI PLANNING KK filed Critical KIYOKUSUI PLANNING KK
Priority to JP30614588A priority Critical patent/JP2965159B2/en
Publication of JPH02152595A publication Critical patent/JPH02152595A/en
Application granted granted Critical
Publication of JP2965159B2 publication Critical patent/JP2965159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To separate sludge stuck to the surfaces of the synthetic fibers in excess and to maintain the purifying function of a contact treating mechanism having rotating disks made of synthetic fibers over a long period of time by feeding air to the bottoms of the disks partially immersed in waste water having high BOD. CONSTITUTION:Rotating disks 11 having 85-99% void volume obtd. by compression-molding synthetic fibers of 0.5-1.2mm diameter mixed at random are partially immersed in org. waste water and rotated. The disks 11 are alternately brought into contact with the org. waste water and air and aerobic micro-organisms are stably stuck and propagated on the surfaces of the fibers. When org. waste water having >=800ppm BOD is introduced into a contact treating mechanism 1 having the disks 11, air is fed to the disks 11 with an air blowing mechanism 10 and sludge layers stuck to the surfaces of the fibers in excess by the aerobic micro-organisms are separated by ascending flows of the air. At the same time, the blocked inter-fiber voids in the disks 11 are made vacant so that air is effectively fed to the aerobic micro-organisms.

Description

【発明の詳細な説明】 「発明の目的」 この発明は、有機質廃水の処理法に係り、BOD濃度の
高い有機質廃水を長期に亘って安定且つ的確にして効率
的に浄化処理することのできる方法を提供しようとする
ものである。
[Detailed Description of the Invention] "Object of the Invention" The present invention relates to a method for treating organic wastewater, and provides a method that can stably, precisely, and efficiently purify organic wastewater with a high BOD concentration over a long period of time. This is what we are trying to provide.

(産業上の利用分野) 各種産業乃至生活環境より排出されるBOD濃度の高い
廃水を殊更に稀釈することなしに、しかも長期に亘って
浄化処理する技術。
(Industrial Application Field) A technology that purifies wastewater with high BOD concentration discharged from various industries and living environments without diluting it further and over a long period of time.

(従来の技術) 都市などにおける生活排水や各種食品産業等における有
機質廃水により、河川、湖沼等が汚染される事情につい
ては周知の通りであって、このような有機質廃水の処理
法としては、微生物の増殖による酸化ないし硝化作用を
利用する生物化学的方法と各種薬剤を用いる化学的方法
に大別することができる。後者、即ち化学的方法は、有
機質廃水に直接、その汚染状態に応じて、各種薬剤を添
加して、処理するものであるから、当然迅速に廃水処理
をなすことのできる方法であるが、個々の廃水処理ごと
に薬剤添加が必要であり、従って処理ごとのランニング
コストが嵩むことになるから、有機質廃水の処理におい
ては一般的なものとはなりえないので、前者である生物
化学的方法が次第に普及化されつつある。
(Prior Art) It is well known that rivers, lakes, etc. are contaminated by domestic wastewater in cities and organic wastewater from various food industries. It can be broadly divided into biochemical methods that utilize the oxidation or nitrification effect caused by the proliferation of microorganisms, and chemical methods that use various chemicals. The latter, chemical method, is a method in which organic wastewater is treated directly by adding various chemicals depending on its contamination state, so it is naturally possible to treat wastewater quickly. Since it is necessary to add chemicals for each wastewater treatment, and therefore the running cost for each treatment increases, it cannot be commonly used in the treatment of organic wastewater, so the former biochemical method is recommended. It is gradually becoming popular.

即ち、このような微生物を利用した処理法としては、処
理槽内汚水中に空気を吹き込む活性汚泥法や槽内に接触
材を入れて成る接触酸化法(浸漬濾床法)、散水濾床法
などがあるが、回転軸に比較的軽量且つ強固な多数個の
回転板部材を取り付けそれら回転板部体表面積の例えば
40%程度を浸漬させ、低速回転させることにより回転
板群が空気中と汚水中とに相互に接触し、該回転板部体
群とその表面に付着した微生物により汚水を浄化する回
転板接触法が好ましい方法とされ、例えば1983年の
「水処理技術」誌第24巻第10号35〜40頁などに
紹介されている。即ち、この方法によれば槽内汚水中に
空気吹き込みをなすことが不要で、又特別に散水するよ
うな必要もな(、更には、汚泥返送も不要であって最も
省エネルギー的とされ、既に国内の相当数の処理場で稼
働されつつある。然しこの有利な回転円板法による場合
においても、在来の回転円板の場合にはその円板本体を
相当に密着させて配設したとしても単位体積(m3)当
りの表面積は限られたものとならざるを得ないので効率
的な酸素補給及びそれに伴った微生物の好ましい酸化作
用を求め難い。
In other words, treatment methods using microorganisms include the activated sludge method, in which air is blown into the sewage in the treatment tank, the contact oxidation method, in which a contact material is placed in the tank (immersion filter method), and the trickling filter method. However, by attaching a large number of comparatively lightweight and strong rotating plate members to a rotating shaft, and immersing approximately 40% of the body surface area of the rotating plate parts, and rotating them at low speed, the rotating plate group can be removed from the air and sewage. A preferred method is the rotating plate contact method, in which wastewater is purified by microorganisms attached to the rotating plate bodies and their surfaces, and is described in, for example, ``Water Treatment Technology'' magazine, Vol. 24, 1983. It is introduced in No. 10, pages 35-40. That is, according to this method, it is not necessary to blow air into the sewage in the tank, and there is no need for special water sprinkling (furthermore, there is no need to return sludge, so it is said to be the most energy-saving method, and it is already It is being used in a considerable number of treatment plants in Japan.However, even in the case of this advantageous rotating disk method, in the case of conventional rotating disks, the disk bodies are placed in close contact with each other. However, since the surface area per unit volume (m3) is limited, it is difficult to obtain efficient oxygen supply and the favorable oxidizing action of microorganisms associated with it.

そこで、本発明者等は上記したような不利を解消すべく
可曲性合成繊維材を交錯せしめた緩解組織体を前記回転
体として採用し、好ましい空気補給を図り、しかも微生
物が該繊維組織中において活発に繁殖し、依って汚水中
の有機物(BOD分)その他の汚染成分を効果的に酸化
分解し、浄化処理し得ることについての例えば■実願昭
582161号(実開昭59−110096号)、■同
一176665号(実開昭60−86500号)、■同
59−116464号(実開昭61−33696号)の
ような提案をなしている。即ち、本発明者等の先願技術
によれば、前記繊維材により95%以上の空隙率状態を
形成し接触面積を180〜250m’程度とすることが
可能で、例えば40%水没方式で運転した場合において
は約20日間の運転によりその繊維組織材周面に微生物
が旺盛に付着繁殖することが確認されており、しかも■
■のような提案によるときはそのような旺盛な微生物(
汚泥)の付着生成によっても繊維材の分離ないし各部材
の折損などを見ることのない安定な運転操業をなし得る
ことが実験的に確かめられ、前記のような旺盛な微生物
の増殖によりその重量は運転スタート時の8〜15倍に
達することも確認されている。
Therefore, in order to eliminate the above-mentioned disadvantages, the present inventors adopted a slowly decomposing structure made by interlacing flexible synthetic fiber materials as the rotary body, aimed at preferable air supply, and moreover, microorganisms were not contained in the fiber structure. For example, Japanese Utility Model Application No. 582161 (Utility Model Application No. 59-110096 ), ■ Japanese Utility Model No. 176665 (Utility Model Application No. 60-86500), and ■ Japanese Utility Model No. 59-116464 (Utility Model Application No. 61-33696). That is, according to the prior art of the present inventors, it is possible to form a porosity state of 95% or more with the fiber material and make the contact area about 180 to 250 m', and for example, it is possible to operate in a 40% submerged system. In such cases, it has been confirmed that microorganisms actively adhere to and proliferate on the surrounding surface of the fibrous material after approximately 20 days of operation, and
■When it comes to suggestions like
It has been experimentally confirmed that stable operation can be achieved without separation of fiber materials or breakage of various parts due to adhesion of sludge. It has also been confirmed that the temperature reaches 8 to 15 times that at the start of operation.

