JPH02150900A - Method and device for linear predictive analysis - Google Patents

Method and device for linear predictive analysis

Info

Publication number
JPH02150900A
JPH02150900A JP63305248A JP30524888A JPH02150900A JP H02150900 A JPH02150900 A JP H02150900A JP 63305248 A JP63305248 A JP 63305248A JP 30524888 A JP30524888 A JP 30524888A JP H02150900 A JPH02150900 A JP H02150900A
Authority
JP
Japan
Prior art keywords
linear predictive
linear
analysis
predictive analysis
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63305248A
Other languages
Japanese (ja)
Other versions
JP2730108B2 (en
Inventor
Satoru Taguchi
哲 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63305248A priority Critical patent/JP2730108B2/en
Publication of JPH02150900A publication Critical patent/JPH02150900A/en
Application granted granted Critical
Publication of JP2730108B2 publication Critical patent/JP2730108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a linear predictive analytic result close to an actual spectrum envelope over the entire frequency band by taking a 2nd linear predictive analysis for an input speech signal which is filtered by a reverse filter when normalized predicted residual electric power in a 1st linear predictive analysis becomes extremely small. CONSTITUTION:A 1st linear predictive analysis part 1 takes a 1st linear predictive analysis of the input speech signal and a normalized predicted residual electric power calculating circuit 2 calculates the normalized predicted residual electric power in the 1st linear predictive analysis to determine an attenuation coefficient (r) by a predetermined corresponding relation with the normalized predicted residual electric power; and the attenuation coefficient (r) is applied to linear prediction coefficients alpha1 and alpha2 obtained by the 1st linear predictive analysis and the reverse filter 5 which uses the linear predictive coefficients after the attenuation coefficient is applied is constituted. Then the input speech signal is inputted to this reverse filter 5, whose output is processed by a 2nd linear predictive analysis. Consequently, the linear predictive analytic result which is close to the actual spectrum envelope over the entire frequency band is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は線形予測分析方法及びその装置に関し、特に音
声分析における線形予測分析方法及びその装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a linear predictive analysis method and apparatus thereof, and particularly to a linear predictive analysis method and apparatus thereof in speech analysis.

〔従来の技術〕[Conventional technology]

音声分析の手法の1つである線形予測分析の欠点として
、極周波数の帯域幅過少推定の現象が知られている。こ
の現象は鼻音の場合に特に著しく発生し、第1ホルマン
トに起因する。この現象が著しい鼻音等を線形予測分析
した場合、分析次数が2次程度で正規化予測残差電力が
極端に、例えば1O−3あるいはそれ以下に、小さくな
る。過少推定の結果、第1ホルマントの帯域幅が極端に
狭くなり、音声のエネルギーのほとんどが第1ホルマン
トに集中しているように誤認する。
A phenomenon of underestimation of the bandwidth of polar frequencies is known as a drawback of linear predictive analysis, which is one of the methods of speech analysis. This phenomenon occurs particularly markedly in the case of nasal sounds, and is caused by the first formant. When linear predictive analysis is performed on a nasal sound or the like in which this phenomenon is noticeable, the normalized predictive residual power becomes extremely small, for example, 1O-3 or less, when the analysis order is about second order. As a result of the underestimation, the bandwidth of the first formant becomes extremely narrow, leading to a false impression that most of the energy of the voice is concentrated in the first formant.

第2図はこの現象を説明するための説明図である。この
現象が発生した場合、実際のスペクトル包絡が点線の曲
線aの如くであったとすると、線形予測分析の結果が示
すスペクトル包絡は実線の曲線すの如くになってしまう
FIG. 2 is an explanatory diagram for explaining this phenomenon. When this phenomenon occurs, if the actual spectral envelope is like the dotted curve a, the spectral envelope shown by the result of the linear predictive analysis will be like the solid curve.

この欠点を解決策としてラグ窓が知られている。Lag windows are known as a solution to this drawback.

ラグ窓は、自己相関係数列に対して時間遅れ方向に減衰
を与えるものであり、スペクトルの拡散効果がある。ラ
グ窓のスペクトル拡散によって、第1ホルマントの帯域
幅過少推定を補償できる。
The lag window provides attenuation in the time delay direction to the autocorrelation coefficient sequence, and has a spectrum spreading effect. Spectral spreading of the lag window can compensate for the first formant bandwidth underestimation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、ラグ窓のスペクトル拡散効果は全周波数帯域に
及ぶので、従来の線形予測分析にラグ窓を適用して第1
ホルマントの帯域幅過少推定を補償すると、第1ホルマ
ント以外の周波数帯域で線形予測分析の結果に大きな狂
いが生じてしまう。
However, since the spectral spread effect of the lag window extends over the entire frequency band, the lag window is applied to the conventional linear prediction analysis.
If the underestimation of the formant bandwidth is compensated for, the results of the linear predictive analysis will be greatly distorted in frequency bands other than the first formant.

