JPH02152232A - Cleaning - Google Patents

Cleaning

Info

Publication number
JPH02152232A
JPH02152232A JP30604088A JP30604088A JPH02152232A JP H02152232 A JPH02152232 A JP H02152232A JP 30604088 A JP30604088 A JP 30604088A JP 30604088 A JP30604088 A JP 30604088A JP H02152232 A JPH02152232 A JP H02152232A
Authority
JP
Japan
Prior art keywords
liquid layer
impurity particles
substrate
treated
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30604088A
Other languages
Japanese (ja)
Inventor
Keiji Horioka
啓治 堀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30604088A priority Critical patent/JPH02152232A/en
Publication of JPH02152232A publication Critical patent/JPH02152232A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent impurity particles from adhering again without damaging an integrated circuit element by a method wherein, while a substrate to be treated is being held in a first liquid layer, the impurity particles are separated physically from the substrate to be treated and are dissolved in a second liquid layer. CONSTITUTION:A wafer is held inside an apparatus; a liquid of carbon tetrachloride is poured up to the upper part of the wafer; after that, an aqueous solution of HF-HNO3 is poured. Then, an ultrasonic cleaning operation is executed; N2 is blown from a gas introduction port 20; while the N2 is being bubbled, the water is treated for 10 minutes. Then, a drainage port 16 is opened; the aqueous solution of HF-HNO3 in an upper layer is drained; after that, pure water is introduced from a pipe 15; the remaining solution of HF-HNO3 is removed by a cleaning operation by running water; after that, the wafer 14 is taken out. When the number of dust particles on the taken-out wafer 14 are measured, an average of 10 pieces per wafer can be reduced, i.e. the number of fine impurity particles can be reduced to about 1/10 that before a treatment.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、被処理基体表面に付着した不純物微粒子を取
り除く洗浄方法に係わり、例えば、半導体集積回路素子
等の電子デバイスのす博造工程において有効な洗浄方法
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a cleaning method for removing impurity fine particles attached to the surface of a substrate to be processed, and for example, for cleaning electronic devices such as semiconductor integrated circuit elements. The present invention relates to a cleaning method effective in the Hakuzo process.

(従来の技術) 半導体集積回路素子の製造工程において、ウェハ上に付
着したゴミは、製品の性能や歩留り低下の原因となる。
(Prior Art) In the manufacturing process of semiconductor integrated circuit elements, dust adhering to wafers causes a decrease in product performance and yield.

このため、ウェハは、常に清浄に保持されなければなら
ないが、現実の製造工程では、不純物微粒子の付着を完
全に防ぐことは困難である。
For this reason, the wafer must always be kept clean, but in actual manufacturing processes, it is difficult to completely prevent the attachment of impurity particles.

通常行なわれている洗浄方法のうち現在のところ有効な
方法は、酸等の、不純物に対して、反応性又は溶解性の
高い液体を使って、前記不純物を溶解させるものとであ
る。例えば、前記不純物が、有機物の場合、過酸化水素
及び硫酸の水溶液、8i0゜等の酸化物の不純物の場合
、フッ酸水溶液、そしてSiやAlの不純物に対しては
、フッ酸及び硝酸水溶液等が、有力な洗浄液である。
Among the commonly used cleaning methods, the currently effective method is to dissolve the impurities using a liquid, such as an acid, that is highly reactive or soluble with respect to the impurities. For example, when the impurity is an organic substance, an aqueous solution of hydrogen peroxide and sulfuric acid, an oxide impurity such as 8i0°, an aqueous hydrofluoric acid solution, and an impurity of Si or Al, an aqueous solution of hydrofluoric acid and nitric acid, etc. is a powerful cleaning solution.

ところが、製造工程中のシリコンウェハ上には、集積回
路素子自体の構成材料として、シリコンや、2酸化シリ
コン、配線材料のAI等の金属等を含んでいる。これら
を直接、酸にさらすと、不純物が、除去されると同時に
、素子自体も侵蝕されてしまう。特にAlは酸に対して
反応性が極めて高いため、配線工程以後では、酸による
処理は全く不可能である。
However, the silicon wafer during the manufacturing process contains silicon, silicon dioxide, metals such as AI as a wiring material, etc. as constituent materials of the integrated circuit element itself. If these are directly exposed to acid, impurities are removed and at the same time the element itself is also corroded. In particular, since Al has extremely high reactivity with acids, treatment with acids is completely impossible after the wiring process.