(発明が解決しようとする課題) 上記したような本発明者等の提案によるものは合成繊維
の交錯した微細な組織を利用し、回転盤の回転によって
該組織中に有機質廃水と空気の供給とを交互且つ適切な
時間間隔を採って繰返すものであることから好気性微生
物(菌類)を効率的に増殖せしめることが可能で、BO
D負荷を従来の効果的設備とされている濾床方式による
ものの少なくとも数倍ないしそれ以上に向上することが
でき、除去率60〜95%のような効果的処理が確保さ
れ、各方面において実用化されている。ところがこのよ
うな本発明者等による設備の高性能化に伴い、更には廃
水規制の厳格化なども原因して従来設備で採用されてい
る原水(有機質廃水)におけるBODI度500 pp
H以下の限度を超え、11000ppないしそれ以上で
微細38分も相当に高い高濃度廃水を処理することが多
くなり、事実このように高濃度廃水を処理することによ
り殊更に稀釈して被処理水量を2倍ないしそれ以上に増
大することなく、従って余分な清浄水を必要とせず、処
理を効率化し、多量の処理済み水を発生することなしに
何れの面からしても有利な操業をなすことが可能となる
(Problems to be Solved by the Invention) The above-mentioned proposal by the present inventors utilizes a fine structure in which synthetic fibers are interwoven, and supplies organic wastewater and air into the structure by rotating a rotary disk. Since this process is repeated alternately and at appropriate time intervals, aerobic microorganisms (fungi) can be grown efficiently, and BO
The D load can be improved to at least several times or more than that of the filter bed method, which is considered to be an effective conventional equipment, and effective treatment with a removal rate of 60 to 95% can be ensured, making it practical in various fields. has been made into However, with the improvement of the performance of the equipment by the inventors and others, and also due to stricter wastewater regulations, the BODI degree of raw water (organic wastewater) used in conventional equipment has increased to 500 pp.
In many cases, we are treating highly concentrated wastewater that exceeds the limit of 11,000 pp or more and has a fine level of 38 min. without doubling or more, thus eliminating the need for extra clean water, streamlining the treatment, and achieving advantageous operations from all aspects without generating large amounts of treated water. becomes possible.

然して斯うした高濃度廃水による操業であっても、少な
くとも2ケ月、場合によっては数カ月程度は安定且つ能
率的な浄化処理を実施することが可能であるが、そうし
た限度を超えて連続運転することによりそれまで順調に
付着成長していた繊維周面の汚泥が急激に脱落し、同時
に処理効率の著しい低下を招き、−旦このような現象が
発生すると、その機能を回復することが非常に困難であ
って、数カ月ないしそれ以上も稀釈された低濃度廃水に
よる回復処理を実施しても回転板接触機構のみならず、
処理後の被処理液を分別して汚泥分を除去する沈澱槽を
も含めた全般の浄化機能を回復し高度の処理効率を得る
ことができない。
However, even in operations using such highly concentrated wastewater, it is possible to carry out stable and efficient purification treatment for at least two months, and in some cases several months, but continuous operation beyond such limits is not possible. As a result, the sludge around the fibers, which had previously adhered and grown smoothly, suddenly falls off, resulting in a significant drop in processing efficiency, and once this phenomenon occurs, it is extremely difficult to restore its functionality. Therefore, even if recovery treatment using diluted low-concentration wastewater is performed for several months or more, not only the rotary plate contact mechanism but also
It is not possible to restore the overall purification function, including the sedimentation tank that separates the treated liquid after treatment and removes the sludge, and to obtain a high level of treatment efficiency.

即ち、従来法によるものの数十倍にも相当するような高
度の処理効率は上記したような2〜3力月あるいは数カ
月間の使用で急激に低下し、その有利な操業を確保する
ための機構的改善に関する前記本発明者等の提案にも拘
らず、再び本来の高能率浄化処理を求め難いような事態
を発生することとなり、又この故に成程高濃処理の可能
なことが実験的、データ的に確認されていても、わざわ
ざ稀釈した不利な操業に従わざるを得ない。
In other words, the high processing efficiency, which is several tens of times higher than that of conventional methods, rapidly decreases after being used for two to three months or several months as described above, and the mechanism to ensure advantageous operation is Despite the above-mentioned proposals by the present inventors regarding the improvement of the water quality, a situation arises in which it is difficult to obtain the originally high-efficiency purification treatment. Even if it is confirmed by the data, we have no choice but to follow the disadvantageous operation of purposefully diluting it.

「発明の構成」 (課題を解決するための手段) 径が0.5〜1.2 mmの合成繊維を不規則に交錯せ
しめ圧縮成形し空隙率85〜99%とされた合成繊維回
転盤を有機質廃水中に部分浸漬した状態で回転せしめ有
機質廃水と空気との接触を交互に行わせ、前記繊維表面
にお・いて好気性微生物による付着増殖を図り上記した
有機質廃水の浄化を行なわしめてから該廃水を沈澱処理
して排水するに当り、前記した合成繊維回転盤による接
触処理にBOD?、1度が800ppm以上とされた有
機質廃水を供給せしめ、しかも該接触処理に際し上記し
た合成繊維回転盤部分に給気してその合成繊維面に付着
生成した好気性微生物による汚泥膜厚を制御することを
供給処理する有機質廃水処理法。
``Structure of the Invention'' (Means for Solving the Problems) A synthetic fiber rotary disk made of synthetic fibers with a diameter of 0.5 to 1.2 mm intertwined irregularly and compression molded to have a porosity of 85 to 99%. The fibers are partially immersed in organic wastewater and rotated to alternately bring the organic wastewater into contact with air, allowing aerobic microorganisms to grow on the surface of the fibers to purify the organic wastewater as described above. When wastewater is subjected to sedimentation treatment and discharged, BOD? , organic wastewater with a concentration of 800 ppm or more is supplied, and during the contact treatment, air is supplied to the synthetic fiber rotary disk part to control the sludge film thickness due to aerobic microorganisms that adhere to and form on the synthetic fiber surface. An organic wastewater treatment method that supplies and treats wastewater.

(作用) 径0.5〜1 、21璽の合成繊維を用いることにより
旺盛な好気性微生物による汚泥の付着増殖に耐える強度
を確保し、又空隙率85%以上のような空隙を形成して
回転盤回転時における有機質廃水と空気の供給を円滑化
し、繊維表面における効率的増殖を図り、前記有機質廃
水のBOD分などに関する高い除去率を得しめる。
(Function) By using synthetic fibers with a diameter of 0.5 to 1.21 mm, it has the strength to withstand the adhesion and growth of sludge caused by vigorous aerobic microorganisms, and also forms voids with a porosity of 85% or more. The supply of organic wastewater and air during rotation of the rotary disk is facilitated, efficient proliferation on the fiber surface is achieved, and a high removal rate of the BOD content of the organic wastewater is achieved.

供給される有機質廃水(原水)におけるBOD濃度を8
00ppm以上とすることにより各種食品製造施設その
他から排出される高濃度廃水を稀釈することなしに浄化
処理することを可能とし、稀釈のための清浄水を不要な
いし大幅に縮減すると共に処理済み排水量の大幅縮減を
もたらす。
BOD concentration in organic wastewater (raw water) supplied to 8
By setting the concentration to 00 ppm or more, it is possible to purify high-concentration wastewater discharged from various food manufacturing facilities and other sources without diluting it, making it unnecessary or significantly reducing the amount of clean water used for dilution, and reducing the amount of treated wastewater. This results in a significant reduction.