本発明の目的は、極周波数の帯域幅過少推定を防止でき
全周波数帯域に亘って実際の・スペクトル包絡に近い線
形予測分析結果が得られる線形予測分析方法及びその装
置を提供することにある。
An object of the present invention is to provide a linear predictive analysis method and apparatus that can prevent underestimation of the bandwidth of polar frequencies and obtain linear predictive analysis results that are close to the actual spectral envelope over the entire frequency band.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の線形予測分析方法は、入力音声信号に対して第
1の線形予測分析を行い、行った前記第1の線形予測分
析における正規化予測残差電力を算出し、算出した前記
正規化予測残差電力に対してあらかじめ定めた対応関係
で減衰係数を決定し、決定した前記減衰係数を前記第1
の線形予測分析で得た線形予測係数に印加し、前記減衰
係数を印加した前記線形予測係数を係数とする逆フィル
タを構成してこの逆フィルタに前記入力音声信号を入力
し、前記逆フィルタの出力に対して第2の線形予測分析
を行う。
The linear prediction analysis method of the present invention performs a first linear prediction analysis on an input audio signal, calculates the normalized prediction residual power in the performed first linear prediction analysis, and calculates the normalized prediction residual power in the first linear prediction analysis performed. An attenuation coefficient is determined based on a predetermined correspondence relationship with respect to the residual power, and the determined attenuation coefficient is applied to the first
is applied to the linear prediction coefficient obtained by the linear prediction analysis of A second linear predictive analysis is performed on the output.

又、本発明の線形予測分析方法は、入力音声信号に対し
て第1の線形予測分析を行い、行った前記第1の線形予
測分析における正規化予測残差電力を算出し、算出した
前記正規化予測残差電力に対してあらかじめ定めた対応
関係で減衰係数を決定し、決定した前記減衰係数により
決定される減衰を単位遅延素子のそれぞ九の入力又は出
力に印加する減衰手段を有し前記第1の線形予測分析で
得た線形予測係数を係数とする逆フィルタを構成してこ
の逆フィルタに前記入力音声信号を入力し、前記逆フィ
ルタの出力に対して第2の線形予測分析を行うようにも
できる。
Further, in the linear prediction analysis method of the present invention, a first linear prediction analysis is performed on an input audio signal, a normalized prediction residual power in the first linear prediction analysis performed is calculated, and the calculated normal and attenuation means for determining an attenuation coefficient according to a predetermined correspondence relationship with respect to the predicted residual power, and applying attenuation determined by the determined attenuation coefficient to each of nine inputs or outputs of the unit delay element. configuring an inverse filter whose coefficients are the linear prediction coefficients obtained in the first linear prediction analysis, inputting the input audio signal to this inverse filter, and performing a second linear prediction analysis on the output of the inverse filter. You can also do it.

本発明の線形予測分析装置は、入力音声信号に対して第
1の線形予測分析を行う第1の線形予測分析手段と、こ
の第1の線形予測分析手段が行った前記第1の線形予測
分析における正規化予測残差電力を算出する算出手段と
、この算出手段から入力した前記正規化予測残差電力に
対してあらかじめ定めた対応関係で減衰係数を決定する
決定手段と、この決定手段から入力した前記減衰係数を
前記第1の線形予測分析で得た線形予測係数に印加する
印加手段と、この印加手段によって前記減衰係数を印加
した前記線形予測係数を係数とし前記入力音声信号を入
力する逆フィルタと、この逆フィルタの出力に対して第
2の線形予測分析を行う第2の線形予測分析手段とを備
えて構成される。
The linear prediction analysis device of the present invention includes a first linear prediction analysis means that performs a first linear prediction analysis on an input audio signal, and a first linear prediction analysis performed by the first linear prediction analysis means. a calculation means for calculating the normalized predicted residual power in the calculation means, a determining means for determining an attenuation coefficient in a predetermined correspondence relationship with respect to the normalized predicted residual power input from the calculating means, and an input from the determining means. applying means for applying the attenuation coefficient obtained in the first linear prediction analysis to the linear prediction coefficient obtained in the first linear prediction analysis; The inverse filter is configured to include a filter and a second linear predictive analysis means that performs a second linear predictive analysis on the output of the inverse filter.

