JPH02152022A - Focus error detection system - Google Patents

Focus error detection system

Info

Publication number
JPH02152022A
JPH02152022A JP63305423A JP30542388A JPH02152022A JP H02152022 A JPH02152022 A JP H02152022A JP 63305423 A JP63305423 A JP 63305423A JP 30542388 A JP30542388 A JP 30542388A JP H02152022 A JPH02152022 A JP H02152022A
Authority
JP
Japan
Prior art keywords
focus error
error signal
light
reflected beam
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63305423A
Other languages
Japanese (ja)
Inventor
Masaharu Moritsugu
森次 政春
Koichi Tezuka
耕一 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63305423A priority Critical patent/JPH02152022A/en
Publication of JPH02152022A publication Critical patent/JPH02152022A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an influence of the change of the optical axis of an optical system or the like by providing a phase element inclined at a prescribed angle to the optical axis and a polarization state detector on the optical axis of a reflected beam and obtaining a focus error signal in accordance with the difference between two outputs of photodetectors. CONSTITUTION:The reflected beam from an optical disk 5 is transmitted through a quarte-wave plate 55 and its polarization state is changed, and the transmitted light and the separated light of a polarizing beam splitter 56 are uniform and light intensity distributions on photodetectors 57 and 58 are uniform, and the focus error signal is zero. When the optical disk 5 is moved away from an objective lens 1, the light intensity on detecting parts 57b and 58b of photodetectors 57 and 58 is higher and the focus error signal is negative; but when the optical disk 5 approaches the objective lens 1, the light intensity on detecting parts 57a and 58a is higher and the focus error signal is positive. Thus, since the reflected beam reaches photodetectors 57 and 58 without being converged and the spot diameter is increased, an influence of the change of the optical axis or the like upon the focus error signal is reduced to detect the focus error signal of high precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光デイスク装置の焦点サーボ制御装置に適用し
つる焦点誤差検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a focus error detection method applied to a focus servo control device of an optical disk device.

コンピュータの外部記憶装置の一つとして、レーザビー
ムを用いて情報の書き込み及び読み取りを行う光デイス
ク装置が注目されている。
2. Description of the Related Art Optical disk devices that write and read information using laser beams are attracting attention as an external storage device for computers.

この光デイスク装置には、焦点誤差信号を検出して、焦
点を制御する焦点サーボ制御装置が組み込まれている。
This optical disk device incorporates a focus servo control device that detects a focus error signal and controls the focus.

焦点サーボ制御を精度良く行うためには、焦点誤差信号
が安定に検出できるものであることが必要である。
In order to perform focus servo control with high precision, it is necessary that the focus error signal can be stably detected.

〔従来の技術〕[Conventional technology]

第8図は従来の焦点誤差検出方式の一例である非点収差
法を示す。
FIG. 8 shows an astigmatism method, which is an example of a conventional focus error detection method.

1は対物レンズ、2は集光レンズ、3は円筒レンズ、4
は4分割光検出器である。
1 is an objective lens, 2 is a condenser lens, 3 is a cylindrical lens, 4
is a four-part photodetector.

光ディスク5が合焦位置Poに位置するときには、光デ
ィスク5よりの反射ビーム6は第9図(B)に示すよう
に光検出器4の中心に円形のスポット7を形成する。
When the optical disc 5 is located at the focal position Po, the reflected beam 6 from the optical disc 5 forms a circular spot 7 at the center of the photodetector 4, as shown in FIG. 9(B).

而振れ等により光ディスク5が対物レンズ1より遠のき
Plとなると、反射ビームは第9図(A)に示すように
楕円形のスポット8となる。逆に近づきP2となると、
第9図(C)に示す楕円形のスポット9となる。
When the optical disk 5 moves away from the objective lens 1 due to vibration or the like and becomes Pl, the reflected beam becomes an elliptical spot 8 as shown in FIG. 9(A). On the other hand, if it approaches P2,
This results in an oval spot 9 shown in FIG. 9(C).

各検出部48〜4dの出力をa−dとすると、演算部1
0は(a+c)−(b+d)の演算を行い、端子11よ
り第1・0図中線■で示す焦点誤差信号が得られる。
If the outputs of the respective detection units 48 to 4d are a-d, the calculation unit 1
0 performs the calculation of (a+c)-(b+d), and from the terminal 11, a focus error signal shown by the line ■ in FIG. 1 is obtained.