前記した合成繊維回転盤部分に給気することにより合成
繊維周面に過剰状態に付着生成し、あるいは過剰状態に
生成しようとする汚泥の膜厚を制御し、繊維間空隙の閉
塞をなからしめて空気および有機質廃水を常に円滑に供
給し、又繊維材面ないしその近傍における嫌気性微生物
の発生ないし増殖を皆無化ないし制限する。従ってこの
ような嫌気性微生物による急激な汚泥脱落をなからしめ
、又該嫌気性微生物による回転接触機構ないしそれに連
続して用いられる沈澱槽などにおける妨害作用を防止す
る。
By supplying air to the synthetic fiber rotary disk, the film thickness of the sludge that adheres to or is about to be produced in excess on the peripheral surface of the synthetic fibers is controlled, and the voids between the fibers are prevented from being clogged. Air and organic wastewater are always supplied smoothly, and the generation or proliferation of anaerobic microorganisms on or near the fiber material is completely eliminated or restricted. Therefore, the rapid shedding of sludge caused by such anaerobic microorganisms is prevented, and the interfering effect of the anaerobic microorganisms on the rotating contact mechanism or the settling tank used continuously therewith is prevented.

これらの結果として上記のように旺盛な好気性微生物に
よる高能率で、しかも高濃度廃水に対する清浄化処理を
長時間に亘って安定に行なわせる。
As a result, as described above, the vigorous aerobic microorganisms can perform highly efficient cleaning treatment for highly concentrated wastewater over a long period of time.

(実施例) 上記したような本発明について更に具体的に説明すると
、本発明を実施するための装置の全般的な構成関係の1
例は第1図に示す如くであって、前記したような有機質
廃水は適宜に原水ピット(2)に受入れられたものがス
クリーン(4)によって粗粒分を除去されてから調整槽
(3)を介して合成繊維回転盤(11)を配設した接触
処理機構(1)に定量宛供給されるように成っている。
(Example) To explain the present invention as described above in more detail, one of the general structural relationships of the apparatus for carrying out the present invention will be described.
An example is shown in Fig. 1, in which the organic wastewater described above is appropriately received in the raw water pit (2), coarse particles are removed by a screen (4), and then the organic wastewater is transferred to the adjustment tank (3). A fixed amount of synthetic fibers is supplied to a contact processing mechanism (1) equipped with a synthetic fiber rotary disk (11).

即ち食品工業その他の廃水発生源から得られる原水(有
機質廃水)は、仮に一般家庭からの生活廃水であっても
経時的にその発生排出量および濃度が相当に変動し、こ
れを上記のような原水ビット(2)および調整槽(3)
において調整した状態で接触処理機構(1)に対し定常
供給して接触浄化処理する。
In other words, the raw water (organic wastewater) obtained from the food industry and other wastewater sources, even if it is domestic wastewater from a general household, fluctuates considerably over time in its discharge amount and concentration, and this can be Raw water bit (2) and adjustment tank (3)
The adjusted state is constantly supplied to the contact treatment mechanism (1) for contact purification treatment.

接触処理機構(1)からの処理水は適宜に曝気槽(5)
を介して沈澱槽(6)に送られて沈降した汚泥骨を分離
し、次いで処理水槽(7)や消毒槽(8)を経しめて排
水する。沈澱槽(6)に対しては適宜に汚泥消化槽(9
)を付設して消化処理することは図示の如くであるが、
本発明においては空気吹込機構(10)を備え、調整槽
(2)に対し適宜に空気吹込みをなすと共に接触機構(
1)の合成繊維回転盤(11)部分に対し空気吹込みを
なすようにされている。なおこの第1図のものは比較的
大型で、入念な処理を行なうものが示されているが、本
発明によるものは適宜に簡略化して実施でき、場合によ
っては原水供給部と接触処理機構(1)および沈澱槽(
6)の如きでもよい。
The treated water from the contact treatment mechanism (1) is transferred to the aeration tank (5) as appropriate.
The sludge is sent to a sedimentation tank (6) through a sludge tank (6), where the settled sludge bones are separated, and then drained through a treatment water tank (7) and a disinfection tank (8). A sludge digestion tank (9) is installed as appropriate for the settling tank (6).
) is attached for digestion processing as shown in the figure.
In the present invention, an air blowing mechanism (10) is provided, which blows air into the adjustment tank (2) as appropriate, and a contact mechanism (
Air is blown into the synthetic fiber rotary disk (11) portion of 1). Although the one shown in Fig. 1 is relatively large and requires careful treatment, the one according to the present invention can be suitably simplified and implemented, and in some cases, the raw water supply section and the contact treatment mechanism ( 1) and settling tank (
6) may be used.

前記した合成繊維回転盤(11)についての具体的構成
は前記した先願技術に従い、素材板(lla)として第
3図に示すようにビニリデンその他の熱可塑性合成繊維
のみ、または熱可塑性合成繊維に対し適宜の他の繊維を
混合したものを所定の長さに切断し且つ必要に応じて適
当な加熱条件下のカール状屈曲加工を施したものを緩解
した状態で混合配列し、この緩解混合配列状態のものに
合成樹脂ラテックスを噴霧状に散布して該ラテックスを
繊維面にそって流動させ、各繊維の交点に凝集した状態
で加熱処理を行ない、上記したような各交点で繊維相互
の締結を図り、しかも前述したようなカール状屈曲加工
によりバルキー性を採らしめる。
The specific structure of the synthetic fiber rotary disk (11) is based on the prior art described above, and as shown in FIG. On the other hand, a mixture of appropriate other fibers is cut into a predetermined length, and if necessary, subjected to a curling process under appropriate heating conditions, and then mixed and arranged in a relaxed state. Synthetic resin latex is sprayed onto the fibers in the form of a spray, the latex is made to flow along the fiber surface, and the latex is heat-treated in a state where it aggregates at the intersections of each fiber, and the fibers are fastened together at each intersection as described above. In addition, the curly bending process described above gives it bulkiness.

前記のようにして得られる素材板(lla)は既述した
ように旺盛な微生物の増殖とそれに伴う原水中回転時に
おける抵抗ないし摩擦によっても締結された繊維材が部
分的に脱落分離することを防止するために前記先願実開
昭61−33696号に示されたような手法に従い、素
材板(lla)の周側および組立部材挿通孔(llb)
部分を圧扁溶着部(15)(15a)とするものであり
、即ち上記のように熱可塑性合成繊維を用いたものを部
分的に圧縮すると共に加熱することによって該熱可塑性
合成繊維は溶着してそれなりの他の繊維が配合されたも
のでも圧扁緻密状態を形成し、単なる合成樹脂成形板の
ように剛体化した圧扁溶着部(15)または(15a)
が形成される。
As mentioned above, the material plate (lla) obtained in the above manner does not allow the fastened fibers to partially fall off and separate due to vigorous growth of microorganisms and accompanying resistance or friction during rotation in the raw water. In order to prevent this, according to the method shown in the above-mentioned prior patent application No. 61-33696, the peripheral side of the material plate (lla) and the assembly member insertion hole (llb)
The parts are made into compressed welded parts (15) (15a), that is, by partially compressing and heating the thermoplastic synthetic fibers as described above, the thermoplastic synthetic fibers are welded. The pressed welded part (15) or (15a) forms a compressed dense state even when a certain amount of other fibers are blended, and becomes rigid like a simple synthetic resin molded plate.
is formed.