又、本発明の線形予測分析装置は、入力音声信号に対し
て第1の線形予測分析を行う第1の線形予測分析手段と
、この第1の線形予測分析手段が行った前記第1の線形
予測分析における正規化予測残差電力を算出する算出手
段と、この算出手段から入力した前記正規化予測残差電
力に対してあらかしめ定めた対応関係で減衰係数を決定
する決定手段と、この決定手段から入力した前記減衰係
数により決定される減衰を単位遅延素子のそれぞれの入
力又は出力に印加する減衰手段を有し前記第1の線形予
測分析で得た線形予測係数を係数とし前記入力音声信号
を入力する逆フィルタと、この逆フィルタの出力に対し
て第2の線形予測分析を行う第2の線形予測分析手段と
を備えて構成されることもできる。
Further, the linear prediction analysis device of the present invention includes a first linear prediction analysis means for performing a first linear prediction analysis on an input audio signal, and a first linear prediction analysis means performed by the first linear prediction analysis means. A calculating means for calculating normalized predicted residual power in predictive analysis, a determining means for determining an attenuation coefficient based on a predetermined correspondence relationship with respect to the normalized predicted residual power input from this calculating means, and this determining means. an attenuation means for applying attenuation determined by the attenuation coefficient inputted from the means to each input or output of the unit delay element, and using the linear prediction coefficient obtained in the first linear prediction analysis as a coefficient and the input audio signal It may also be configured to include an inverse filter that inputs the inverse filter, and a second linear predictive analysis means that performs a second linear predictive analysis on the output of the inverse filter.

〔実施例〕゛ 次に、本発明について図面を参照して説明する。[Example]゛ Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

第1図に示す実施例は、順次接続されたA/D変換器1
1.窓処理回路12.自己相関算出回路13及びLPG
分析回路14を有し入力音声信号に対し2次の線形予測
分析を行う第1線形予測分析部1と、第1線形予測分析
部1から入力したにパラメータに基づき正規化予測残差
電力Uを算出する正規化予測残差電力算出回路2と、正
規化予測残差電力算出回路2から入力した正規化予測残
差電力Uに基づき減衰係数γを決定する減衰係数決定回
路3と、減衰係数決定回路3から入力した減衰係数γを
第1線形予測分析部1から入力したαパラメータに印加
する減衰係数印加回路4と、減衰係数印加回路4によっ
て減衰係数γを印加したαパラメータを係数とし第1線
形予測分析部1が有するA/D変換器11の出力を入力
する逆フィルタ5と、順次接続された窓処理回路61゜
自己相関算出回路62及びLPU分析回路63を有し逆
フィルタ5の出力に対し所要の次数、例えば12次の線
形予測分析を行いにパラメータを出力する第2線形予測
分析部6とを備えて構成されている。
The embodiment shown in FIG. 1 has A/D converters 1 connected in sequence.
1. Window processing circuit 12. Autocorrelation calculation circuit 13 and LPG
A first linear prediction analysis section 1 having an analysis circuit 14 and performing a second-order linear prediction analysis on an input audio signal, and a normalized prediction residual power U based on the parameters input from the first linear prediction analysis section 1. A normalized predicted residual power calculation circuit 2 that calculates a normalized predicted residual power, an attenuation coefficient determination circuit 3 that determines an attenuation coefficient γ based on the normalized predicted residual power U input from the normalized predicted residual power calculation circuit 2, and an attenuation coefficient determination circuit 3 that determines an attenuation coefficient γ. A damping coefficient applying circuit 4 applies the damping coefficient γ inputted from the circuit 3 to the α parameter inputted from the first linear prediction analysis unit 1, and the α parameter to which the damping coefficient γ is applied by the damping coefficient applying circuit 4 is used as a coefficient and the first An inverse filter 5 which inputs the output of the A/D converter 11 included in the linear prediction analysis unit 1, and a window processing circuit 61 which is connected in sequence, an autocorrelation calculation circuit 62 and an LPU analysis circuit 63, and the output of the inverse filter 5 A second linear predictive analysis unit 6 performs linear predictive analysis of a required order, for example, 12th order, and outputs parameters.