この焦点誤差信号により対物レンズ1が駆動され、合焦
状態に制御される。
The objective lens 1 is driven by this focus error signal and controlled to be in focus.

一般の光デイスク装置では、光ディスク5の傾斜、光学
ヘッドのアクセス機構の組立誤差が起こりうる。これら
が起きると、反射ビーム6が傾斜し、光検出器4上のス
ポット7の位置がずれることになる。この現象を無くす
ることは困難である。
In a general optical disk device, tilting of the optical disk 5 and assembly errors of the optical head access mechanism may occur. When these occur, the reflected beam 6 will be tilted and the position of the spot 7 on the photodetector 4 will be shifted. It is difficult to eliminate this phenomenon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第8図に示す光学系は集光レンズ2を有しており、円形
スポット7の径DIは、例えば10μmと相当に小さい
The optical system shown in FIG. 8 has a condenser lens 2, and the diameter DI of the circular spot 7 is quite small, for example, 10 μm.

このため、上記のスポット位置ずれによる焦点誤差信号
に対する影響の度合は大きくなり、焦点誤差信号は例え
ば第10図中12で示す如く上方に大きくシフトした状
態となる。
Therefore, the degree of influence of the spot position shift on the focus error signal increases, and the focus error signal is largely shifted upward, as shown by 12 in FIG. 10, for example.

この場合には、位置P3が合焦状態とみなされて制御さ
れることになり、デフォーカスになり易く、データの占
込み及び読出し時にエラーが生じ易くなる。
In this case, the position P3 is considered to be in focus and controlled, which tends to cause defocus and errors during data loading and reading.

即ち、従来の焦点誤差検出方式は、光学系の収差や光軸
の変化に対して弱いという問題点があった。
That is, the conventional focus error detection method has a problem in that it is vulnerable to aberrations of the optical system and changes in the optical axis.

本発明は光学系の光軸変化等による影響を受けにくいよ
うにした焦点誤差検出方式を虎供することを目的とする
SUMMARY OF THE INVENTION An object of the present invention is to provide a focus error detection method that is less susceptible to changes in the optical axis of an optical system.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の焦点誤差検出方式の原理を示す。 FIG. 1 shows the principle of the focus error detection method of the present invention.

図中、第8図に示す構成部分と対応する部分には同一符
号を付す。
In the figure, parts corresponding to those shown in FIG. 8 are given the same reference numerals.

20は水晶又は方解石製の位相子であり、光ディスク5
からの反射ビーム6の光路内に光軸21に対して所定角
磨α傾斜させて配しである。
20 is a phase shifter made of crystal or calcite, and the optical disc 5
It is arranged so as to be inclined at a predetermined angle α with respect to the optical axis 21 within the optical path of the reflected beam 6 from the optical axis 21.

22は偏光状態検出素子であり、反射光の光路のうち位
相子20の後段に設けである。
Reference numeral 22 denotes a polarization state detection element, which is provided after the phase shifter 20 in the optical path of the reflected light.

23は2分割された光検出器であり、偏光状態検出素子
22の後段に、分割位置を光軸21と一致させて設けで
ある。23a、23bは夫々光検出部である。
Reference numeral 23 denotes a photodetector divided into two parts, which is provided after the polarization state detection element 22 with the division position aligned with the optical axis 21 . 23a and 23b are photodetectors, respectively.

24は演算回路、25は出力端子である。24 is an arithmetic circuit, and 25 is an output terminal.

反射ビーム6は、断面が円形であり、直線偏光である。The reflected beam 6 has a circular cross section and is linearly polarized.

位相子20はその光学軸が反射ビーム6の偏光面に対し
て例えば45度をなす向きで配されている。
The phase shifter 20 is arranged such that its optical axis makes, for example, 45 degrees to the polarization plane of the reflected beam 6.