又、上記のような回転体は円形状とすることが好ましい
ことは明らかで、前記素材板(lla)としては複数個
の扇形単位体として形成することが有利であり、即ちこ
の扇形単位体としての素材板(11a)はその挿通孔(
1l b)部分に形成された圧扁溶着部(15a)に対
して筒形の間隔部材(12)を用いて組立てられる。こ
の間隔部材(12)は第4図に示すように軸筒部(21
)の両端部に鍔部(22)が対設され、しかもこのよう
な鍔部(22)からそれぞれ突出した胡蝶部(23)と
雌螺部(24)が形成されたもので、組立てに当たって
は前記素材板(11a)の両側に位置した2つの間隔部
材(12)  (12)における一方に関してその雌螺
部(24)を挿通孔(1l b)中に挿入した状態で、
他方の間隔部材(12)の胡蝶部(23)を該雌螺部(
24)中に螺入することによって雨間隔部材(12)(
12)における鍔部(22)  (22)間に圧扁溶着
部(15a)が挟み込まれる。前記した挿通孔(llb
)は各素材板(113’)に関して複数個が配設される
ことは第3図に示す通りで、これらの挿通孔(1l b
)部分にそれぞれ間隔部材(12)が用いられ、圧扁溶
着部(15a)に鍔部(22)が埋め込まれた状態でセ
ットされることも第3図に示す如くである。斯うして間
隔部材(12)をその軸方向において順次に螺合接続し
、それら間隔部材(12)の鍔部(22)(22)間に
素材板(lla)を挟入支持させると剛体である間隔部
材(2)の寸法と剛体化した圧扁溶着部(15a)の厚
さ寸法とによって各素材板(lla)(lla)の厚さ
方向における間隔が自動的に決定され、一定の間隔を採
って位置せしめられる。
Furthermore, it is clear that it is preferable for the rotating body as described above to have a circular shape, and it is advantageous to form the material plate (lla) as a plurality of sector-shaped units. The material plate (11a) has its insertion hole (
It is assembled using a cylindrical spacing member (12) to the flattened weld (15a) formed in the 1l b) section. This spacing member (12) is connected to the shaft cylinder portion (21) as shown in FIG.
) is provided with a flange (22) facing each other at both ends, and a butterfly part (23) and a female thread part (24) are formed that protrude from the flange (22), respectively. With respect to one of the two spacing members (12) (12) located on both sides of the material plate (11a), with its female thread (24) inserted into the insertion hole (1lb),
Connect the butterfly part (23) of the other spacing member (12) to the female thread part (
24) By screwing into the rain spacing member (12) (
The compressed welded portion (15a) is sandwiched between the collar portions (22) (22) in (12). The above-mentioned insertion hole (llb
) are arranged for each material plate (113') as shown in Fig. 3, and these insertion holes (1l b
As shown in FIG. 3, a spacing member (12) is used for each of the parts ( ), and the collar part (22) is set in a state embedded in the pressed weld part (15a). In this way, when the spacing members (12) are sequentially screwed together in the axial direction and the material plate (lla) is inserted and supported between the flanges (22) of the spacing members (12), a rigid body is formed. The spacing in the thickness direction of each material plate (lla) is automatically determined based on the dimensions of a certain spacing member (2) and the thickness dimension of the rigid pressed welded part (15a), and the spacing in the thickness direction of each material plate (lla) is automatically determined. is taken and positioned.

従ってこのようにして取付けられた間隔部材(12)の
内孔に第4図に示すように緊締杆(13)を挿通し端板
(16)間に取付けるならば素材板(lla)の複数個
によって形成される各回転盤(11)を略正確な位置を
採って第4図のように組付けることができ、各素材板(
lla)の両側における直線状の圧扁溶着部(15)部
分も略整合状態を採ることは図示の通りである。
Therefore, if the tightening rod (13) is inserted into the inner hole of the spacer member (12) installed in this way as shown in FIG. Each rotary disk (11) formed by
As shown in the figure, the straight flattened welded portions (15) on both sides of lla) are also substantially aligned.

上記したような端板(16)および回転盤(11)は軸
杆(19)で機枠(14)に軸受けされ、モータのよう
な原動機構(17)で・回転駆動される。接触処理機構
(1)に対しては適宜にカバー(1a)を施す。
The end plate (16) and rotary disk (11) as described above are supported on the machine frame (14) by a shaft rod (19), and are rotationally driven by a driving mechanism (17) such as a motor. The contact processing mechanism (1) is appropriately covered with a cover (1a).

各素材板(lla)に用いられる熱可塑性合成繊維など
の太さおよびそれによって形成される空隙率については
適宜に選ばれるが、本発明においてはその表面に微生物
による汚泥が付着繁殖せしめられた条件下で、供給され
た廃水中で回転せしめられることから相当の強度を必要
とし、好ましい範囲としては径が0.5〜1.2鵬、特
に0.7〜1.0 mmであり、又空隙率は85〜99
%、特に89〜98%程度とする。即ちこのようにする
ことにより適切な原水および空気の供給関係を得しめ、
しかも安定した微生物の付着増殖を図ることができる。
The thickness of the thermoplastic synthetic fibers used for each material board (lla) and the porosity formed by it are selected as appropriate, but in the present invention, the conditions are such that sludge caused by microorganisms adheres to and propagates on the surface. Since it is rotated in the supplied wastewater, it requires considerable strength, and the diameter is preferably in the range of 0.5 to 1.2 mm, particularly 0.7 to 1.0 mm, and the diameter is preferably in the range of 0.5 to 1.2 mm. Rate is 85-99
%, especially about 89 to 98%. That is, by doing this, an appropriate supply relationship of raw water and air can be obtained,
Moreover, stable adhesion and growth of microorganisms can be achieved.

上記したような設備による操業において、その高度の処
理効率の急激に低下する事態が発生することは前記の如
くであって、このような処理効率低下は以下のように考
えられる。即ち、メディア(media)たる繊維表面
における微生物(汚泥)の増殖が進んで表面全般を完全
に覆い、次いでその膜の密度が増加し、“既に生じてい
る膜の表面に新細胞が覆う関係で増殖が進行し、隣接繊
維の夫々の表面にそうした増殖が得られる結果、それが
ある期間を経ることにより繊維間における空隙が閉塞さ
れて通気および給水が阻害され、特に内部の繊維境界面
部分でそうした通気、給水が困難となることから増殖し
ていた好気性微生物が死亡し始め、好気的作用をしない
こととなり、代って嫌気性微生物が発生し死亡した好気
性微生物体を食物とし増殖する。つまりこのような嫌気
性微生物の発生、増殖によって繊維境界部の最低層まで
も食べ尽くされると、それまでの好気性微生物による構
造体が失われ、しかもガス発生が起って多量の汚泥が象
、激に脱落することとなるものの如く推定される。しか
もこのような脱落が発生した場合には当該接触機構層お
よびそれに連続した沈澱槽において嫌気性微生物が相当
に残ることになり、このような嫌気性微生物によって本
来の好気性微生物の発生ないし増殖が著しく阻害され、
更にそうして残った嫌気性微生物を完全に死滅ないし排
除することも容易でないことから、−旦汚泥脱落の発生
した設備においては好気性菌による従前通りの旺盛な好
気性微生物の増殖が求め難いこととなるものと考えられ
た。
As mentioned above, in the operation of the above-mentioned equipment, a situation occurs in which the high level of processing efficiency rapidly decreases, and such a decrease in processing efficiency can be considered as follows. In other words, the proliferation of microorganisms (sludge) on the fiber surface, which is the media, progresses and completely covers the entire surface, and then the density of the film increases, and new cells cover the surface of the already formed film. As the proliferation progresses and these proliferations are obtained on the respective surfaces of adjacent fibers, the voids between the fibers are closed over a certain period of time, and ventilation and water supply are obstructed, especially at the inner fiber interface. As aeration and water supply become difficult, the aerobic microorganisms that were proliferating begin to die and cease to function aerobically, and anaerobic microorganisms emerge in their place, using the dead aerobic microorganisms as food and multiplying. In other words, when the lowest layer of the fiber boundary is eaten away by the generation and proliferation of these anaerobic microorganisms, the structure created by the aerobic microorganisms up to that point is lost, and gas is generated and a large amount of sludge is produced. It is assumed that this would result in a large amount of anaerobic microorganisms remaining in the contact mechanism layer and the sedimentation tank that is continuous with it. The generation and proliferation of original aerobic microorganisms are significantly inhibited by anaerobic microorganisms such as
Furthermore, it is not easy to completely kill or eliminate the remaining anaerobic microorganisms, so it is difficult to expect the aerobic microorganisms to grow as vigorously as before in the equipment where sludge has already fallen out. It was thought that this would be the case.