第1線形予測分析部1のA/D変換器11は、入力音声
信号を遮断周波数3.4kHzの低減フィルタで帯域制
限し、帯域制限した音声信号をサンプリング周波数8k
Hzで標本化し、各サンプルを所定のビット数に量子化
する。窓処理回路12はA/D変換器11から入力した
30m5分の量子化サンプルにハミング窓関数を乗算す
る窓切出を分析フレーム周期である20m5ごとに行う
。自己相関算出回路13は、窓処理回路12から入力し
た信号の自己相関を分析フレームごとに算出する。LP
C分析回路14は、自己相関算出回路13から入力した
自己相関を用いて2次の線形予測分析を行い、線形予測
係数であるαパラメータのα1.α2及び部分自己相関
係数であるにパラメータに+、に2を出力する。
The A/D converter 11 of the first linear prediction analysis unit 1 band-limits the input audio signal using a reduction filter with a cut-off frequency of 3.4 kHz, and converts the band-limited audio signal to a sampling frequency of 8 kHz.
Sample in Hz and quantize each sample to a predetermined number of bits. The window processing circuit 12 performs window cutting in which the 30 m5 quantized samples input from the A/D converter 11 are multiplied by a Hamming window function every 20 m5, which is the analysis frame period. The autocorrelation calculation circuit 13 calculates the autocorrelation of the signal input from the window processing circuit 12 for each analysis frame. LP
The C analysis circuit 14 performs a second-order linear prediction analysis using the autocorrelation input from the autocorrelation calculation circuit 13, and calculates α1. of the α parameter, which is a linear prediction coefficient. α2 and the partial autocorrelation coefficient are output as + and 2 as parameters.

正規化予測残差電力算出回路2は、LPG分析回路14
から入力したにパラメータkl+ ktを用い、次式に
よって、第1線形予測分析部1が行った線形予測分析に
おける正規化予測残差電力Uを算出する。
The normalized predicted residual power calculation circuit 2 includes the LPG analysis circuit 14
Using the parameter kl+kt inputted from , the normalized prediction residual power U in the linear prediction analysis performed by the first linear prediction analysis unit 1 is calculated by the following equation.

u=n (1−ki2) 減衰係数決定回路3は、第3図に一例を示す如き対応関
係で、テーブル・ルックアップの手法で、正規化予測残
差電力算出回路2から入力した正規化予測残差電力Uに
対して減衰係数γを決定する。
u=n (1-ki2) The attenuation coefficient determination circuit 3 uses the table lookup method to calculate the normalized prediction input from the normalized prediction residual power calculation circuit 2 using a correspondence relationship as shown in FIG. Attenuation coefficient γ is determined for residual power U.

減衰係数印加回路4は、LPC分析回路14から入力し
たαパラメータα1.α2に減衰係数決定回路3から入
力した減衰係数γを印加し、その結果である係数γα1
.γ2α2が逆フィルタ5の係数として用いられる。
The attenuation coefficient applying circuit 4 receives the α parameter α1. input from the LPC analysis circuit 14. The damping coefficient γ input from the damping coefficient determining circuit 3 is applied to α2, and the resulting coefficient γα1
.. γ2α2 is used as a coefficient of the inverse filter 5.

第4図は逆フィルタ5のブロック図である。FIG. 4 is a block diagram of the inverse filter 5.

逆フィルタ5は、第1線形予測分析部1のA/D変換器
11から入力した量子化サンプルを順次1サンプリング
周期ずつ遅延させる単位遅延素子51.52と、単位遅
延素子51.52の出力に係数γα1.γ2α、を掛け
る掛算器53.54と、掛算器53及び54の出力を加
算する加算器55と、加算器55の出力を単位遅延素子
510入力から減算する減算器56とを有して構成され
ている。逆フィルタ5は、係数がα1 α2ではなくγ
α1.γ2α2であること除いては、通常の2次の逆フ
ィルタと何等異る所はない。
The inverse filter 5 includes a unit delay element 51.52 that sequentially delays the quantized sample input from the A/D converter 11 of the first linear prediction analysis unit 1 by one sampling period, and an output of the unit delay element 51.52. Coefficient γα1. γ2α, an adder 55 that adds the outputs of the multipliers 53 and 54, and a subtracter 56 that subtracts the output of the adder 55 from the input of the unit delay element 510. ing. The inverse filter 5 has coefficients α1 and γ instead of α2.
α1. There is no difference from a normal second-order inverse filter except that γ2α2.

第2線形予測分析部6の窓処理回路61は、第1線形予
測分析部lの窓処理回路12が行うのと同様にして、逆
フィルタ5の出力に対し窓切出の処理を行う。自己相関
算出回路62及びLPU分析回路63は、窓処理回路6
1から入力した信号に対し12次の線形予測分析を行い
、Kパラメータに、〜に1□を出力する。
The window processing circuit 61 of the second linear prediction analysis section 6 performs a window cutting process on the output of the inverse filter 5 in the same manner as the window processing circuit 12 of the first linear prediction analysis section 1 performs. The autocorrelation calculation circuit 62 and the LPU analysis circuit 63 are the window processing circuit 6
A 12th order linear predictive analysis is performed on the signal input from 1, and 1□ is output to the K parameter.