また、超音波洗浄や、バブリングのように機械的な手段
で、不純物粒子を被処理基体からとり除くことも行なわ
れているが一旦除かれた不純物粒子が処理槽中に存在し
ているので同一の処理槽中にある被処理基体に再付着し
てしまうという問題がある。
In addition, ultrasonic cleaning or mechanical means such as bubbling are used to remove impurity particles from the substrate to be processed, but since the impurity particles that have been removed remain in the processing tank, the same There is a problem in that it re-adheres to the substrate to be processed in the processing tank.

(発明が解決しようとする課題) このように従来の洗浄方法では、酸等の化学的手段を用
いると、素子自体が侵蝕され、機械的手段では、粒子の
再付着が防止できないという問題があった。
(Problems to be Solved by the Invention) As described above, conventional cleaning methods have the problem that when chemical means such as acids are used, the element itself is corroded, and mechanical means cannot prevent particles from re-adhering. Ta.

本発明は上記事情を考慮して為されたものであυ、その
目的とするところは、集積回路素子を損なわず、不純物
粒子が再付着しないようにした洗浄方法を提供すること
にある。
The present invention has been made in consideration of the above circumstances, and its purpose is to provide a cleaning method that does not damage integrated circuit elements and prevents impurity particles from re-adhering.

〔発明のW4成〕 (課題を解決するための手段) 本発明は、前記目的を達成するために処理槽内に不純物
粒子が付着した被処理基体を腐食又は溶解せず、かつ前
記不純物粒子を被処理基体と比重の異なる第1の液層と
、前記第1の液層に溶解し難く、かつ前記不純物粒子を
溶解する第2の液層とからなる2つの液層の分離状態を
形成し、前記被処理基体を前記第1の液層中に保持しな
がら前記不純物粒子を前記被処理基体から物理的に遊離
せしめ、前記第2の液層中で溶解せしめるようにしたこ
とを特徴とする洗浄方法を提供する。
[W4 of the invention] (Means for solving the problem) In order to achieve the above-mentioned object, the present invention does not corrode or dissolve the substrate to be treated to which impurity particles have adhered in the processing tank, and eliminates the impurity particles. Forming a separated state of two liquid layers consisting of a first liquid layer having a different specific gravity from the substrate to be treated and a second liquid layer that is difficult to dissolve in the first liquid layer and dissolves the impurity particles. , the impurity particles are physically released from the substrate to be treated while holding the substrate to be treated in the first liquid layer, and are dissolved in the second liquid layer. Provide a cleaning method.

(作用) 本発明によれば、被処理基体が保持される第1の液層は
、不純物粒子と比重が異なるので、基体から遊離し易い
状態であり、更に超音波洗浄や、バブリング等の物理的
作用を加えることにより完全に遊離せしめることができ
る。遊離した不純物微粒子は、第2の液層によって溶解
される被処理基体へは付着しない。また第1の液層は、
基体を腐食、溶解することがなく、前述したように不純
物微粒子の被処理基体への再付着もほとんどない。
(Function) According to the present invention, the first liquid layer in which the substrate to be treated is held has a specific gravity different from that of impurity particles, so it is in a state where it is easily released from the substrate, and furthermore, It can be completely released by applying a chemical action. The liberated impurity fine particles do not adhere to the substrate to be processed, which is dissolved by the second liquid layer. Moreover, the first liquid layer is
The substrate is not corroded or dissolved, and as mentioned above, there is almost no redeposition of impurity particles to the substrate to be treated.

(実施例) 以下本発明の、詳細を図示の実施例によって説明する。(Example) The details of the present invention will be explained below with reference to illustrated embodiments.

第1図は、本発明の一実施例で用いた洗浄装f’ffの
概略断面図である。■は、テフロン製の洗浄槽であり、
洗浄槽αD中に第1の液層として4塩化炭素液層(12
,第2の液層として、10%のHFと10%のHNO,
の混合水溶液層(13が導入されている。
FIG. 1 is a schematic sectional view of a cleaning device f'ff used in an embodiment of the present invention. ■ is a Teflon cleaning tank,
A carbon tetrachloride liquid layer (12
, 10% HF and 10% HNO as the second liquid layer,
A mixed aqueous solution layer (13) is introduced.