そこで本発明においては上記のような繊維材表面からの
急激且つ大きな脱落を回避し、安定な好気性微生物の増
殖を長期に亘って継続せしめた操業を行なわせるために
前記した接触機構(1)の底部に散気管(10)から合
成繊維回転盤(11)部分に空気を吹込み、その上昇空
気流(気泡)を形成し、この空気による気泡上昇力およ
びそれに伴う液流あるいは気泡の破裂力などの複合した
衝撃作用ないし接触摩擦力、更には乱流撹拌作用を与え
過剰に付着生成した汚泥を脱離するものである。即ちこ
のようにして過剰付着汚泥が脱離せしめられることによ
り各繊維間が汚泥によって閉塞せしめられることなく、
従って各繊維面において付着している好気性微生物への
給気が有効に行なわれて各基質に適応した最適状態の浄
化処理が継続される。各繊維面において汚泥が過大に付
着せず、被包膜を介した酸素の供給が繊維面まで継続し
て行なわれることから繊維面における好気性微生物の死
亡も殆どなくなり、嫌気性微生物の発生ないし増殖は抑
制されるので、発酵やガス発生も皆無状態で、深層(繊
維面)からの多量の汚泥脱落を的確に防止することがで
きる。更に斯うして嫌気性微生物の発生増殖が抑制され
ることにより、そうした嫌気性微生物に原因した接触処
理機構ないし沈澱槽での嫌気性微生物に原因した妨害作
用も解消する。
Therefore, in the present invention, in order to avoid the above-mentioned sudden and large falling off from the surface of the fiber material and to perform an operation that allows stable growth of aerobic microorganisms to continue over a long period of time, the above-mentioned contact mechanism (1) is used. Air is blown from the diffuser pipe (10) at the bottom of the synthetic fiber rotary plate (11) to form an upward air flow (bubbles), and the bubble upward force caused by this air and the associated burst force of the liquid flow or bubble This system applies a complex impact action or contact friction force, as well as a turbulent agitation action, to remove excessively adhered sludge. In other words, by removing the excess adhered sludge in this way, the spaces between each fiber are not blocked by sludge, and
Therefore, air is effectively supplied to the aerobic microorganisms adhering to each fiber surface, and the purification process is continued in an optimal state suitable for each substrate. Since sludge does not adhere excessively to each fiber surface and oxygen is continuously supplied to the fiber surface through the envelope membrane, the death of aerobic microorganisms on the fiber surface is almost eliminated, and anaerobic microorganisms are not generated. Since proliferation is suppressed, there is no fermentation or gas generation, and it is possible to accurately prevent large amounts of sludge from falling from the deep layer (fiber surface). Furthermore, by suppressing the generation and proliferation of anaerobic microorganisms, the interfering effects caused by anaerobic microorganisms in the contact treatment mechanism or settling tank are also eliminated.

前記したような空気の吹込みは理論的には繊維面に例え
ば厚さが0.2mm程度の汚泥(好気性微生物)が付着
生成した時点から行なうことが好ましく、それ以前の状
態で吹込んでも過剰汚泥の付着がないことから効果的で
ない。即ち空気吹込みのない状態で浄化処理をスタート
し、それなりの汚泥付着がなされた状態から空気吹込み
をなすことにより、上記したような最適状態の浄化処理
を長期に亘って継続し得ることとなる。
Theoretically, it is preferable to blow air as described above from the time when sludge (aerobic microorganisms) with a thickness of about 0.2 mm has adhered to the fiber surface. It is not effective because there is no adhesion of excess sludge. In other words, by starting the purification process without blowing air and starting blowing air after a certain amount of sludge has adhered, it is possible to continue the purification process in the optimal state as described above over a long period of time. Become.

然し、実際の操業に当たって前記した適正汚泥付着範囲
内から過剰汚泥付着状態に移行する時点を正確に求める
ことは容易でない。即ち付着厚さを細部に亘って測定す
るようなことが容易でないと共に視覚によって判定しよ
うとしても繊維面全般が同じ汚泥色をなしているから判
定が困難である。1つの手法として浄化効率を求めるこ
とが考えられ、即ち過剰汚泥付着によって浄化効率が低
下するからこの時点を検知して空気吹込みを開始するこ
とが予想されるが、実際の操業においてそうした時点を
的確に求めることが困難である。つまり分析して効率を
求めるには相当の設備を必要とし、一般的には特定の機
関に試料を随時に送ってその報告を得ることになり、そ
うした結果が得られるには1週間ないしそれ以上のよう
な期間を必要とするからそのような結果の入手できた時
点では該分析結果が相当過去のものとなる。即ち供給さ
れる廃水条件や外界温度条件などによって汚泥の付着増
殖がそれなりに変動し繊維面では好気性微生物の死滅、
嫌気性微生物の発生増殖が避は得ないこととなり、発生
混入する嫌気性微生物による妨害作用が生ずる余地が残
る。
However, in actual operation, it is not easy to accurately determine the point in time when the above-mentioned appropriate sludge adhesion range shifts to the excessive sludge adhesion state. That is, it is not easy to measure the adhesion thickness in detail, and it is difficult to judge visually because the entire fiber surface has the same sludge color. One method is to determine the purification efficiency.In other words, since the purification efficiency decreases due to excess sludge adhesion, it is expected to detect this point and start air blowing. It is difficult to determine accurately. In other words, considerable equipment is required to analyze and determine efficiency, and generally samples are sent to a specific institution from time to time to obtain reports, and it takes a week or more to obtain such results. Because such a period of time is required, by the time such results are available, the results of the analysis will be quite old. In other words, the adhesion and proliferation of sludge varies depending on the supplied wastewater conditions and external temperature conditions, and aerobic microorganisms die on the fiber surface.
The generation and proliferation of anaerobic microorganisms is unavoidable, and there remains room for interference by the anaerobic microorganisms that are introduced.

従ってそうした関係をも考慮して実地的に安定な操業を
得るには未だ汚泥付着の充分でない時点、場合によって
は浄化処理スタート時から空気吹込みを実施することが
考えられ、本発明者等はそうした関係についても検討し
たところ、浄化処理スタート時点からの継続的吹込みに
よっても安定した能率的浄化を実施できることが確認さ
れた。即ち浄化処理スタート時においては繊維間に充分
な空間が保持されていることから同一量の空気吹込みが
なされても吹込み空気による剥離作用が比較的弱いもの
となり、一方前記した微生物はそれが生物であることか
ら空気および原水の流動に対する剥離作用抵抗力を帯び
且つスタート時からの吹込みで強化されるものの如くで
、適度の空気吹込み条件下においては安定した付着増殖
を得しめることができる。このように浄化処理スタート
時から継続的に空気吹込みをなすことにより、空気吹込
みを間欠的に行なうための吹込み時点を求めるために特
別な考慮をなす必要がないことになり、発生混入する嫌
気性微生物による妨害作用を回避した操業を安定に実施
することが可能となる。
Therefore, taking such relationships into account, in order to obtain stable operation in practice, it is possible to carry out air injection at a point when sludge adhesion is not yet sufficient, or in some cases, at the start of purification treatment. After examining this relationship, it was confirmed that stable and efficient purification can be achieved even by continuous injection from the start of purification treatment. In other words, at the start of the purification process, sufficient space is maintained between the fibers, so even if the same amount of air is blown, the exfoliation effect of the blown air is relatively weak; on the other hand, the above-mentioned microorganisms are Since it is a living organism, it has resistance to peeling action against the flow of air and raw water, and it seems to be strengthened by blowing from the start, and stable adhesion and growth can be achieved under moderate air blowing conditions. can. By continuously blowing air from the start of the purification process, there is no need to take special consideration to determine the timing of air blowing intermittently. This makes it possible to carry out stable operations that avoid the interfering effects of anaerobic microorganisms.

本発明によるものの具体的な操業例について説明すると
以下の如くである。
A specific example of operation according to the present invention will be described below.