さて、通常の2次の逆フィルタは、係数であるαパラメ
ータα2.α2で定まる極周波数の付近において、入力
信号のスペクトル包絡を平坦化する作用がある。これに
対して逆フィルタ5は、係数がγα1.γ2α2となっ
ており、第3図に示すように減衰係数γをO≦γく1の
範囲で定めているので、γ=0であれば(掛算器53.
54の出力が零となり)入力信号をそのまま出力し、γ
≠0であれば入力信号のスペクトル包絡を極周波数の付
近で部分的に平坦化する作用を持つ。この平坦化の程度
はγが1に近付くほど高くなる。
Now, a normal second-order inverse filter has a coefficient α parameter α2. It has the effect of flattening the spectral envelope of the input signal near the polar frequency determined by α2. On the other hand, the inverse filter 5 has coefficients γα1. γ2α2, and as shown in FIG. 3, the damping coefficient γ is set in the range O≦γ×1, so if γ=0 (multiplier 53.
output of 54 becomes zero), outputs the input signal as is, and γ
If ≠0, it has the effect of partially flattening the spectral envelope of the input signal near the polar frequency. The degree of this flattening increases as γ approaches 1.

極周波数の帯域幅過少推定の現象が起きていない場合、
正規化予測残差電力Uはそれほど小さくならないから、
減衰係数決定回路3が出力する減衰係数γは零になる。
If the phenomenon of polar frequency bandwidth underestimation does not occur,
Since the normalized prediction residual power U does not become so small,
The damping coefficient γ outputted by the damping coefficient determining circuit 3 becomes zero.

その結果、入力音声信号は、A/D変換器11で量子化
され、逆フィルタ5で何等の変形を受けることなく第2
線形予測分析部6に入力し、通常の線形予測分析が行わ
れる。帯域幅過少推定の現象が起きている場合、その程
度に応じて正規化予測残差電力Uが小さくなり、決定さ
れる減衰係数γは零でなくなり、過少推定の程度が著し
くなるほど1に近付く。その結果、逆フィルタ5は帯域
幅過少推定の起きている極周波数である第1ホルトマン
トのスペクトル密度を抑圧するようにA/D変換器11
からの入力信号をフィルタリングする。このフィルタリ
ングの作用を逆フィルタ5の振幅特性として表現すると
、第5図に示す曲線Cの如き振幅特性となる。但し、第
5図における曲線a及びbは第2図における曲線a及び
bを再掲したものである。逆フィルタ5による第1ホル
マントのスペクトル密度の抑圧が第2線形予測分析部6
による第1ホルマントへのエネルギーの集中を補償する
ので、第1ホルマントの帯域幅過少推定が解消され、し
かも、この場合ニモ、逆フィルタ5は第1ホルマント以
外の周波数帯域ではスペクトル包絡を変化させない。
As a result, the input audio signal is quantized by the A/D converter 11, and the input audio signal is quantized by the inverse filter 5 without undergoing any modification.
The signal is input to the linear prediction analysis section 6, and normal linear prediction analysis is performed. When the phenomenon of bandwidth underestimation occurs, the normalized predicted residual power U becomes smaller depending on the degree of the phenomenon, and the determined attenuation coefficient γ is no longer zero, but approaches 1 as the degree of underestimation becomes more significant. As a result, the inverse filter 5 controls the A/D converter 11 so as to suppress the spectral density of the first Holt mant, which is the pole frequency where the bandwidth underestimation occurs.
Filter the input signal from. If this filtering effect is expressed as an amplitude characteristic of the inverse filter 5, the amplitude characteristic will be as shown by curve C shown in FIG. However, curves a and b in FIG. 5 are reproductions of curves a and b in FIG. 2. Suppression of the spectral density of the first formant by the inverse filter 5 is performed by the second linear predictive analysis unit 6
Since the concentration of energy in the first formant is compensated for, the underestimation of the bandwidth of the first formant is eliminated.Moreover, in this case, the inverse filter 5 does not change the spectral envelope in frequency bands other than the first formant.