下層の4塩化炭素液層(13中には、被処理基体である
シリコンウェハα乃が、複数枚保持されている。
A plurality of silicon wafers α as substrates to be processed are held in the lower carbon tetrachloride liquid layer (13).

洗浄槽(11)には、第1及び第2の液を導入するだめ
の導入口α9と、第1の液及び第2の液を排出するため
の排出口(11αηがそれぞれ別にとりつけられている
。そして、前記洗浄槽α0全体は、超音波洗浄槽0秒の
内部に設けられている。超音波洗浄槽αeには超音波を
前記4塩化炭素液層(lzに有効に伝達するため純水が
満たされている。
The cleaning tank (11) is provided with an inlet α9 for introducing the first and second liquids, and an outlet (11αη) for discharging the first liquid and the second liquid, respectively. The entire cleaning tank α0 is provided inside the ultrasonic cleaning tank 0 seconds.The ultrasonic cleaning tank αe is filled with pure water in order to effectively transmit the ultrasonic waves to the carbon tetrachloride liquid layer (lz). is fulfilled.

また、洗浄槽圓に設けられた■はバブリング用の管であ
り、これは必要に応じてN7等のガスを流して洗浄槽e
ll)内の液をバブリングできるものとなっている。
In addition, the symbol (■) installed in the cleaning tank circle is a bubbling pipe, which can be used to flow gas such as N7 as needed into the cleaning tank.
ll) is capable of bubbling the liquid inside.

この洗浄装置を、用いて、まずシリコンウニノーにプラ
ズマCVD5iO,膜を堆積した時に生じる不純物粒子
の除去を試みた。
Using this cleaning device, we first attempted to remove impurity particles generated when a plasma CVD 5iO film was deposited on silicon.

この不純物粒子は、主としてプラズマCVDの際にCV
D装置のチャンバー内壁に付着した840゜膜がはがれ
て、シリコンウェハに付着したものである。あらかじめ
、光学式のダストカウンターを用いて、大きさ0.3μ
m以上の不純物微粒子数を測定したところ、5インチウ
ェハ1枚あたり平均10iの粒子が存在していた。
These impurity particles are mainly generated during plasma CVD.
The 840° film attached to the inner wall of the chamber of device D has peeled off and adhered to the silicon wafer. In advance, use an optical dust counter to measure the size of 0.3μ.
When the number of impurity fine particles of m or more was measured, an average of 10i of particles were present per 5-inch wafer.

このウェハを第1図の装置中に保持し、四塩化炭素液を
、ウェハ上部まで流しこんだ後、HF−HNo、水溶液
を流しこんだ。次に超音波洗浄及びガス導入口20より
NtをふきこんでN2バブリングを行ないながら、10
分間処理した。次に排水口(1eをあけて、上層のHF
−HNo、水溶液を排水した後、15から純水を導入し
、流水洗浄により、残留するHl;’、HNO3の液を
除去した後、ウェハ04を取り出した。取り出したウェ
ハα脣上のダスト数を測定した結果、ウェハー枚あたり
平均xOMすなわち、処理前の約1710 fiで不純
物微粒子の数は低減した。
This wafer was held in the apparatus shown in FIG. 1, and after a carbon tetrachloride solution was poured to the top of the wafer, an HF-HNo and aqueous solution was poured. Next, while performing ultrasonic cleaning and N2 bubbling by blowing Nt from the gas inlet 20,
Processed for minutes. Next, open the drain port (1e) and drain the upper layer of HF.
After draining the -HNo and aqueous solutions, pure water was introduced from 15, and the remaining Hl;' and HNO3 solutions were removed by washing with running water, and then the wafer 04 was taken out. As a result of measuring the number of dust on the wafer α side taken out, the number of impurity fine particles was reduced by an average xOM per wafer, that is, about 1710 fi before processing.

次に本発明を、ドライエツチングの際に付着した不純物
粒子の除去に応用した実施例について示す。
Next, an example will be described in which the present invention is applied to the removal of impurity particles attached during dry etching.