〔作用〕[Effect]

位相子20の光学軸方向の屈折率をNf、光学軸と直交
する方向の屈折率をNS、位相子20を透過する部分の
幾何学的光路長をd、光の波長をλとすると、位相子2
0を透過することにより光に与えられる位相差δは、 δ=(Nf−Ns)・d・2π/λ で表わされる。
If the refractive index of the retarder 20 in the optical axis direction is Nf, the refractive index in the direction perpendicular to the optical axis is NS, the geometrical optical path length of the portion that passes through the retarder 20 is d, and the wavelength of light is λ, then the phase Child 2
The phase difference δ imparted to light by transmitting 0 is expressed as δ=(Nf−Ns)·d·2π/λ.

位相差δがπ/4のときは、透過光は円偏光となる。こ
れ以外のときは楕円偏光となる。
When the phase difference δ is π/4, the transmitted light becomes circularly polarized light. In other cases, the light becomes elliptically polarized.

第1図中、X軸は紙面方向、Y軸は紙面と垂直方向であ
る。
In FIG. 1, the X axis is in the direction of the page, and the Y axis is perpendicular to the page.

合焦時の反射ビーム6は平行であり、この位相子20を
透過する幾何学的光路長は、反射ビーム6のX軸方向の
径方向上どの位置でもdlであり、一定である。dlは
π/4の位相差を与える値としである。
The reflected beam 6 when focused is parallel, and the geometrical optical path length passing through the phase shifter 20 is dl and constant at any position in the radial direction of the reflected beam 6 in the X-axis direction. dl is a value giving a phase difference of π/4.

これにより、第2図(A)に併せて示すように、反射ビ
ーム6のうちX@の径方向上、X1方向の端の周縁部分
光線6−+、X2方向の周縁部分の光線6−2及び中心
部分の光線6−3は、共に符号30.31.32で示す
ように共に円偏光となる。
As a result, as shown in FIG. 2(A), among the reflected beams 6, in the radial direction of The light beams 6-3 and 6-3 at the center are both circularly polarized lights, as indicated by numerals 30, 31, and 32.

即ち、反射ビーム6は位相子20を透過することにより
、X@の径方向上どの部分についても一様に円偏光とさ
れる。
That is, by transmitting the reflected beam 6 through the phase shifter 20, any portion in the radial direction of X@ is uniformly circularly polarized.

光ディスク5が遠のいてPlに到ったときの反射ビーム
は対物レンズ1を通って6aで示すように集束するビー
ムとなる。
When the optical disk 5 moves away and reaches Pl, the reflected beam passes through the objective lens 1 and becomes a focused beam as shown at 6a.

第2図(B)に併せて示すように、位相子20に対する
幾何学的光路長は、中心部分の光線6a−3については
d+ と変わらず、円偏光33である。
As shown in FIG. 2(B), the geometrical optical path length for the retarder 20 is the same as d+ for the central light ray 6a-3, which is circularly polarized light 33.

×1方向端部分の光線6a−1については、d+より短
いd2となり、Y軸方向を長袖とする楕円形偏光34と
なる。
The light ray 6a-1 at the end in the x1 direction becomes d2, which is shorter than d+, and becomes elliptical polarized light 34 with a long sleeve in the Y-axis direction.

×2方向端部分の光線6a−2については、上記とは逆
にdlより長いd3となり、X軸方向を長袖とする楕円
形偏光35となる。
Contrary to the above, the light ray 6a-2 at the end in the x2 direction becomes d3, which is longer than dl, and becomes elliptical polarized light 35 with a long sleeve in the X-axis direction.

即ち、反射ビーム6aは、位相子20を透過することに
より、X軸の径方向上、中心部分が円偏光33.X+側
がY軸方向に長い楕円偏光34゜X2側がX軸方向に長
い楕円偏光35とされる。
That is, the reflected beam 6a is transmitted through the phase shifter 20, so that the center portion in the radial direction of the X-axis becomes circularly polarized light 33. The X+ side is elliptically polarized light 34 degrees long in the Y-axis direction, and the X2 side is elliptically polarized light 35 long in the X-axis direction.

光ディスク6が近づいてPlに到ったときの反射ビーム
は対物レンズ1を通って6bで示すように発散するビー
ムとなる。
When the optical disk 6 approaches and reaches Pl, the reflected beam passes through the objective lens 1 and becomes a divergent beam as shown by 6b.