操業例1  (洋菓子製造工場の例) BODが1800〜3200ppm  (平均約240
0ppm)、SSが500〜3000ppm(平均11
38ppm)、N−ヘキサン100〜300ppm(平
均201ppm)で、p)Iが3.5〜5.0(平均4
.1)の洋菓子工場廃水を処理した結果を各逓倍に要約
して示すと次の第1表の如(であり、この場合の除去率
をグラフとして示したのが第5図であって、設備として
は第1図を簡略して第5図の上部に示すようにし、即ち
スクリーン(4)、調整槽(3)、接触処理機構(1)
と沈澱槽(6)を用いたものとした。用いた接触処理機
構(1)としては容積4.5m’の槽内に、直径2mで
径が0.8鶴の塩化ビニリデン繊維を空隙率95.6%
とし、厚さが約5 cmの回転盤(11)を24枚並列
して、周速約20 m/minで回転させながら処理し
た。接触処理機構(1)に対する原水の供給量は3〜5
ff1″/hr(平均3.5m3/hr)である。
Operation example 1 (Example of a Western confectionery manufacturing factory) BOD is 1800 to 3200 ppm (average approx. 240 ppm)
0ppm), SS is 500-3000ppm (average 11
38 ppm), N-hexane 100-300 ppm (average 201 ppm), p)I 3.5-5.0 (average 4
.. The results of treating the confectionery factory wastewater in 1) are summarized at each multiplication rate as shown in Table 1 below. Figure 5 shows the removal rate in this case as a graph. Figure 1 is simplified and shown in the upper part of Figure 5, that is, the screen (4), the adjustment tank (3), and the contact treatment mechanism (1).
and a settling tank (6). The contact treatment mechanism (1) used was a tank with a volume of 4.5 m, in which vinylidene chloride fibers with a diameter of 2 m and a diameter of 0.8 mm were placed with a porosity of 95.6%.
24 rotary disks (11) each having a thickness of about 5 cm were arranged in parallel and processed while rotating at a circumferential speed of about 20 m/min. The amount of raw water supplied to the contact treatment mechanism (1) is 3 to 5
ff1″/hr (average 3.5m3/hr).

即ち処理運転を開始してから約3週間後まではBOD除
去率が次第に向上し、91%に達したが、その次第に減
少し、11週間目にはこのBOD除去率が68%と70
%を下回ったので空気吹込機構(10)による吹込みを
なし、即ち0.2mj/l1inの空気を約15分間吹
込んで過剰付着状態の汚泥をその表層部において除去し
たところ除去率は88%に回復した。
That is, the BOD removal rate gradually improved until about 3 weeks after the start of treatment operation, reaching 91%, but then gradually decreased, and by the 11th week, this BOD removal rate was 68% and 70%.
%, so the air blowing mechanism (10) was used to blow air at a rate of 0.2 mj/l1 inch for about 15 minutes to remove the excessively adhered sludge from the surface layer, resulting in a removal rate of 88%. I have recovered.

この状態で運転を継続し、15週目には再び除去率70
%に低下したので、同様に0.2m’/ll1inの空
気を20分間吹込んだところ85%の除去率に回復し、
更に21′a目にも除去率66%に低下したので0.2
m”/1linの空気を30分間吹込んだところ除去率
83%に回復した。
Continue operation in this state, and in the 15th week, the removal rate will be 70 again.
%, so when 0.2m'/11in of air was similarly blown for 20 minutes, the removal rate recovered to 85%.
Furthermore, the removal rate decreased to 66% at the 21'a'th point, so it was 0.2
When air was blown at m''/1 lin for 30 minutes, the removal rate recovered to 83%.

なお29週目には除去率55%に低下したので、以後は
0.1〜0.15m3/ l5inの空気を継続して吹
込み操業したところ、30週間以降は80%以上、−船
釣には87〜89%の高い除去率を確保することができ
、これは運転初期3〜8週間の間の高除去率に相当した
優れた性能である。
In addition, the removal rate decreased to 55% in the 29th week, so from then on, we continued to blow air at a rate of 0.1 to 0.15m3/l5in, and after the 30th week, the removal rate decreased to over 80%. could ensure a high removal rate of 87-89%, which is an excellent performance corresponding to a high removal rate during the initial 3-8 weeks of operation.

操業例2 食肉センター(と場)の例 BOD1100〜1600pps+(平均1358pp
m)、SSが500〜1300ppm  (平均795
ppm)、N−ヘキサンが200〜500ppm  (
平均296ppm )で、pllが6.5〜6.8(平
均6.7)の食肉処理場廃水を処理した結果を同様に各
逓倍に要約して示すと次の第2表の如くであり、これを
図表としたものが第6図であり、設備としては接触処理
機構(1)を2基採用し、曝気槽(5)を用いた以外は
前記第5図のものと同様である。
Operation example 2 Meat center (and place) example BOD 1100-1600pps+ (average 1358pp
m), SS is 500 to 1300 ppm (average 795
ppm), N-hexane is 200-500 ppm (
The results of treating slaughterhouse wastewater with an average of 296 ppm) and a PLL of 6.5 to 6.8 (average 6.7) are summarized at each multiplication as shown in Table 2 below. A diagram of this is shown in FIG. 6, and the equipment is the same as that in FIG. 5 except that two contact treatment mechanisms (1) and an aeration tank (5) are used.

原水の供給量は6〜9.5 m’/hr (平均8m”
/hr)であり、その他の運転条件は操業例1に略準じ
て実施した。
Raw water supply rate is 6 to 9.5 m'/hr (average 8 m')
/hr), and the other operating conditions were substantially the same as in Operation Example 1.

即ち、この場合には運転を開始してから10週1におい
てBOD除去率が70%に低下したので、0.2 m″
/minで15分間の空気吹込みをなしたところ、3日
後の分析値では90%以上に回復した。
In other words, in this case, the BOD removal rate decreased to 70% in 10 weeks after the start of operation, so 0.2 m''
When air was blown for 15 minutes at a speed of /min, the analysis value recovered to 90% or more after 3 days.

然してこの場合においては148目においてBOD除去
率が60%と低下したけれども試験的にそのまま空気吹
込みなしの操業を継続したところ、15i!lの2日日
には異状悪臭の発生が感じられ、次いで汚泥が黒変し、
付着汚泥の2.激な脱落が発生した。
However, in this case, although the BOD removal rate decreased to 60% at the 148th step, when we continued the operation without air blowing as a trial, we found that the BOD removal rate was 15 i! On the 2nd day of 1, an abnormal odor was noticed, and then the sludge turned black.
2. Adhesive sludge. A severe fallout occurred.

そこで、このような脱落後の復元措置として、高圧の工
業用水を用いて残存している嫌気性汚泥(黒色)を完全
状態に除去し、数日経過後に新しい廃水を供給すると共
に0.1〜0.15m’/n+inの空気を連続供給し
て操業をなしたところ、除去率は次第に向上し、17週
日取は80%近い除去率が得られ、19週日取降は90
%以上の高い除去率による操業を継続することができ、
50週を超えてもこの高除去率が完全に維持することが
できた。
Therefore, as a restoration measure after falling off, high-pressure industrial water is used to completely remove the remaining anaerobic sludge (black), and after a few days, new wastewater is supplied and 0.1~ When the operation was carried out by continuously supplying air at 0.15 m'/n+in, the removal rate gradually improved, with a removal rate of nearly 80% for the 17-week daily removal rate and 90% for the 19-week daily removal rate.
It is possible to continue operation with a high removal rate of over %,
This high removal rate could be completely maintained even after 50 weeks.

操業例3 (製麺、米飯工場の場合) BOD:22QO〜3000ppm  (平均2465
ppm)、SS:1500〜2500ppm  (平均
1985ppn+)、Nヘキサン:30〜50ppm(
平均30.5ppm ) 、pH: 3.1〜7.0(
平均4.4)の製麺、米飯工場廃水を処理した結果を同
様に各逓倍に要約して示すと次の第3表の如くであり、
これを図表としたものが第7図であって、設備的には操
業例2と同様である。
Operation example 3 (noodle making and rice factory) BOD: 22QO ~ 3000ppm (average 2465
ppm), SS: 1500-2500ppm (average 1985ppn+), N-hexane: 30-50ppm (
average 30.5 ppm), pH: 3.1-7.0 (
The results of treating wastewater from a noodle and rice factory with an average of 4.4) are summarized at each multiplier as shown in Table 3 below.
A diagram of this is shown in FIG. 7, and the equipment is the same as Operation Example 2.

原水の供給量は6.5〜8 r11″/ hr、平均7
m’/hrであり、その他の運転条件は操業例1に略準
して実施した。
Raw water supply rate is 6.5-8 r11″/hr, average 7
m'/hr, and other operating conditions were carried out almost in accordance with Operation Example 1.