第2図は、アルミニウム配線をドライエツチングにより
形成し、その後、本発明の実施例を適用した工程断面図
である。まず、第2図(a)に示す如く、表面に予め絶
縁層としてシリコン酸化膜Qυを形成したシリコンウェ
ハ(図示せス)上ニ、Al−8i (1%)合金からな
る厚さ1μmの薄膜@をスパッタ蒸着にょシ形成する。
FIG. 2 is a cross-sectional view of a process in which an aluminum wiring is formed by dry etching and then an embodiment of the present invention is applied. First, as shown in FIG. 2(a), a 1 μm thick thin film made of Al-8i (1%) alloy was placed on a silicon wafer (not shown) on which a silicon oxide film Qυ was previously formed as an insulating layer. Form by sputter deposition.

その後、第2図(b)ニ示ス如(、Al−8i薄膜@上
にフォトレジストを用いて配線パターンに対応したマス
ク(23)を形成する。
Thereafter, as shown in FIG. 2(b), a mask (23) corresponding to the wiring pattern is formed on the Al-8i thin film using a photoresist.

次いで、第2図(C)に示す如<、RIE法によって薄
膜@を選択エツチングする。このエツチングには平行平
板型のドライエツチング装置を使用し、エツチングに用
いたガスは塩素、容器内圧力は5Pa、カソードに印加
した高周波電力(13,56MHz )の密度はIW 
/ a/lであった。次いで、酸素ガス中でプラズマ灰
化法によりレジストマスク@ヲ除去し、走査型電子鎚微
鏡で観察を行うと、第2図(d)に示す如く、アルミニ
ウム配線(ハ)の端部から垂直に立つ現残存物241が
残っていることが確認される。
Next, as shown in FIG. 2(C), the thin film is selectively etched by the RIE method. A parallel plate type dry etching device was used for this etching, the gas used for etching was chlorine, the pressure inside the container was 5 Pa, and the density of the high frequency power (13.56 MHz) applied to the cathode was IW.
/a/l. Next, the resist mask was removed by plasma ashing in oxygen gas and observed with a scanning electron microscope. As shown in Figure 2(d), the resist mask was removed perpendicularly from the end of the aluminum wiring (c). It is confirmed that there is a current remnant 241 standing on the ground.

この残存物(241は、Al、O,等の絶縁物が人1等
である。
This residual material (241) is made of an insulating material such as Al, O, etc.

ここで、この試料を第1図に示した洗浄装置の洗浄槽に
入れ、先の実施例と同様の手順で、処理を行なった。そ
の結果、試料の断面を観察すると第2図(e)のごとく
、前記残存物■が除去されていることが確認された。ま
たAI配配線巾、下地のSiO,7%$30は全く損傷
を受けなかった。
Here, this sample was placed in the cleaning tank of the cleaning apparatus shown in FIG. 1, and treated in the same manner as in the previous example. As a result, when the cross section of the sample was observed, as shown in FIG. 2(e), it was confirmed that the residual material (3) had been removed. Also, the AI wiring width and underlying SiO, 7% $30, were not damaged at all.

以上本実施例では、プラズマCVD及びAJのエツチン
グ時に発生するゴミの除去について述べた。これらの工
程で発生ずる不純物は主として、8i0.やAltO,
等の絶縁物あるいは、S i、 A1等であるので、こ
れらと反応、あるいは溶解する第2の液として、フッ酸
、硝酸の混合水溶液が適している。また有機系の不純物
を除去する場合は、フッ酸−硝酸混合液のかわシに過酸
化水素−1硫酸の混合液を用いるようにすればよい。
In this embodiment, the removal of dust generated during plasma CVD and AJ etching has been described above. The impurities generated in these steps are mainly 8i0. and AltO,
or Si, A1, etc., a mixed aqueous solution of hydrofluoric acid and nitric acid is suitable as the second liquid that reacts with or dissolves these materials. When organic impurities are to be removed, a mixture of hydrogen peroxide and 1 sulfuric acid may be used instead of the mixture of hydrofluoric acid and nitric acid.

また、前記実施例では、第1の液層の方が第2の液層よ
りも下側、すなわち比重がより大である場合について述
べたが、第1の液層よりも比重が小の第2の液層を用い
、被処理基体から遊離せしめた不純物粒子を沈でんさせ
、第2の液層で溶解せしめるようにしてもよい。
In addition, in the above embodiment, the first liquid layer is lower than the second liquid layer, that is, the specific gravity is higher, but the first liquid layer has a lower specific gravity than the second liquid layer. The second liquid layer may be used to settle impurity particles released from the substrate to be treated, and the second liquid layer may dissolve the impurity particles.

本発明は、前記実施例に何ら限定されるものではなく、
被処理基体の種類と、不純物の性質に応じて、最適の液
を組み合わせて用いればよい。
The present invention is not limited to the above embodiments,
An optimal combination of liquids may be used depending on the type of substrate to be treated and the nature of impurities.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被処理基体が、洗浄液により侵蝕され
ることが無く、かつ、不純物粒子の再付着は生じない。
According to the present invention, the substrate to be processed is not corroded by the cleaning liquid, and impurity particles do not re-deposit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で用いた洗浄装置の概略断面図、第2
図(a)〜(d′5は、本発明の一実施例にかかわる工
程断面図である。 11・・・洗浄槽、  12・・・4塩化岩素液層、1
3・・・HPとHNO,の水溶液層、14・・・シリコ
ンウェハ1 15・・・処理液導入口、 16〜・・17・・・排出口、 18・・・超音波洗浄槽、 19・・・純水、   20・・・ガス導入口。 代理人 弁理士 則 近 憲 佑 同      松  山  光  2 第2図 第2旧
Fig. 1 is a schematic sectional view of the cleaning device used in the present invention, Fig. 2 is a schematic sectional view of the cleaning device used in the present invention;
Figures (a) to (d'5) are process cross-sectional views relating to an embodiment of the present invention. 11...Cleaning tank, 12...4 chloride rock liquid layer, 1
3...Aqueous solution layer of HP and HNO, 14...Silicon wafer 1 15...Treatment liquid inlet, 16~...17...Outlet, 18...Ultrasonic cleaning tank, 19. ...Pure water, 20...Gas inlet. Agent Patent Attorney Noriyuki Chika Yudo Hikaru Matsuyama 2 Figure 2, Old

Claims (7)

【特許請求の範囲】[Claims] (1)処理槽内に不純物粒子が付着した被処理基体を腐
食又は溶解せず、かつ前記不純物粒子を被処理基体と比
重の異なる第1の液層と、前記第1の液層に溶解し難く
、かつ前記不純物粒子を溶解する第2の液層とからなる
2つの液層の分離状態を形成し、前記被処理基体を前記
第1の液層中に保持しながら、前記不純物粒子を前記被
処理基体から物理的に遊離せしめ、前記第2の液層中で
溶解せしめるようにしたことを特徴とする洗浄方法。
(1) The substrate to be treated with impurity particles attached to it in the processing tank is not corroded or dissolved, and the impurity particles are dissolved in a first liquid layer having a specific gravity different from that of the substrate to be treated, and the first liquid layer. a second liquid layer that is difficult to dissolve and dissolves the impurity particles; and a second liquid layer that is difficult to dissolve and dissolves the impurity particles. A cleaning method characterized in that the substrate is physically separated from the substrate and dissolved in the second liquid layer.
(2)前記第1の液層は第2の液層よりも上側に位置せ
しめ、かつ前記第1の液層の比重は第2の液層及び不純
物粒子よりも小になるようにした請求項(1)記載の洗
浄方法。
(2) The first liquid layer is located above the second liquid layer, and the specific gravity of the first liquid layer is smaller than the second liquid layer and impurity particles. (1) The cleaning method described.
(3)前記第1の液層は、第2の液層よりも下側に位置
せしめ、かつ前記第1の液層の比重は第2の液層及び不
純物粒子よりも大になるようにした請求項(1)記載の
洗浄方法。
(3) The first liquid layer is located below the second liquid layer, and the specific gravity of the first liquid layer is greater than that of the second liquid layer and impurity particles. The cleaning method according to claim (1).
(4)前記不純物は、シリコン、シリコン化合物、アル
ミニウム、アルミニウム化合物、あるいは有機化合物で
ある請求項(1)記載の洗浄方法。
(4) The cleaning method according to claim 1, wherein the impurity is silicon, a silicon compound, aluminum, an aluminum compound, or an organic compound.
(5)前記第1及び第2の液としてそれぞれハロゲン化
炭素液及び酸水溶液を用いることを特徴とする請求項(
1)記載の洗浄方法。
(5) A halogenated carbon liquid and an acid aqueous solution are used as the first and second liquids, respectively (
1) The cleaning method described.
(6)前記第1及び第2の液としてそれぞれ四塩化炭素
液及びHFとHNO_3の混合水溶液を用いることを特
徴とする請求項(1)記載の洗浄方法。
(6) The cleaning method according to claim (1), wherein a carbon tetrachloride liquid and a mixed aqueous solution of HF and HNO_3 are used as the first and second liquids, respectively.
(7)前記不純物粒子を前記被処理基体から物理的に遊
離せしめるのは超音波振動、あるいは第1の液層をバブ
リングさせることにより行なうことを特徴とする請求項
(1)記載の洗浄方法。
(7) The cleaning method according to claim (1), wherein the impurity particles are physically released from the substrate to be treated by ultrasonic vibration or bubbling of the first liquid layer.
JP30604088A 1988-12-05 1988-12-05 Cleaning Pending JPH02152232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30604088A JPH02152232A (en) 1988-12-05 1988-12-05 Cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30604088A JPH02152232A (en) 1988-12-05 1988-12-05 Cleaning

Publications (1)

Publication Number Publication Date
JPH02152232A true JPH02152232A (en) 1990-06-12

Family

ID=17952336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30604088A Pending JPH02152232A (en) 1988-12-05 1988-12-05 Cleaning

Country Status (1)

Country Link
JP (1) JPH02152232A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166787A (en) * 1991-12-12 1993-07-02 Takao Nakazawa Cleaning/rinsing vessel for semiconductor wafer
WO1996021242A1 (en) * 1995-01-06 1996-07-11 Tadahiro Ohmi Cleaning method
JP2007258512A (en) * 2006-03-24 2007-10-04 Dainippon Screen Mfg Co Ltd Device and method for processing substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358840A (en) * 1986-08-29 1988-03-14 Hoya Corp Cleaning and apparatus therefor
JPH01198032A (en) * 1988-02-03 1989-08-09 Nec Yamaguchi Ltd Cleaning of semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358840A (en) * 1986-08-29 1988-03-14 Hoya Corp Cleaning and apparatus therefor
JPH01198032A (en) * 1988-02-03 1989-08-09 Nec Yamaguchi Ltd Cleaning of semiconductor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166787A (en) * 1991-12-12 1993-07-02 Takao Nakazawa Cleaning/rinsing vessel for semiconductor wafer
WO1996021242A1 (en) * 1995-01-06 1996-07-11 Tadahiro Ohmi Cleaning method
US5954885A (en) * 1995-01-06 1999-09-21 Ohmi; Tadahiro Cleaning method
JP2007258512A (en) * 2006-03-24 2007-10-04 Dainippon Screen Mfg Co Ltd Device and method for processing substrate

Similar Documents

Publication Publication Date Title
US6926014B2 (en) Method for cleaning a plasma chamber
US6046115A (en) Method for removing etching residues and contaminants
TW411522B (en) A semiconductor device washing apparatus and a method of washing a semiconducotr device
JPH02114525A (en) Removal of organic compound film and its removing device
JPH02257632A (en) Method and apparatus for cleaning of semiconductor device
JP2005183937A (en) Manufacturing method of semiconductor device and cleaning device for removing resist
JP2002009035A (en) Method and device for washing substrate
JPH07153746A (en) Dry etching chamber cleaning method
JPH02152232A (en) Cleaning
US6752897B2 (en) Wet etch system with overflow particle removing feature
JP2654003B2 (en) Dry etching method
JP2983356B2 (en) Method for manufacturing semiconductor device
JP2000037671A (en) Method of and apparatus for treating surface of substrate
JP2624347B2 (en) Method and apparatus for removing resist
JPH0582496A (en) Method of removing resist and device thereof
JPH09213703A (en) Manufacture of semiconductor device
KR100211648B1 (en) Method for generating semiconductor wafer
KR20020063201A (en) Method of cleaning electronic device
JPH09289187A (en) Semiconductor manufacturing equipment
JPH0590239A (en) Cleaning method and cleaning device
JPH07201793A (en) Method for cleaning semiconductor substrate
JP2004063513A (en) Cleaning and drying method of semiconductor substrate
JPH0737780A (en) Resist removal device and resist removal method wherein it is used
TW451351B (en) Method of removing the polymer byproduct accumulated on the bottom electrode of the etch reaction chamber
JP2544129B2 (en) Plasma processing device