第2図(C)に併せて示すように、位相子20に対する
幾何学的光路長は、中心部分の光線6b−3については
dlと変わらず、円偏光36である。
As shown in FIG. 2C, the geometrical optical path length for the retarder 20 is the same as dl for the central light ray 6b-3, which is circularly polarized light 36.

×1方向端部分の光線6b−3については、dlより良
いd4となり、X軸方向を長袖とする楕円偏光となる。
The light ray 6b-3 at the end in the x1 direction becomes d4, which is better than dl, and becomes elliptically polarized light with a long sleeve in the X-axis direction.

×2方向端部分の光線6b−2については、上記と逆に
d+より短いd5となり、Y軸方向を長軸とする楕円偏
光38となる。
Contrary to the above, the light ray 6b-2 at the end in the x2 direction becomes d5, which is shorter than d+, and becomes elliptically polarized light 38 whose major axis is in the Y-axis direction.

即ち、反射ビーム6bは、位相子20を透過することに
より、X軸の径方向上、中心部分が円偏光33.X+側
がX軸方向に長い楕円偏光37゜X2側がY軸方向に長
い楕円偏光38とされる。
That is, the reflected beam 6b is transmitted through the phase shifter 20, so that the center portion in the radial direction of the X-axis becomes circularly polarized light 33. The X+ side is elliptically polarized light 37 degrees long in the X-axis direction, and the X2 side is elliptically polarized light 38 long in the Y-axis direction.

偏光状態検出素子22は、X方向の偏光成分を反射し、
Y方向偏光成分を透過させる特性を右する。
The polarization state detection element 22 reflects the polarization component in the X direction,
Controls the characteristic of transmitting the Y-direction polarized light component.

反射ビーム6については、全部の部分が円偏光であるた
め、素子22を一様に透過し、光検出器22上の光の強
度分布は、符号40で示す如くに、左右対称となり、焦
点誤差信号は零ボルトとなる。
As for the reflected beam 6, since the entire portion is circularly polarized light, it is uniformly transmitted through the element 22, and the intensity distribution of the light on the photodetector 22 is left-right symmetrical, as shown by reference numeral 40, and there is no focus error. The signal will be zero volts.

反射ビーム6aについては、その偏光状態よりして、X
1側がより多く透過され、X2側は殆ど透過されず、光
検出器23上の光の強度分布は、符号41で示すように
、光検出部23aで強く、光検出部23bで弱くなり、
焦点誤差信号は負となる。
Regarding the reflected beam 6a, due to its polarization state,
The X2 side is transmitted more, and the X2 side is hardly transmitted, and the intensity distribution of the light on the photodetector 23 is strong at the photodetector 23a and weak at the photodetector 23b, as shown by reference numeral 41.
The focus error signal becomes negative.

反射ビーム6bについては、その偏光状態よりして、X
1側は殆ど透過されず、X2側がより多く透過し、光検
出器23上の光の強度分布は符号42で示すように、光
検出部23aで弱く、光検出部23bで強くなり、焦点
誤差信号は正となる。
Regarding the reflected beam 6b, due to its polarization state,
Almost no light is transmitted on the 1 side, and more is transmitted on the X2 side, and the intensity distribution of light on the photodetector 23 is weak at the photodetector 23a and strong at the photodetector 23b, as shown by reference numeral 42, resulting in focus error. The signal becomes positive.

この結果、端子25より、第3図中線■で示す焦点誤差
信号が得られる。この焦点誤差信号により、対物レンズ
1が駆動され、合焦状態に制御される。
As a result, a focus error signal indicated by the line 3 in FIG. 3 is obtained from the terminal 25. The objective lens 1 is driven by this focus error signal and controlled to be in focus.

第1図より分かるように、位相板20と光検出器23と
の間には集光レンズは設けられていず、各反射ビーム6
.6a、6bの光検出器23上のスポットの径D2は例
えば約4mであり、これは従来の場合の約4000倍で
ある。
As can be seen from FIG. 1, no condensing lens is provided between the phase plate 20 and the photodetector 23, and each reflected beam 6
.. The diameter D2 of the spot on the photodetector 23 of 6a and 6b is, for example, about 4 m, which is about 4000 times that of the conventional case.

ここで、光ディスク5の傾斜、光学ヘッドのアクセス機
構の組立誤差により、反射ビーム6゜6a、6bが従来
と同様に傾斜し、光検出器23上のスボッ1〜の位置が
ずれた場合にも、このずれMのスポット径に対する割合
は、従来の場合の1/ 4000となり、焦点誤差信号
に与える影響の度合も従来の1/4000となる。
Here, even if the reflected beams 6 degrees 6a and 6b are tilted as in the conventional case due to the tilt of the optical disk 5 and the assembly error of the access mechanism of the optical head, and the positions of the slots 1 to 1 on the photodetector 23 are shifted, The ratio of this shift M to the spot diameter is 1/4000 of the conventional case, and the degree of influence on the focus error signal is also 1/4000 of the conventional case.

このため、合焦状態にあるにも拘らず、反射ビーム6が
傾斜したこと等を原因とする誤った焦点誤差(i号のV
+  (第3図参照)は極く僅かとなり、デフォーカス
fimも極く僅かに抑えられる。
Therefore, even though the beam is in focus, there is an erroneous focus error caused by the tilt of the reflected beam 6 (V
+ (see FIG. 3) becomes extremely small, and defocus fim can also be suppressed to a very small amount.

これにより、上記の焦点誤差検出方式は光学系の収差や
光軸の変化に対して強いものとなり、高精度の焦点誤差
信号を継続して出力することが出来る。
As a result, the above-mentioned focus error detection method becomes resistant to aberrations of the optical system and changes in the optical axis, and can continuously output a highly accurate focus error signal.

また、光検出器23が偏光状態検出素子22に近接して
設Uであるため、光学系は小型となっている。
Furthermore, since the photodetector 23 is installed close to the polarization state detection element 22, the optical system is compact.

〔実流例〕[Actual flow example]

第4図は本発明の一実施例の焦点誤差検出方式半導体レ
ーザ50より出射したビームはコリメートレンズ51に
より平行光とされ、偏光ビームスプリッタ52を透過し
、ミラー53で反射し、対物レンズ1により光デイスク
5上に微小スポットとして照射される。
FIG. 4 shows a beam emitted from a focus error detection type semiconductor laser 50 according to an embodiment of the present invention, which is collimated by a collimating lens 51, transmitted through a polarizing beam splitter 52, reflected by a mirror 53, and then passed through an objective lens 1. The light is irradiated onto the optical disk 5 as a minute spot.

光ディスク5で反射したビーム6は、対物レンズ1.ミ
ラー53を経て偏光ビームスプリッタ52に到りここで
反射されて図中下方に向かう。
The beam 6 reflected by the optical disk 5 is transmitted through the objective lens 1. The light passes through the mirror 53 and reaches the polarizing beam splitter 52, where it is reflected and directed downward in the figure.

55は位相板としての1/4波長板であり、その光軸を
反射ビームの偏光面に対して45度頭重プだ状態で、且
つ反射ビームに垂直な面に対して角度α傾斜させて、偏
光ビームスプリッタ52の直ぐ下側の位置に設けである
Reference numeral 55 denotes a quarter-wave plate as a phase plate, and its optical axis is oriented at an angle of 45 degrees with respect to the polarization plane of the reflected beam, and is tilted at an angle α with respect to a plane perpendicular to the reflected beam. It is provided at a position immediately below the polarizing beam splitter 52.

56は偏光状態検出素子としての偏光ビームスプリッタ
であり、1/4波長板55の直ぐ下側の部位に設けであ
る。偏光ビームスプリッタ56は、Y@が長軸の楕円偏
光は透過させ、X軸が長軸の楕円偏光を反射させる特性
を有する。
Reference numeral 56 denotes a polarization beam splitter as a polarization state detection element, which is provided immediately below the quarter-wave plate 55. The polarizing beam splitter 56 has a characteristic of transmitting elliptically polarized light whose long axis is Y@ and reflects elliptically polarized light whose long axis is X axis.

57.58は夫々二分割の光検出器であり、間にレンズ
を介さずに、偏光ビームスプリッタ56に近接対向して
配しである。
Reference numerals 57 and 58 denote two-split photodetectors, which are arranged close to and opposite to the polarizing beam splitter 56 without interposing a lens between them.

光検出器57は検出部57a、57bよりなり、偏光ビ
ームスプリッタ56よりの透過光を受光する。別の光検
出器5Bは検出部58a、58bよりなり、偏光ビーム
スプリッタ56における反射光を受光する。
The photodetector 57 includes detection sections 57a and 57b, and receives the transmitted light from the polarization beam splitter 56. Another photodetector 5B includes detection sections 58a and 58b, and receives the reflected light from the polarization beam splitter 56.

差動増幅器59は、光検出部57aと58aとの出力の
和より検出部57bと58bとの出力の和を引く演算を
行い、この差動信号が焦点誤差信号として端子60より
出力される。
The differential amplifier 59 performs an operation of subtracting the sum of the outputs of the detection sections 57b and 58b from the sum of the outputs of the photodetection sections 57a and 58a, and this differential signal is outputted from the terminal 60 as a focus error signal.

反射ビーム6 (6a、6b)は、傾斜している1/4
波長板55を透過することにより、前記と同様に、偏光
状態を変えられる。
The reflected beam 6 (6a, 6b) is tilted 1/4
By transmitting the light through the wavelength plate 55, the polarization state can be changed in the same manner as described above.

合焦状態では、第5図に示すようになり、偏光ビームス
プリッタ56の透過光と分離光とは一様となり、光検出
器57.58上の光の強度分布は、70.71で示すよ
うに均一となり、焦点誤差信号は零となる。
In the focused state, as shown in FIG. 5, the transmitted light of the polarizing beam splitter 56 and the separated light are uniform, and the intensity distribution of the light on the photodetector 57.58 is as shown by 70.71. becomes uniform, and the focus error signal becomes zero.

光ディスク5が対物レンズ1より遠のくと、第6図に示
すようになり、光検出器57については、検出部57b
の方が光の強度が強い、72で示す分布となる。光検出
器58については、検出部58bの方が光の強度が強い
、73で示す分布となる。これにより、焦点誤差信号は
負となる。
When the optical disc 5 moves away from the objective lens 1, it becomes as shown in FIG.
The distribution shown by 72 is where the intensity of light is stronger. Regarding the photodetector 58, the distribution shown by 73 is such that the intensity of light is stronger in the detection part 58b. This causes the focus error signal to become negative.

光ディスク5が対物レンズ1に近づくと、第7図に示す
ようになり、光検出器57については、検出部57aの
方が光の強度が強い、74で示す分布となる。光検出器
58については、検出部58aの方が光の強度が強い、
75で示す分布となる。これにより、焦点誤差信号は正
となる。
When the optical disk 5 approaches the objective lens 1, the distribution becomes as shown in FIG. 7, and the light intensity of the light detector 57 becomes stronger at the detection part 57a, as shown by 74. Regarding the photodetector 58, the detection part 58a has a stronger light intensity.
The distribution is shown as 75. As a result, the focus error signal becomes positive.

これにより、焦点誤差信号の光ディスクの位置に対する
関係は、前記の第3図に示すものと同様となる。
As a result, the relationship between the focus error signal and the position of the optical disk becomes similar to that shown in FIG. 3 above.

反射ビームは集束されずに光検出器57.58に到り、
各検出器57.58上のスポットの径D3 、D4は数
mmと大きい。このため、光軸ずれによる一スポットの
ずれ指のスポットの大きさに対する割合は、両方の光検
出器57.58について相当小さくなり、焦点誤差信号
への影響は少ない。
The reflected beam reaches the photodetector 57, 58 without being focused,
The diameters D3 and D4 of the spots on each detector 57 and 58 are as large as several mm. Therefore, the ratio of the misaligned finger of one spot to the spot size due to the optical axis misalignment becomes considerably small for both photodetectors 57 and 58, and the influence on the focus error signal is small.

従って、誤り分の少ない焦点誤差信号を検出することが
出来、焦点サーボ制御を精度良く安定に行うことが出来
る。
Therefore, it is possible to detect a focus error signal with a small amount of error, and it is possible to perform focus servo control accurately and stably.

また、各光検出器57.58は共に偏光ビームスプリッ
タ56に近接して配してあり、焦点誤差信号を検出する
部分をコンバク[・に構成される。
Further, each of the photodetectors 57 and 58 is arranged close to the polarizing beam splitter 56, and the portion for detecting the focus error signal is configured in a convex configuration.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、光検出器上のスポ
ットの径を小さくする必要が無く、大きくできる。この
ため、光学系の収差や光軸の変化によるスポットのずれ
量のスポット径に対する割合を従来の場合に比べて格段
に小さくすることができ、上記の光軸変化等による焦点
誤差信号に対する影響を掻く僅かなものとすることが出
来る。
As explained above, according to the present invention, there is no need to reduce the diameter of the spot on the photodetector, and it can be made larger. Therefore, the ratio of the spot deviation amount due to optical system aberrations and changes in the optical axis to the spot diameter can be made much smaller than in the conventional case, and the influence on the focus error signal due to the above-mentioned changes in the optical axis can be reduced. It can be made into a slight scratch.

従って、焦点誤差信号のエラー分を小さく抑えることが
出来、高精度の焦点誤差信号を検出することが出来る。
Therefore, the error portion of the focus error signal can be suppressed to a small value, and a highly accurate focus error signal can be detected.

この焦点誤差信号を使用することにより、焦点サーボ制
御が精度良く行われ、光デイスク装置は、データの書込
み及び読出し時のエラーを低減することが出来る。
By using this focus error signal, focus servo control can be performed with high precision, and the optical disk device can reduce errors when writing and reading data.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焦点誤差検出方式の原理を説明する図
、 第2図は位相子を透過した反射ビームの偏光状態及び光
検出器上の強度分布を示す図、第3図は光ディスクの位
置と焦点誤差信号との関係を示す図、 第4図は本発明の焦点誤差検出方式の一実施例を示す図
、 第5図は合焦時の偏光状態と光強度分布を示す図、 第6図は遠のき時の偏光状態と光強度分布を示す図、 第7図は近づき時の偏光状態と光強度分布を示す図、 第8図は従来の焦点誤差信号検出方式を示す図、第9図
は合焦時、遠のき時、近づき時の光検出器上のスポット
の形状を示す図、 第10図は光ディスクの位置と焦点誤差信号との関係を
示す図である。 40〜42.70〜75は光の強度の分布、55は1/
4波長板、 56は偏光ビームスプリッタ、 57.58は光検出器、 5つは差動増幅器 を小す。 特許出願人 富 士 通 株式会社 図において、 1は対物レンズ、 5は光ディスク、 20は位相子、 22は偏光状態検出素子、 23.57.58は光検出器、 24は演算回路、 30.31,32,33.36は円偏光、34.35.
37.38は楕円偏光、 第 図 電凪 ■ 第3図 第2図 第4 図
Fig. 1 is a diagram explaining the principle of the focus error detection method of the present invention, Fig. 2 is a diagram showing the polarization state of the reflected beam transmitted through the phase shifter and the intensity distribution on the photodetector, and Fig. 3 is a diagram showing the polarization state of the reflected beam transmitted through the phase shifter and the intensity distribution on the photodetector. Figure 4 is a diagram showing the relationship between position and focus error signal; Figure 4 is a diagram showing an embodiment of the focus error detection method of the present invention; Figure 5 is a diagram showing the polarization state and light intensity distribution during focusing; Figure 6 shows the polarization state and light intensity distribution when moving away. Figure 7 shows the polarization state and light intensity distribution when approaching. Figure 8 shows the conventional focus error signal detection method. Figure 9 The figure shows the shape of the spot on the photodetector when focusing, moving away, and approaching. FIG. 10 is a diagram showing the relationship between the position of the optical disc and the focus error signal. 40-42.70-75 is the distribution of light intensity, 55 is 1/
4 wavelength plates, 56 a polarizing beam splitter, 57 and 58 photodetectors, and 5 small differential amplifiers. Patent applicant Fujitsu Ltd. In the figure, 1 is an objective lens, 5 is an optical disk, 20 is a phase shifter, 22 is a polarization state detection element, 23.57.58 is a photodetector, 24 is an arithmetic circuit, 30.31 , 32, 33.36 are circularly polarized lights, 34.35.
37.38 is elliptically polarized light, Figure 3, Figure 2, Figure 4.

Claims (1)

【特許請求の範囲】  記録媒体(5)からの反射ビーム(6)の光路内に、
光軸に対して所定角度(α)傾斜させて位相子(20、
55)を配して、上記記録媒体が対物レンズに近づいた
場合と遠のいた場合とで、該位相子を透過したビームの
偏光状態を上記位相子の傾斜方向と同じ方向である径方
向上互いに逆となるように異ならしめ、且つ、 上記位相子を透過したビームの偏光状態を検出する偏光
状態検出素子(22、56)を設け、該偏光状態検出素
子よりのビームを光軸に対して二分割された光検出器(
23、57、8)により受光し、該光検出器の二出力の
差分から焦点誤差信号を得る構成の焦点誤差検出方式。
[Claims] In the optical path of the reflected beam (6) from the recording medium (5),
The retarder (20,
55), the polarization states of the beams transmitted through the retarder are mutually arranged in the radial direction, which is the same direction as the inclination direction of the retarder, when the recording medium approaches the objective lens and when it moves away from the objective lens. A polarization state detection element (22, 56) is provided for detecting the polarization state of the beam that has passed through the retarder, and that the beam from the polarization state detection element is polarized with respect to the optical axis. Split photodetector (
23, 57, 8), and a focus error signal is obtained from the difference between the two outputs of the photodetector.
JP63305423A 1988-12-02 1988-12-02 Focus error detection system Pending JPH02152022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305423A JPH02152022A (en) 1988-12-02 1988-12-02 Focus error detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305423A JPH02152022A (en) 1988-12-02 1988-12-02 Focus error detection system

Publications (1)

Publication Number Publication Date
JPH02152022A true JPH02152022A (en) 1990-06-12

Family

ID=17944952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305423A Pending JPH02152022A (en) 1988-12-02 1988-12-02 Focus error detection system

Country Status (1)

Country Link
JP (1) JPH02152022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537383A (en) * 1995-03-01 1996-07-16 Eastman Kodak Company Optical data storage system with differential data detection and source noise subtraction for use with magneto-optic, write-once and other optical media
US5586101A (en) * 1995-03-01 1996-12-17 Eastman Kodak Company Magneto-optic data storage system with differential detection channels having separate gain control circuit
KR100477680B1 (en) * 2002-11-12 2005-03-21 삼성전자주식회사 Optical pickup

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537383A (en) * 1995-03-01 1996-07-16 Eastman Kodak Company Optical data storage system with differential data detection and source noise subtraction for use with magneto-optic, write-once and other optical media
US5586101A (en) * 1995-03-01 1996-12-17 Eastman Kodak Company Magneto-optic data storage system with differential detection channels having separate gain control circuit
KR100477680B1 (en) * 2002-11-12 2005-03-21 삼성전자주식회사 Optical pickup

Similar Documents

Publication Publication Date Title
US5189655A (en) Optical head for optical disk recording/reproducing apparatus including modified wollaston prism
JPS618744A (en) Focus error detector of optical disc device
US7072270B2 (en) Method and device for detecting optical data and reading-writing apparatus for optical data
JPS60131648A (en) Optical head
US5754503A (en) Optical device with improved focused error detection and tracing error detection for optical disk drive
EP0399977B1 (en) Apparatus and method for detecting focus errors
JPH02152022A (en) Focus error detection system
US4954702A (en) Process for detecting a focal point in an optical head
EP0336737A2 (en) Optical information reading apparatus
JPH0434740A (en) Optical head
JP3044667B2 (en) Optical reader
KR20010102340A (en) Optical scanning unit comprising a detection system for detecting the position of a movable element within the unit
JP2650118B2 (en) Optical head device
JP2812764B2 (en) Optical head for optical disk device
JP3006987B2 (en) Optical pickup
JP2629456B2 (en) Objective lens position detector
JPS60175224A (en) Optical information recording and reproducing device
JPS61168135A (en) Optical information detecting element
JPS63257929A (en) Optical information recording and reproducing device
JPH09270136A (en) Optical pickup device
JPH06349082A (en) Optical pickup device
JPH0384745A (en) Optical head
JPS62143235A (en) Out-of-focus detector for optical information recording and reproducing device
JPS61267940A (en) Optical head
JPH0778894B2 (en) Optical pickup device