従って、第2線形予測分析部6は、全周波数帯域に亘っ
て入力音声信号のスペクトル包絡を忠実に示すにパラメ
ータに1〜に1□を出力する。
Therefore, the second linear prediction analysis unit 6 outputs a parameter of 1 to 1□ to faithfully represent the spectral envelope of the input audio signal over the entire frequency band.

以上、第1図に示す実施例について説明した。The embodiment shown in FIG. 1 has been described above.

第6図は第1図に示す実施例における逆フィルタ5に代
って用いることのできる逆フィルタのブロック図である
FIG. 6 is a block diagram of an inverse filter that can be used in place of the inverse filter 5 in the embodiment shown in FIG.

第6図に示す逆フィルタは、第4図に示す逆フィルタ5
の単位遅延素子51.52の直後に掛算器57.58を
挿入して構成されている。但し、掛算器57.58には
減衰係数決定回路3が出力した減衰係数γを入力し、又
、掛算器53.54の係数としてはγα1.γ2α2で
なくLPC分析回路14が出力したαパラメータα3.
α2を直接用いる。従って、第6図に示す逆フィルタを
用いる場合、減衰係数印加回路4は不要である。掛算器
57.58が単位遅延素子51.52の出力に対して減
衰係数γにより定まる減衰を与え、第6図に示す逆フィ
ルタのフィルタリング特性は逆フィルタ5のフィルタリ
ング特性と同じになる。
The inverse filter shown in FIG. 6 is the inverse filter 5 shown in FIG.
The multipliers 57 and 58 are inserted immediately after the unit delay elements 51 and 52, respectively. However, the attenuation coefficient γ outputted from the attenuation coefficient determining circuit 3 is input to the multipliers 57 and 58, and the coefficients of the multipliers 53 and 54 are γα1. α parameter α3. which is output by the LPC analysis circuit 14 instead of γ2α2.
α2 is used directly. Therefore, when using the inverse filter shown in FIG. 6, the attenuation coefficient applying circuit 4 is not necessary. Multipliers 57 and 58 apply attenuation determined by attenuation coefficient γ to the outputs of unit delay elements 51 and 52, and the filtering characteristics of the inverse filter shown in FIG. 6 become the same as those of inverse filter 5.

掛算器57.58による減衰は単位遅延素子51.52
の出力でなく入力に与えてもよいから、掛算器57.5
8を単位遅延素子51.52の直後でなく直前に挿入し
てもよい。
Attenuation by multipliers 57 and 58 is achieved by unit delay elements 51 and 52.
Since it may be given to the input instead of the output of the multiplier 57.5
8 may be inserted just before the unit delay elements 51 and 52 instead of immediately after.

又、第1図に示す実施例において、窓処理回路12の出
力を逆フィルタ5に入力し、逆フィルタ5の出力を自己
相関算出回路62に入力するようにもできる。この場合
、窓処理回路61は不要である。
Further, in the embodiment shown in FIG. 1, the output of the window processing circuit 12 can be input to the inverse filter 5, and the output of the inverse filter 5 can be input to the autocorrelation calculation circuit 62. In this case, the window processing circuit 61 is unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、入力音声信号に対して第
1の線形予測分析を行い、この第1の線形予測分析にお
ける正規化予測残差電力が著しく小さくなったときその
程度に応じて入力音声信号の第1ホルマントのスペクト
ル密度を抑圧するように逆フィルタを構成し、この逆フ
ィルタによってフィルタリングした入力音声信号に対し
て第2の線形予測分析を行うことにより、極周波数の帯
域幅過少推定を防止でき、しかも、全周波数帯域に亘っ
て実際のスペクトル包絡に近い線形予測分析結果が得ら
れる効果がある。
As explained above, the present invention performs a first linear predictive analysis on an input audio signal, and when the normalized predictive residual power in this first linear predictive analysis becomes significantly small, the input signal is By configuring an inverse filter to suppress the spectral density of the first formant of the speech signal and performing a second linear predictive analysis on the input speech signal filtered by the inverse filter, the bandwidth of the polar frequency is under-estimated. It is possible to prevent this, and moreover, it is possible to obtain a linear predictive analysis result that is close to the actual spectrum envelope over the entire frequency band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
線形予測分析における極周波数の帯域幅過少推定の現象
を説明するための説明図、第3図は第1図に示す実施例
における減衰係数決定回路3の入出力の対応関係の一例
を示すグラフ、第4図は同じく逆フィルタ5のブロック
図、第5図は逆フィルタ5の作用を説明するための説明
図、第6図は逆フィルタ5に代って用いることのできる
逆フィルタのブロック図である。 ■・・・・・・第1線形予測分析部、2・・・・・・正
規化予測残差電力算出回路、3・・・・・・減衰係数決
定回路、4・・・・・・減衰係数印加回路、5・・・・
・・逆フィルタ、6・・・・・・第2線形予測分析部。 代理人 弁理士  内 原   晋 第2.口 1フ見イと子測残麦會こlyu 粛3図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram for explaining the phenomenon of polar frequency bandwidth underestimation in linear predictive analysis, and FIG. 3 is an implementation of the embodiment shown in FIG. 1. A graph showing an example of correspondence between input and output of the attenuation coefficient determination circuit 3 in the example, FIG. 4 is a block diagram of the inverse filter 5, FIG. 5 is an explanatory diagram for explaining the action of the inverse filter 5, and FIG. The figure is a block diagram of an inverse filter that can be used in place of the inverse filter 5. ■...First linear prediction analysis unit, 2...Normalized prediction residual power calculation circuit, 3...Attenuation coefficient determination circuit, 4...Attenuation Coefficient application circuit, 5...
... Inverse filter, 6... Second linear prediction analysis section. Agent: Patent Attorney Susumu Uchihara 2nd. Mouth 1st look I and child measurement remaining barley meeting 3rd figure