即ち、この操業例においては運転を開始して7週目にB
OD除去率が56%に低下し、同週2日日には異状悪臭
の発生、次いで汚泥の黒変と付着汚泥の急激な脱落が認
められた。このため、このような脱落後の復元措置とし
て、高圧の工業用水を用いて残存する嫌気性汚泥(黒色
)を完全状態に除去し、操業を再開したところ、BOD
除去率は当初の36%を超える46%を示し、爾後順当
な除去率の向上を示した。
That is, in this operation example, B
The OD removal rate decreased to 56%, and on the 2nd day of the same week, an abnormal odor occurred, followed by blackening of the sludge and rapid falling off of the adhered sludge. Therefore, as a restoration measure after such falling, the remaining anaerobic sludge (black) was completely removed using high-pressure industrial water, and when operations were restarted, the BOD
The removal rate was 46%, which exceeded the initial 36%, indicating a reasonable improvement in the removal rate.

更に、第13週日においてBOD除去率が39%迄急激
に低下したので、0.2m″/n+inで30分間の空
気吹込みをなしたところ、次週においては73%迄除去
率は回復した。
Furthermore, the BOD removal rate suddenly decreased to 39% on the 13th week, so when air was blown at 0.2 m''/n+in for 30 minutes, the removal rate recovered to 73% the next week.

然して、第16週日において除去率が58%迄低下した
ので爾後この操業においては連続的に0.15〜0.2
 m310+inの空気吹込みをなしたところ、除去率
は向上し、次週以降常に80%を上潮る高い除去率によ
る操業を50週を超えて安定に継続することができた。
However, the removal rate decreased to 58% on the 16th day of the week, and after that, the removal rate was continuously increased from 0.15 to 0.2 in this operation.
When air was blown at a rate of 310 m+in, the removal rate improved, and the operation was able to be stably continued for more than 50 weeks with a high removal rate of 80% from the next week onwards.

操業例4 (製麺工場の場合) BOD:1300〜2000ppm  (平均1847
ppm)、SS:300〜11000pp  (平均7
70ppm)、Nヘキサン:30〜50ppm  (平
均35.9ppm ) 、pH:  3.1〜7.0 
 (平均3.3)の製麺工場廃水を同様に各逓倍に要約
して示したものが次の第4表であり、これを図表とした
ものが第8図であって、設備的には操業例1と同様であ
る。
Operation example 4 (in the case of a noodle factory) BOD: 1300 to 2000 ppm (average 1847
ppm), SS: 300-11000pp (average 7
70ppm), N hexane: 30-50ppm (average 35.9ppm), pH: 3.1-7.0
Table 4 below summarizes the noodle factory wastewater (average 3.3) for each multiplier, and Figure 8 shows this as a diagram. This is the same as Operation Example 1.

原水の供給量は4m3/hrであり、その他の運転条件
は操業例1に略準じて実施した。
The amount of raw water supplied was 4 m3/hr, and the other operating conditions were similar to Operation Example 1.

即ち、この操業例においては運転当初より0.1〜0.
15n+3/hrの空気吹込みを連続的になしたところ
、BOD除去率は向上し、第4週目以降常に90%を土
建る高い除去率を示す操業を継続して実施することがで
き、50週を経ても安定した効率的操業をなし得ること
が確認された。
That is, in this operation example, 0.1 to 0.0 from the beginning of operation.
When air was blown continuously at a rate of 15n+3/hr, the BOD removal rate improved, and from the 4th week onwards, it was possible to continue operating with a high removal rate of 90%. It was confirmed that stable and efficient operation could be achieved even after several weeks.

「発明の効果」 以上説明したような本発明によるときは合成樹脂繊維材
を緩解状態で締結させた大きな表面積を有すると共に9
5%以上のような高い空隙率をもった合成繊維回転盤を
用い、高能率な微生物増殖によりBODが11000p
pを超え、SS分についても数百ppm+ないし100
0ρpo+を超えるような高濃度廃水であっても少なく
とも1年以上、−船釣には数年ないしそれ以上に亘る長
期間、少なくとも80%以上の高い除去率を確保し安定
且つ経済的な清浄化処理を円滑に実施し得るものであっ
て、工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, the synthetic resin fiber material is fastened in a relaxed state and has a large surface area and 9
Using a synthetic fiber rotary disk with a high porosity of 5% or more, BOD is 11,000p due to highly efficient microbial growth.
Exceeding p, and several hundred ppm+ to 100 ppm for SS content as well.
Stable and economical cleaning with a high removal rate of at least 80% for at least one year, even for highly concentrated wastewater exceeding 0ρpo+, and several years or more for boat fishing. This invention enables processing to be carried out smoothly and has great industrial effects.

【図面の簡単な説明】 図面は本発明の技術的内容を示すものであって、第1図
は本発明方法を実施する設備の全般的な構成関係の1例
を示した説明図、第2図はその接触機構についての部分
切欠斜面図、第3図はその素材板についての斜面図、第
4図は回転盤の取付関係を部分的に示した側面図、第5
図は本発明における操業例1の実施結果を要約して示し
た図表、第6図から第8図はそれぞれ操業例2〜4につ
いて実施結果を要約して示した図表であって、これら第
5〜8図においては具体的に採用された設備の説明図を
も併せて示している。 然してこれらの図面において、(1)は接触処理機構、
(2)は原水ピット、(3)は調整槽、(4)はスクリ
ーン、(5)は曝気槽、(6)は沈澱槽、(7)は処理
水槽、(8)は消毒槽、(9)は汚泥消化槽、(lO)
は空気吹込機構、(11)は合成繊維回転盤、(lla
)はその素材板、(1l b)はその挿通孔、(12)
は間隔部材、(13)は緊締杆、(14)は機枠、(1
5)(15a)は圧扁溶着部、(16)は端板、(17
)は原動機構、(19)軸杆、(20)は軸筒部、 は軸筒部、 は鍔部、 は胡蝶部、 は雌螺部を示すもの である。 特 許 出 願 人 株式会社極水プランニング 発 明 者 池 知 弘 見 !lr、、’ミi′ り7 ! 第 ■
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings show the technical contents of the present invention, and FIG. Figure 3 is a partially cutaway slope view of the contact mechanism, Figure 3 is a slope view of the material plate, Figure 4 is a side view partially showing the mounting relationship of the rotary disk, Figure 5
The figure is a diagram summarizing the implementation results of Operation Example 1 in the present invention, and FIGS. 6 to 8 are diagrams summarizing the implementation results of Operation Examples 2 to 4, respectively. In Figures 1 to 8, explanatory diagrams of specifically adopted equipment are also shown. However, in these drawings, (1) is a contact processing mechanism,
(2) is a raw water pit, (3) is an adjustment tank, (4) is a screen, (5) is an aeration tank, (6) is a sedimentation tank, (7) is a treated water tank, (8) is a disinfection tank, (9) ) is the sludge digestion tank, (lO)
is an air blowing mechanism, (11) is a synthetic fiber rotary disk, (lla
) is the material plate, (1l b) is its insertion hole, (12)
is the spacing member, (13) is the tightening rod, (14) is the machine frame, (1
5) (15a) is the flattened welded part, (16) is the end plate, (17
) is the driving mechanism, (19) is the shaft rod, (20) is the shaft cylinder part, is the shaft cylinder part, is the flange part, is the butterfly part, and is the female thread part. Patent applicant Kyokusui Planning Co., Ltd. Inventor Hiromi Iketomo! lr,,'mii'ri7! Part ■

Claims (1)

【特許請求の範囲】 1、径が0.5〜1.2mmの合成繊維を不規則に交錯
せしめ圧縮成形し空隙率85〜99%とされた合成繊維
回転盤を有機質廃水中に部分浸漬した状態で回転せしめ
有機質廃水と空気との接触を交互に行わせ、前記繊維表
面において好気性微生物による付着増殖を図り上記した
有機質廃水の浄化を行なわしめてから該廃水を沈澱処理
して排水するに当り、前記した合成繊維回転盤による接
触処理にBOD濃度が800ppm以上とされた有機質
廃水を供給せしめ、しかも該接触処理に際し上記した合
成繊維回転盤部分に給気してその合成繊維面に付着生成
した好気性微生物による汚泥膜厚を制御することを特徴
とする有機質廃水処理法。 2、合成繊維回転盤部分に対し給気することなく接触処
理を開始し合成繊維面に好気性微生物による所定厚さの
汚泥膜が形成されてから給気による汚泥膜厚制御を開始
する請求項1に記載の有機質廃水処理法。 3、接触処理開始と実質的同時に給気し汚泥膜制御をな
しながら接触処理する請求項1に記載の有機質廃水処理
法。 4、有機質廃水におけるBOD濃度が1000〜100
00ppmである請求項1に記載の有機質廃水処理法。 5、SSが300〜5000ppmの有機質廃水を供給
処理する請求項1に記載の有機質廃水処理法。 6、繊維材に付着生成した汚泥が黒変し急激な脱落が発
生した場合に高圧水により残存する嫌気性汚泥を完全状
態に除去し適宜に空気を連続吹込みして運転を再開する
請求項1に記載の有機質廃水処理法。
[Claims] 1. A synthetic fiber rotary disk made of synthetic fibers with a diameter of 0.5 to 1.2 mm intertwined irregularly and compression molded to have a porosity of 85 to 99% was partially immersed in organic wastewater. The organic wastewater is rotated in a state in which the organic wastewater is brought into contact with air alternately, and aerobic microorganisms are allowed to adhere to and proliferate on the surface of the fibers to purify the organic wastewater as described above, and then the wastewater is subjected to sedimentation treatment and discharged. , Organic wastewater with a BOD concentration of 800 ppm or more was supplied to the contact treatment using the synthetic fiber rotary disk described above, and during the contact treatment, air was supplied to the synthetic fiber rotary disk portion to cause the synthetic fibers to adhere to the surface of the synthetic fibers. An organic wastewater treatment method characterized by controlling the sludge film thickness using aerobic microorganisms. 2. A claim in which the contact treatment is started without supplying air to the synthetic fiber rotating disk portion, and the sludge film thickness control by supplying air is started after a sludge film of a predetermined thickness is formed by aerobic microorganisms on the synthetic fiber surface. 1. The organic wastewater treatment method described in 1. 3. The organic wastewater treatment method according to claim 1, wherein the contact treatment is carried out while supplying air substantially at the same time as the start of the contact treatment and controlling the sludge film. 4. BOD concentration in organic wastewater is 1000-100
The organic wastewater treatment method according to claim 1, wherein the organic wastewater treatment method is 00 ppm. 5. The organic wastewater treatment method according to claim 1, wherein organic wastewater having an SS of 300 to 5000 ppm is supplied and treated. 6. When the sludge that adheres to the fiber material turns black and suddenly falls off, the remaining anaerobic sludge is completely removed using high-pressure water, and air is continuously blown in as appropriate to restart the operation. 1. The organic wastewater treatment method described in 1.
JP30614588A 1988-12-05 1988-12-05 Organic wastewater treatment method Expired - Fee Related JP2965159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30614588A JP2965159B2 (en) 1988-12-05 1988-12-05 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30614588A JP2965159B2 (en) 1988-12-05 1988-12-05 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH02152595A true JPH02152595A (en) 1990-06-12
JP2965159B2 JP2965159B2 (en) 1999-10-18

Family

ID=17953596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30614588A Expired - Fee Related JP2965159B2 (en) 1988-12-05 1988-12-05 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2965159B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364622B1 (en) * 2001-01-22 2002-12-16 한라산업개발 주식회사 A method for simultaneous removal of nitrogen and phosphorus in the sewage and waste water
KR100444908B1 (en) * 2002-04-19 2004-08-21 한상근 Waste water treatment apparatus using biological rotating disc apparatus
JP2009166038A (en) * 2009-03-06 2009-07-30 Hiromi Ikechi Method for manufacturing netlike contact body element and rotary circular net-shaped contact body
KR100918407B1 (en) * 2007-10-25 2009-09-24 한국건설기술연구원 Advenced tretment system using Biofilm mass control and Automatic Process control system
JP2011502776A (en) * 2007-11-16 2011-01-27 ブルーウォーター バイオ テクノロジーズ リミテッド Wastewater treatment method and plant including control of dissolved oxygen concentration
JP2012187450A (en) * 2011-03-08 2012-10-04 Hiromi Ikechi Wastewater treatment apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141057A (en) * 1976-05-19 1977-11-25 Unitika Ltd Rotary plate type apparatus for treating waste water
JPS5720306A (en) * 1980-07-12 1982-02-02 Noboru Oikawa Method and device for forming reinforced cement thin board
JPS5876183A (en) * 1981-10-30 1983-05-09 Fuji Kasui Kogyo Kk Purification of waste water
JPS5939514A (en) * 1982-08-31 1984-03-03 Brother Ind Ltd Ultrasonic machining tool
JPS6086500U (en) * 1983-11-17 1985-06-14 株式会社極水プランニング Sewage purification mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141057A (en) * 1976-05-19 1977-11-25 Unitika Ltd Rotary plate type apparatus for treating waste water
JPS5720306A (en) * 1980-07-12 1982-02-02 Noboru Oikawa Method and device for forming reinforced cement thin board
JPS5876183A (en) * 1981-10-30 1983-05-09 Fuji Kasui Kogyo Kk Purification of waste water
JPS5939514A (en) * 1982-08-31 1984-03-03 Brother Ind Ltd Ultrasonic machining tool
JPS6086500U (en) * 1983-11-17 1985-06-14 株式会社極水プランニング Sewage purification mechanism

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364622B1 (en) * 2001-01-22 2002-12-16 한라산업개발 주식회사 A method for simultaneous removal of nitrogen and phosphorus in the sewage and waste water
KR100444908B1 (en) * 2002-04-19 2004-08-21 한상근 Waste water treatment apparatus using biological rotating disc apparatus
KR100918407B1 (en) * 2007-10-25 2009-09-24 한국건설기술연구원 Advenced tretment system using Biofilm mass control and Automatic Process control system
JP2011502776A (en) * 2007-11-16 2011-01-27 ブルーウォーター バイオ テクノロジーズ リミテッド Wastewater treatment method and plant including control of dissolved oxygen concentration
US8784658B2 (en) 2007-11-16 2014-07-22 Bluewater Bio Technologies Limited Wastewater treatment process and plant comprising controlling the dissolved oxygen concentration
JP2009166038A (en) * 2009-03-06 2009-07-30 Hiromi Ikechi Method for manufacturing netlike contact body element and rotary circular net-shaped contact body
JP2012187450A (en) * 2011-03-08 2012-10-04 Hiromi Ikechi Wastewater treatment apparatus

Also Published As

Publication number Publication date
JP2965159B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JP3335500B2 (en) Wastewater treatment device and wastewater treatment method
RU2135420C1 (en) Waste water treatment method and installation
US4182675A (en) Waste treatment process
US5954963A (en) Process for biologically treating water
JPS6223497A (en) Sewage treatment apparatus by activated sludge bed
CN101318758A (en) Air-float and bio-filter combined water treatment process
JPH0143200Y2 (en)
JPH02152595A (en) Treatment of organic waste water
JP2001029992A (en) Method and apparatus for treating polluted water
CN101066798A (en) Oxygen-rich biological pre-treating depollution process for slightly polluted raw water
JP3577663B2 (en) Water purification method and apparatus
JPH0123594Y2 (en)
EP0812806B1 (en) Method and device for purifying polluted water
JPH0116559Y2 (en)
JPH0531485A (en) Treatment of water and equipment therefor
JP2003200183A (en) Activated carbon biological water treatment device
JP2004097926A (en) Water treatment method and water treatment equipment
JP3159394B2 (en) Method and apparatus for treating pesticides and wastewater containing nitrogen
CN110921974A (en) Urban organic wastewater purification treatment process
JP6540438B2 (en) Biological treatment method of treated water by aerobic fixed bed
JPH07214056A (en) Device for treating waste water
EP1489050B1 (en) Device for purifying water
JPS626878B2 (en)
CN1305787C (en) A method for comprehensive treatment of wastewater
JPH05192672A (en) Method for operating water treating equipment and the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees