JPH021510Y2 - - Google Patents

Info

Publication number
JPH021510Y2
JPH021510Y2 JP1983056650U JP5665083U JPH021510Y2 JP H021510 Y2 JPH021510 Y2 JP H021510Y2 JP 1983056650 U JP1983056650 U JP 1983056650U JP 5665083 U JP5665083 U JP 5665083U JP H021510 Y2 JPH021510 Y2 JP H021510Y2
Authority
JP
Japan
Prior art keywords
suction
cylinder
working space
end wall
rotors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983056650U
Other languages
Japanese (ja)
Other versions
JPS59163189U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5665083U priority Critical patent/JPS59163189U/en
Publication of JPS59163189U publication Critical patent/JPS59163189U/en
Application granted granted Critical
Publication of JPH021510Y2 publication Critical patent/JPH021510Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

本考案はスクリユコンプレツサに関し、より詳
しくは、スクリユコンプレツサの吸入効率を増加
せしめたシリンダの改良に関する。
TECHNICAL FIELD The present invention relates to a screw compressor, and more particularly, to an improvement of a cylinder that increases the suction efficiency of a screw compressor.

【技術的背景】[Technical background]

スクリユコンプレツサ本体1は、第1図〜第4
図に示すように、吸入側端壁2を形成するフロン
トケーシング3及び吐出側端壁4を形成するリア
ケーシング5間にシリンダ6を有し、このシリン
ダ6は平行に配置した二つの中空円筒7,8のそ
れぞれの軸直角断面の円形の一部分で互いに重合
してシリンダの作用空間を形成する。このシリン
ダの作用空間内には互いにかみ合う一対を成す二
つのスクリユロータすなわちオスロータ9及びメ
スロータ10を収容し、各々の両軸端を前記両ケ
ーシング3,5内の軸受11,12,13,14
により回転自在に支承すると共に、オスロータ9
の一の軸端は図示せざるエンジン又はモータの回
転軸に直結されている。 前記フロントケーシング3には、内部に吸入通
路15を形成すると共に、この吸入通路15は一
端を吸入口16に連通し、他端をシリンダ6の吸
入端壁側2に形成された内孔17に連通してい
る。この内孔17は、両ロータ9,10のランド
18,19先端が可及的に接近するシリンダ内壁
の中空円筒7,8よりもやや大径にシリンダ6を
膨出して形成され、該部より吸入された気体は、
前記両ロータ9,10の噛合回転により前記ラン
ド18,19先端とシリンダ6内壁間に形成され
る個別の作用空間20内に吸入される。通常、前
記作用空間20を形成する両ロータ9,10のラ
ンド18,19の先端がシリンダ内壁に可及的に
近接して描出する一対のシールa−a′線が、内孔
17及び吸入通路15との連通を遮断される位置
である縁部21(二点鎖線)にまで移動すると、
該一対のシール線a−a′とこれに先行する他の一
対のシール線(b−b′)との間の作用空間20に
吸入気体が閉じ込まれ圧縮が開始する(第4図参
照)。すなわち、内孔17の縁部21より吸入閉
じ込みが始まり圧縮されて、吐出口22より排出
される。
The screw compressor main body 1 is shown in Figures 1 to 4.
As shown in the figure, a cylinder 6 is provided between the front casing 3 forming the suction side end wall 2 and the rear casing 5 forming the discharge side end wall 4, and this cylinder 6 has two hollow cylinders 7 arranged in parallel. . A pair of mutually meshing screw rotors, a male rotor 9 and a female rotor 10, are accommodated in the working space of this cylinder, and both shaft ends of each rotor are connected to bearings 11, 12, 13, 14 in the casings 3, 5.
The male rotor 9 is rotatably supported by
One shaft end is directly connected to a rotating shaft of an engine or motor (not shown). A suction passage 15 is formed inside the front casing 3, and one end of the suction passage 15 communicates with a suction port 16, and the other end communicates with an inner hole 17 formed in the suction end wall side 2 of the cylinder 6. It's communicating. This inner hole 17 is formed by protruding the cylinder 6 to a slightly larger diameter than the hollow cylinders 7, 8 on the inner wall of the cylinder, to which the tips of the lands 18, 19 of both rotors 9, 10 are as close as possible. The inhaled gas is
Due to the meshing rotation of both the rotors 9 and 10, the air is sucked into a separate working space 20 formed between the tips of the lands 18 and 19 and the inner wall of the cylinder 6. Normally, a pair of seal lines a-a', in which the tips of the lands 18 and 19 of both the rotors 9 and 10 forming the working space 20 are drawn as close as possible to the inner wall of the cylinder, form the inner hole 17 and the suction passage. When moving to the edge 21 (double-dashed line), which is the position where communication with 15 is cut off,
Inhaled gas is trapped in the working space 20 between the pair of seal lines a-a' and the other pair of seal lines (bb') preceding them, and compression begins (see Figure 4). . That is, suction and confinement begin from the edge 21 of the inner hole 17, and the fluid is compressed and discharged from the discharge port 22.

【従来技術及び問題点】[Prior art and problems]

従来のスクリユコンプレツサは吸入締切り位置
を成す内孔17の縁部21(第1図、第4図二点
鎖線)は両ロータ9,10のランド18,19の
先端部と同一のリード角を有するスクリユライン
を持つた縁部で、理論上前記作用空間20の容積
が最大となる位置(シール線21−21及びc−
c′の作用空間)もしくはその近傍位置に形成され
ているため、また一般にエアクリーナ及び吸気配
管の抵抗によりスクリユコンプレツサの作用空間
に吸入される吸入気体の圧力は大気圧よりも低い
負圧状態となつており、オス・メス両ロータのラ
ンド先端が描くシール線が前記縁部を通過した後
は、シリンダの交合線部分は、吸入口と隔離され
この時点から圧縮作用が開始することとなるが、
このとき前記吸入気体を作用空間へ吸入する際、
吸入気体はそのまま、大気圧以下の圧力状態(負
圧状態)で吸い込まれる。このため吸入効率が悪
く、吸込状態(大気状態)に換算したときの吐出
空気量が実質的に減少し、スクリユコンプレツサ
の体積効率が悪いという欠点を有するものであつ
た。
In the conventional screw compressor, the edge 21 of the inner hole 17 (double-dashed line in FIGS. 1 and 4), which forms the suction cut-off position, has the same lead angle as the tips of the lands 18 and 19 of both rotors 9 and 10. The position where the volume of the working space 20 is theoretically maximum (seal line 21-21 and c-
(c' working space) or its vicinity, and generally due to the resistance of the air cleaner and intake piping, the pressure of the suction gas drawn into the working space of the screw compressor is in a negative pressure state lower than atmospheric pressure. After the seal line drawn by the ends of the lands of both the male and female rotors passes through the edge, the intersection line part of the cylinder is isolated from the suction port, and the compression action starts from this point. but,
At this time, when inhaling the suction gas into the working space,
The intake gas is sucked in as it is at a pressure below atmospheric pressure (negative pressure). For this reason, the suction efficiency is poor, the amount of discharged air is substantially reduced when converted to the suction state (atmospheric state), and the screw compressor has the drawback of poor volumetric efficiency.

【構成】【composition】

本考案は、従来機のシリンダに簡単な改良を加
えるだけで、吸入効率を上昇せしめ、スクリユコ
ンプレツサの体積効率を高めることを目的とする
もので、図示に示す実施例にもとづきその構成を
説明すると、平行に配置した二つの中空円筒7,
8のそれぞれの軸直角断面の円形の一部分で互い
に重合して形成されるシリンダ6内の作用空間内
に互いにかみ合う一対を成すオスロータ9及びメ
スロータ10を収容し、吸入口16から気体を吸
入し、圧縮して吐出口22から排出するよう構成
して成るスクリユコンプレツサにおいて、前記シ
リンダ6内を軸線方向に二つの中空円筒に仕切る
一の交合線23に重合する部分で、前記容積が最
大となる作用空間に連通し、且つ吸入口16と連
通する吸入側端壁2から吐出側端壁4方向に延び
る切欠溝30を形成すると共に、吸入口に連通す
る内孔17の縁部31が画定する吸入締め切り位
置を前記両ロータのランド間に形成される作用空
間の容積が最大となる位置よりも吸入側端壁2方
向のシリンダ6端部に設けたものである。
The purpose of the present invention is to increase the suction efficiency and the volumetric efficiency of the screw compressor by simply making simple improvements to the cylinder of the conventional machine. To explain, two hollow cylinders 7 arranged in parallel,
A pair of male rotors 9 and female rotors 10 that mesh with each other are housed in a working space in a cylinder 6 formed by overlapping each other with a circular part of a cross section perpendicular to the axis of each cylinder 8 , and gas is sucked from an inlet 16 . In a screw compressor configured to compress and discharge from a discharge port 22, the volume is the largest at a portion that overlaps one intersection line 23 that partitions the inside of the cylinder 6 into two hollow cylinders in the axial direction. A cutout groove 30 extending from the suction side end wall 2 to the discharge side end wall 4 direction, which communicates with the working space and the suction port 16, is formed, and an edge 31 of the inner hole 17, which communicates with the suction port, is defined. The suction closing position is provided at the end of the cylinder 6 in the direction of the suction side end wall 2 from the position where the volume of the working space formed between the lands of both rotors is maximum.

【作用】[Effect]

従つて、作用空間内の容積が最大となる作用空
間に至るまでは前記作用空間内は、次第に空間容
積を拡大することとなるが、吸入口に連通する内
孔17の縁部が画定する吸入締め切り位置が通常
の締め切り位置である前記両ロータのランド間に
形成される作用空間の容積が最大となる位置より
も早い位置(引出し線31)であり、前記空間容
積の拡大過程においては前記作用空間内は負圧状
態となつており、両ロータのシール線が内孔の縁
部31を通過後の前記容積が最大となる作用空間
は、切欠溝30のみを介して吸入通路に連通して
いるため、前記負圧と大気圧との圧力差により流
入する吸入気体には流速が加わり、それと共にオ
ス・メス両ロータの高速回転によつて吸入側端壁
近傍において噛み合うランド先端縁が発生する流
速との相乗効果によつて交合線上の切欠溝内の吸
入気体の流速が加速されその結果前記作用空間内
への効率的な吸入気体の過給が行われる。
Therefore, the volume of the working space is gradually expanded until the working space reaches the maximum volume, but the suction defined by the edge of the inner hole 17 communicating with the suction port. The closing position is a position (lead line 31) earlier than the normal closing position where the volume of the working space formed between the lands of both rotors is at its maximum (lead line 31), and in the process of expanding the space volume, the working space is The inside of the space is in a negative pressure state, and the working space where the volume is maximum after the seal lines of both rotors pass through the edge 31 of the inner hole communicates with the suction passage only through the notch groove 30. Therefore, due to the pressure difference between the negative pressure and the atmospheric pressure, a flow velocity is added to the incoming suction gas, and at the same time, due to the high speed rotation of both the male and female rotors, the tip edge of the land that engages near the suction side end wall is generated. Due to the synergistic effect with the flow velocity, the flow velocity of the intake gas in the notched grooves on the line of intersection is accelerated, and as a result, efficient supercharging of the intake gas into the working space is performed.

【実施例】【Example】

以下、前出第1図〜第4図を用いて、本考案の
詳細を前出従来技術と相違する点について、図示
の実施例にもとづき説明する。 すなわち、本考案は従来の内孔17の縁部21
(第1図及び第4図二点鎖線)を両ロータ9,1
0のランド18,19間に形成される作用空間が
最大容積となる位置よりも吸入側端壁方向に形成
する。換言すれば、前記位置よりも早い位置(引
出し線31:第1図及び第4図実線)に両ロータ
のランド18,19先端のねじれ線と対応する曲
線状に内孔17の縁部31を形成している。また
両ロータ9,10の噛み合いを開始するシリンダ
の吸入側で、且つシリンダ6内に形成される二つ
の中空円筒7,8が重合する交合線23に重合す
る部分に吸入通路15と連通する切欠溝30が形
成されている。この切欠溝30は、第1図におい
て両ロータ9,10の紙面下方、第3図において
右方に吸入側端壁2から吐出側端壁4方向に略方
形状にシリンダ6を穿設して設けられている。す
なわち第4図に示すように、切欠溝30の軸線方
向における吐出口方向の端部は、シール線b−
b′及びd−d′の作用空間を、吸入通路に連通する
通常の吸入閉じ込み位置となる内孔17の縁部2
1よりさらに吐出側に突出するように形成し、吸
入気体の吸入閉じ込み位置を遅らせ、通常の吸入
閉じ込み位置においても容積が最大となる作用空
間(21−21およびc−c′)を吸入通路15に
連通する位置に設けられる。尚、切欠溝30の吐
出口方向の端部の位置は図示された実施例に限ら
ず、所望の圧縮気体の圧力に応じて適宜任意に選
択することができる。また22は圧縮気体の吐出
口である。 次に上記実施例の作用について説明すると、第
4図においてオス・メス両ロータ9,10のラン
ド先端が描くシール線b−b′が縁部21の位置に
達するまでは、作用空間はその容積を増加しよう
としているが、該作用空間(a−a′及びb−b′)
は、両ロータのシール線が内孔の縁部31を通過
後であり、且つ、シール線b−b′及びd−d′に先
行するシール線21−21及びc−c′で形成する
容積の最大となる作用空間20は、切欠溝30が
従来の内孔17の縁部21よりも吐出側端壁方向
に突出しているため、切欠溝30のみにより吸入
通路15と連通しており、未だ吸入閉じ込みが行
われず、また、前記次第に空間容積を拡大する作
用空間は、拡大過程において負圧状態となつてい
るから、この負圧と大気圧との圧力差により流入
する吸入気体には流速が加わり、前記切欠溝30
に吸入口16、吸入通路15を介して吸入気体が
過給される。さらに、オス・メス両ロータの高速
回転によつて吸入側端壁近傍において噛み合うラ
ンド先端縁が発生する流速との相乗効果によつて
交合線上の切欠溝内の吸入気体の流速が加速され
その結果切欠溝30内の気体をかき込むようにし
て吸入閉じ込み位置であるc−c′直前の作用空間
b−b′及びc−c′内の作用空間への効率的な吸入
気体の過給が行われる。 次いで、両ロータ9,10の回転によりシール
線b−b′が切欠溝の吐出側端部以降のシール線、
一点鎖線c−c′を通過すると初めて、作用空間b
−b′及びd−d′は吸入通路との連通が遮断され、
吸入気体が閉じ込まれて両ロータによる圧縮工程
が始まる。吸入気体は順次縮小する両ロータのラ
ンド間で形成される各作用空間を通過し、所望の
圧力に圧縮されて吐出口22より外部へ吐出され
る。
Hereinafter, with reference to FIGS. 1 to 4, the details of the present invention will be explained based on the illustrated embodiments, with respect to the differences from the prior art described above. That is, the present invention improves the conventional edge 21 of the inner hole 17.
(Figures 1 and 4, two-dot chain lines) are connected to both rotors 9 and 1.
The working space formed between the zero lands 18 and 19 is formed toward the suction side end wall from the position where the maximum volume is reached. In other words, the edge 31 of the inner hole 17 is formed in a curved shape corresponding to the twist line at the ends of the lands 18 and 19 of both rotors at a position earlier than the above position (lead line 31: solid line in FIGS. 1 and 4). is forming. In addition, a notch communicating with the suction passage 15 is provided on the suction side of the cylinder where the two rotors 9 and 10 start meshing, and at a portion that overlaps with the line of intersection 23 where the two hollow cylinders 7 and 8 formed in the cylinder 6 overlap. A groove 30 is formed. This notched groove 30 is formed by boring a cylinder 6 in a substantially rectangular shape from the suction end wall 2 to the discharge end wall 4 below the rotors 9 and 10 in FIG. 1 and to the right in FIG. 3. It is provided. That is, as shown in FIG. 4, the end of the notch groove 30 in the axial direction toward the discharge port is aligned with the seal line b-
The edge 2 of the inner hole 17, which is the normal suction confinement position that communicates the working spaces b' and d-d' with the suction passage.
It is formed to protrude further toward the discharge side than 1, delays the suction confinement position of the suction gas, and creates an action space (21-21 and c-c') where the volume is maximum even in the normal suction confinement position. It is provided at a position communicating with the passage 15. Note that the position of the end of the notched groove 30 in the discharge port direction is not limited to the illustrated embodiment, and can be arbitrarily selected as appropriate depending on the desired pressure of the compressed gas. Further, 22 is a discharge port for compressed gas. Next, the operation of the above embodiment will be explained. In FIG. However, the working space (a-a' and b-b')
is the volume formed by the seal lines 21-21 and c-c' after the seal lines of both rotors have passed through the edge 31 of the bore and preceding the seal lines b-b' and d-d'. Since the notch groove 30 protrudes toward the discharge side end wall from the edge 21 of the conventional inner hole 17, the working space 20, which is the maximum, communicates with the suction passage 15 only through the notch groove 30, and is still in communication with the suction passage 15. Since suction confinement does not occur and the working space whose volume is gradually expanded is under negative pressure during the expansion process, the incoming suction gas has a flow rate due to the pressure difference between this negative pressure and atmospheric pressure. is added, and the notch groove 30
The intake gas is supercharged through the intake port 16 and the intake passage 15. Furthermore, due to the synergistic effect of the flow velocity generated by the high-speed rotation of both the male and female rotors, which generate the leading edge of the land that engages near the suction side end wall, the flow velocity of the suction gas in the notched groove on the line of intersection is accelerated. Efficient supercharging of suction gas to the working spaces b-b' and c-c' immediately before the suction confinement position c-c' is carried out by sucking the gas in the notch groove 30. . Then, due to the rotation of both rotors 9 and 10, the seal line b-b' becomes the seal line after the discharge side end of the notched groove,
Only after passing through the dashed-dotted line c-c' is the action space b
-b' and dd' are cut off from communicating with the suction passage;
The intake gas is trapped and the compression process by both rotors begins. The suction gas passes through each working space formed between the lands of both rotors, which are gradually reduced in size, is compressed to a desired pressure, and is discharged to the outside from the discharge port 22.

【効果】【effect】

本考案は以上のようにスクリユコンプレツサに
おける気体の吸入締切り位置であるシリンダに設
けた内孔の縁部を、該縁部が通常設けられるシリ
ンダ内で噛合回転する両ロータのランド間に形成
される作用空間の容積が最大となる位置よりも吸
入側端壁方向に設けると共に、前記シリンダ内を
軸線方向に二つの中空円筒に仕切る一の交合線に
重合する部分で、前記容積が最大となる作用空間
に連通し、且つ吸入口と連通する吸入側端壁から
吐出側端壁方向に延びる切欠溝を設けたので、オ
ス・メス両ロータのシール線と吸入口に連通する
内孔の縁部とが画定する作用空間の吸入締め切り
が早いことにより、切欠溝を介してのみ容積が最
大の作用空間が吸入口に連通することになり、気
体を作用空間に吸入する際、前記負圧により流入
する吸入気体に加わる適度の流速と前記オス・メ
ス両ロータの回転に伴う気体の流速とにより、吸
入気体がかき込まれるため、この「かき込み効
果」によつて気体を作用空間内に効率良く過給す
ることができ、よつて、吸入効率を向上せしめる
ことができる。このため実用上有益な効率の良い
スクリユコンプレツサを提供することができるも
のである。さらに前記切欠溝は吸入側端壁より直
接穿設することができるので加工も容易である。
As described above, the present invention forms the edge of the inner hole provided in the cylinder, which is the gas suction cut-off position in the screw compressor, between the lands of both rotors that mesh and rotate in the cylinder where the edge is normally provided. The volume of the working space is the maximum at a portion that is provided toward the suction side end wall from the position where the volume of the working space is maximum, and overlaps with one intersection line that partitions the inside of the cylinder into two hollow cylinders in the axial direction. Since a cutout groove is provided that extends from the suction side end wall communicating with the suction port to the discharge side end wall, the seal line of both the male and female rotors and the edge of the inner hole communicating with the suction port are provided. Due to the early suction deadline of the working space defined by the parts, the working space with the largest volume communicates with the suction port only through the notched groove, and when gas is sucked into the working space, the negative pressure The suction gas is stirred by the moderate flow velocity applied to the inflowing suction gas and the gas flow velocity accompanying the rotation of both the male and female rotors, and this "scraping effect" efficiently moves the gas into the working space. Supercharging can be performed, thus improving suction efficiency. Therefore, it is possible to provide a practically useful and efficient screw compressor. Further, since the cutout groove can be directly formed from the suction side end wall, machining is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の実施例を示すもので、第1図はス
クリユコンプレツサ本体の横断面図、第2図はそ
の縦断面図、第3図は第1図−線断面図、第
4図はシリンダの展開図である。 1…スクリユコンプレツサ本体、2…吸入側端
壁、3…フロントケーシング、4…吐出側端壁、
5…リヤケーシング、6…シリンダ、7,8…中
空円筒、9…オスロータ、10…メスロータ、1
1,12,13,14…軸受、15…吸入通路、
16…吸入口、17…内孔、18,19…ラン
ド、20…作用空間、21…縁部、22…吐出
口、23…交合線、30…切欠溝、31…本考案
の内孔の縁部。
The figures show an embodiment of the present invention, in which Fig. 1 is a cross-sectional view of the main body of the screw compressor, Fig. 2 is a longitudinal sectional view thereof, Fig. 3 is a sectional view taken along the line of Fig. 1, and Fig. 4 is a cross-sectional view of the main body of the screw compressor. is a developed view of the cylinder. 1...Screw compressor main body, 2...Suction side end wall, 3...Front casing, 4...Discharge side end wall,
5... Rear casing, 6... Cylinder, 7, 8... Hollow cylinder, 9... Male rotor, 10... Female rotor, 1
1, 12, 13, 14... bearing, 15... suction passage,
16... Suction port, 17... Inner hole, 18, 19... Land, 20... Working space, 21... Edge, 22... Outlet, 23... Intersection line, 30... Notch groove, 31... Edge of inner hole of the present invention Department.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 平行に配置した二つの中空円筒のそれぞれの軸
直角断面の円形の一部分で互いに重合して形成さ
れるシリンダ内の作用空間内に互いにかみ合う一
対を成すオスロータ及びメスロータを収容し、吸
入口から気体を吸入し、圧縮して吐出口から排出
するよう構成して成るスクリユコンプレツサにお
いて、前記シリンダ内を軸線方向に二つの中空円
筒に仕切る一の交合線に重合する部分で、前記容
積が最大となる作用空間に連通し、且つ吸入口と
連通する吸入側端壁から吐出側端壁方向に延びる
切欠溝を形成すると共に、吸入口に連通する内孔
の縁部が画定する吸入締め切り位置を前記両ロー
タのランド間に形成される作用空間の容積が最大
となる位置よりも吸入側端壁方向のシリンダ端部
に設けたことを特徴とするスクリユコンプレツ
サ。
A pair of male and female rotors that engage with each other are accommodated in the working space in the cylinder, which is formed by overlapping each other with circular parts of the cross sections perpendicular to the axis of two hollow cylinders arranged in parallel, and gas is introduced from the inlet. In a screw compressor configured to suck in air, compress it, and discharge it from a discharge port, the volume is at its maximum at a portion that overlaps one intersection line that partitions the inside of the cylinder into two hollow cylinders in the axial direction. A notched groove extending from the suction side end wall toward the discharge side end wall communicating with the suction port is formed, and the suction closing position defined by the edge of the inner hole communicating with the suction port is defined by the suction closing position. A screw compressor characterized in that the screw compressor is provided at the end of the cylinder in the direction of the suction side end wall from the position where the volume of the working space formed between the lands of both rotors is maximum.
JP5665083U 1983-04-18 1983-04-18 Skrill Compressa Granted JPS59163189U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5665083U JPS59163189U (en) 1983-04-18 1983-04-18 Skrill Compressa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5665083U JPS59163189U (en) 1983-04-18 1983-04-18 Skrill Compressa

Publications (2)

Publication Number Publication Date
JPS59163189U JPS59163189U (en) 1984-11-01
JPH021510Y2 true JPH021510Y2 (en) 1990-01-16

Family

ID=30186972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5665083U Granted JPS59163189U (en) 1983-04-18 1983-04-18 Skrill Compressa

Country Status (1)

Country Link
JP (1) JPS59163189U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856649A (en) * 1981-09-28 1983-04-04 Toppan Printing Co Ltd Packaging of vinegared rice rolled in laver

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115275Y2 (en) * 1980-12-20 1986-05-12
JPS58169187U (en) * 1982-05-10 1983-11-11 株式会社神戸製鋼所 Screw compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856649A (en) * 1981-09-28 1983-04-04 Toppan Printing Co Ltd Packaging of vinegared rice rolled in laver

Also Published As

Publication number Publication date
JPS59163189U (en) 1984-11-01

Similar Documents

Publication Publication Date Title
US4224016A (en) Rotary positive displacement machines
JPH0428918B2 (en)
EP0695871B1 (en) Roots-type blowers
JPH021510Y2 (en)
JPS5888487A (en) Rotary compressor
CN207437347U (en) Rotating boosting pumps
JPH021509Y2 (en)
JPH08338386A (en) Screw compressor
JP5486851B2 (en) Screw compressor
JPS59229078A (en) Rotary compressor
TW202022233A (en) Screw compressor
CN220791504U (en) High sliding vane type compressor of stability
CN210218110U (en) Efficient three-jaw claw formula vacuum pump
JP2001200727A (en) Turbosupercharger
JPH04370379A (en) Dry vacuum pump
JPH0347495A (en) Screw-type fluid machine
JPH0718416B2 (en) Rotor for rotary pump
JPS63255588A (en) Gas compressor
JPS59113289A (en) Rotary compressor
JP2002130165A (en) Fluid machine
JPH10238483A (en) Screw rotary machine
JPS61103589U (en)
JPS6329184Y2 (en)
JPH0217194Y2 (en)
JPS6386390U (en)