Claims (4)

【特許請求の範囲】[Claims] (1)入力音声信号に対して第1の線形予測分析を行い
、行った前記第1の線形予測分析における正規化予測残
差電力を算出し、算出した前記正規化予測残差電力に対
してあらかじめ定めた対応関係で減衰係数を決定し、決
定した前記減衰係数を前記第1の線形予測分析で得た線
形予測係数に印加し、前記減衰係数を印加した前記線形
予測係数を係数とする逆フィルタを構成してこの逆フィ
ルタに前記入力音声信号を入力し、前記逆フィルタの出
力に対して第2の線形予測分析を行うことを特徴とする
線形予測分析方法。
(1) Perform a first linear prediction analysis on the input audio signal, calculate the normalized prediction residual power in the first linear prediction analysis, and calculate the normalized prediction residual power for the calculated normalized prediction residual power. Deciding an attenuation coefficient according to a predetermined correspondence relationship, applying the determined attenuation coefficient to the linear prediction coefficient obtained in the first linear prediction analysis, and inversely using the linear prediction coefficient to which the attenuation coefficient has been applied as a coefficient. A linear predictive analysis method comprising configuring a filter, inputting the input audio signal to the inverse filter, and performing a second linear predictive analysis on the output of the inverse filter.
(2)入力音声信号に対して第1の線形予測分析を行い
、行った前記第1の線形予測分析における正規化予測残
差電力を算出し、算出した前記正規化予測残差電力に対
してあらかじめ定めた対応関係で減衰係数を決定し、決
定した前記減衰係数により決定される減衰を単位遅延素
子のそれぞれの入力又は出力に印加する減衰手段を有し
前記第1の線形予測分析で得た線形予測係数を係数とす
る逆フィルタを構成してこの逆フィルタに前記入力音声
信号を入力し、前記逆フィルタの出力に対して第2の線
形予測分析を行うことを特徴とする線形予測分析方法。
(2) Perform a first linear prediction analysis on the input audio signal, calculate the normalized prediction residual power in the first linear prediction analysis, and calculate the normalized prediction residual power for the calculated normalized prediction residual power. The attenuation coefficient is determined according to a predetermined correspondence relationship, and the attenuation means is configured to apply the attenuation determined by the determined attenuation coefficient to each input or output of the unit delay element obtained by the first linear predictive analysis. A linear prediction analysis method characterized by configuring an inverse filter whose coefficients are linear prediction coefficients, inputting the input audio signal to this inverse filter, and performing a second linear prediction analysis on the output of the inverse filter. .
(3)入力音声信号に対して第1の線形予測分析を行う
第1の線形予測分析手段と、この第1の線形予測分析手
段が行った前記第1の線形予測分析における正規化予測
残差電力を算出する算出手段と、この算出手段から入力
した前記正規化予測残差電力に対してあらかじめ定めた
対応関係で減衰係数を決定する決定手段と、この決定手
段から入力した前記減衰係数を前記第1の線形予測分析
で得た線形予測係数に印加する印加手段と、この印加手
段によって前記減衰係数を印加した前記線形予測係数を
係数とし前記入力音声信号を入力とする逆フィルタと、
この逆フィルタの出力に対して第2の線形予測分析を行
う第2の線形予測分析手段とを備えたことを特徴とする
線形予測分析装置。
(3) A first linear predictive analysis means that performs a first linear predictive analysis on the input audio signal, and a normalized prediction residual in the first linear predictive analysis performed by the first linear predictive analysis means. a calculation means for calculating power; a determination means for determining an attenuation coefficient according to a predetermined correspondence relationship with respect to the normalized predicted residual power input from the calculation means; and a determination means for determining the attenuation coefficient input from the determination means. an application means that applies an application to the linear prediction coefficient obtained in the first linear prediction analysis; an inverse filter that uses the linear prediction coefficient to which the attenuation coefficient has been applied by the application means as a coefficient and receives the input audio signal as an input;
A linear predictive analysis device comprising: second linear predictive analysis means for performing a second linear predictive analysis on the output of the inverse filter.
(4)入力音声信号に対して第1の線形予測分析を行う
第1の線形予測分析手段と、この第1の線形予測分析手
段が行った前記第1の線形予測分析における正規化予測
残差電力を算出する算出手段と、この算出手段から入力
した前記正規化予測残差電力に対してあらかじめ定めた
対応関係で減衰係数を決定する決定手段と、この決定手
段から入力した前記減衰係数により決定される減衰を単
位遅延素子のそれぞれの入力又は出力に印加する減衰手
段を有し前記第1の線形予測分析で得た線形予測係数を
係数とし前記入力音声信号を入力する逆フィルタと、こ
の逆フィルタの出力に対して第2の線形予測分析を行う
第2の線形予測分析手段とを備えたことを特徴とする線
形予測分析装置。
(4) A first linear predictive analysis means that performs a first linear predictive analysis on the input audio signal, and a normalized prediction residual in the first linear predictive analysis performed by the first linear predictive analysis means. a calculation means for calculating the power; a determination means for determining the attenuation coefficient according to a predetermined correspondence with the normalized predicted residual power input from the calculation means; and a determination means for determining the attenuation coefficient input from the determination means. an inverse filter having an attenuation means for applying attenuation to each input or output of the unit delay element, and inputting the input audio signal using the linear prediction coefficient obtained in the first linear prediction analysis as a coefficient; A linear predictive analysis device comprising: second linear predictive analysis means for performing a second linear predictive analysis on the output of the filter.
JP63305248A 1988-12-01 1988-12-01 Linear prediction analysis method and apparatus Expired - Fee Related JP2730108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305248A JP2730108B2 (en) 1988-12-01 1988-12-01 Linear prediction analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305248A JP2730108B2 (en) 1988-12-01 1988-12-01 Linear prediction analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH02150900A true JPH02150900A (en) 1990-06-11
JP2730108B2 JP2730108B2 (en) 1998-03-25

Family

ID=17942817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305248A Expired - Fee Related JP2730108B2 (en) 1988-12-01 1988-12-01 Linear prediction analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP2730108B2 (en)

Also Published As

Publication number Publication date
JP2730108B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
FI92118B (en) Improved noise reduction system
KR100421226B1 (en) Method for linear predictive analysis of an audio-frequency signal, methods for coding and decoding an audiofrequency signal including application thereof
EP0698877B1 (en) Postfilter and method of postfiltering
CA2155832C (en) Noise reduction
EP0763818B1 (en) Formant emphasis method and formant emphasis filter device
EP0814639B1 (en) Spectral transposition of a digital audio signal
US6651041B1 (en) Method for executing automatic evaluation of transmission quality of audio signals using source/received-signal spectral covariance
Barnwell Recursive windowing for generating autocorrelation coefficients for LPC analysis
EP2030199B1 (en) Linear predictive coding of an audio signal
JP2004258672A (en) Apparatus and method for determining quality of signal
CA1061906A (en) Speech signal fundamental period extractor
US8396703B2 (en) Voice band expander and expansion method, and voice communication apparatus
US4845753A (en) Pitch detecting device
JPH02150900A (en) Method and device for linear predictive analysis
JPH06274196A (en) Method and device for noise removal
JP2002341889A (en) Apparatus and method for analyzing forecasting parameter
JPH03212698A (en) Signal processor
JP2621376B2 (en) Multi-pulse encoder
EP0162585A1 (en) Encoder capable of removing interaction between adjacent frames
JPH08202399A (en) Post processing method for decoded voice
RU2047946C1 (en) Method of adaptive filtration of speech signals in hearing aids
JPH0318720B2 (en)
JP2888916B2 (en) Spectrum analysis method and apparatus
JPH07111462A (en) Method and device for voice compression
JPH0472907A (en) Coefficient setting method for noise shaping filter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees