JPH02150665A - Cooler - Google Patents

Cooler

Info

Publication number
JPH02150665A
JPH02150665A JP63304173A JP30417388A JPH02150665A JP H02150665 A JPH02150665 A JP H02150665A JP 63304173 A JP63304173 A JP 63304173A JP 30417388 A JP30417388 A JP 30417388A JP H02150665 A JPH02150665 A JP H02150665A
Authority
JP
Japan
Prior art keywords
compressor
temperature
cooling water
relay
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63304173A
Other languages
Japanese (ja)
Inventor
Takashi Umeki
孝 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63304173A priority Critical patent/JPH02150665A/en
Publication of JPH02150665A publication Critical patent/JPH02150665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To speedily ensure normal operation without the overload operation of a cooler when the cooler is started rapidly by providing the cooler with a temperature sensor for detecting the cooling water temperature at a cooling water outlet of an evaporator and a control means such as a compressor. CONSTITUTION:When a main switch MS is closed, the coil X1C of a relay X is excited and a compressor motor start conductor CM is actuated to start a compressor 1 so as to start the operation of a cooler. When the cooling water outlet temperature of an evaporator 4 is higher than a set value, a temperature switch 7 is opened, a normally opened contact S1a is opened and a volume control solenoid valve US9 is in a non-excited state and the compressor 1 is volume-controlled in a condition that the coil SC of a relay S which is a control means such as the compressor is in a non-excited state. In addition, since the normally opened contact S2a of the relay S is opened, a cooling water control solenoid valve SW8 is in a non-excited condition, and closed so that the cooling water is allowed to flow in from one side of a lower half to a water cover 10 and to flow out from the other side of a upper half. Even if cooling water temperature is low, the pressure of a high pressure medium is protected from being lowered and rated operation can be performed at an early stage without the actuation of a protecting device.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、例えば室内の温度を外気よりも低くする冷
房装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling device that lowers the temperature inside a room, for example, lower than the temperature outside.

[従来の技術] 第6図は従来の冷房装置の一例を示す冷媒系統図であり
、図中(1)は圧縮機、(2)は水冷の凝縮器、(3)
は膨張弁、(4)は蒸発器、(5)は蒸発器(4)の冷
水出入口、(6)は凝縮器(2)の冷却水出入口、(9
)は圧縮機(1)の容量制御用電磁弁USである。
[Prior Art] Fig. 6 is a refrigerant system diagram showing an example of a conventional air conditioner, in which (1) is a compressor, (2) is a water-cooled condenser, and (3) is a water-cooled condenser.
is an expansion valve, (4) is an evaporator, (5) is a cold water inlet/outlet of the evaporator (4), (6) is a cooling water inlet/outlet of the condenser (2), (9)
) is a solenoid valve US for capacity control of the compressor (1).

第7図は従来の冷房装置の制御用電気回路図であり、給
電線p、q間には、メインスイッチMSとリレーX1の
コイルxlCとが直列接続され、またリレーX1の常開
接点Xlaと圧縮機1のモター用コンダクタ−CMとが
直列に接続されている。
FIG. 7 is a control electric circuit diagram of a conventional cooling device, in which the main switch MS and the coil xlC of the relay X1 are connected in series between the power supply lines p and q, and the normally open contact Xla of the relay The motor conductor-CM of the compressor 1 is connected in series.

次に、上記構成の冷房装置の動作について説明する。圧
縮機(1)で加圧されたガス状冷媒は、凝縮器(2)で
冷却され、そこで凝縮液化された後膨張弁(3)を経て
蒸発器(4)に導かれる。
Next, the operation of the cooling device having the above configuration will be explained. The gaseous refrigerant pressurized by the compressor (1) is cooled by the condenser (2), where it is condensed and liquefied, and then guided to the evaporator (4) via the expansion valve (3).

ここで、その冷媒は雰囲気と熱交換され、再びガス状冷
媒として圧縮機(1)に戻される。この上起動作は繰り
返される。
Here, the refrigerant exchanges heat with the atmosphere and is returned to the compressor (1) as a gaseous refrigerant. On top of this, the activation process is repeated.

メインスイッチMSを入れるとリレーX1のコイルXI
Cが励磁され、その常開接点X I &が開路されて圧
縮機(1)のコンダクタCMが作動され圧縮機(1)が
起動する。それと同時に電磁弁US(9)が励磁され圧
縮機(1)は全負荷運転を行なう。
When main switch MS is turned on, coil XI of relay X1
C is energized, its normally open contact X I & is opened, the conductor CM of the compressor (1) is operated, and the compressor (1) is started. At the same time, the solenoid valve US (9) is energized and the compressor (1) operates at full load.

[発明が解決しようとする課題] 従来の冷房装置は以上のように構成されているが、冷房
装置と負荷との間の系統は中間期に昼は冷房、夜は暖房
という運転パターンがあるため、冷房装置の始動時、過
渡期に過負荷運転を行なったり、凝縮器(2)の冷却水
温度が下がっているため高圧冷媒の圧力が下がり、飽和
温度が低下して膨張弁(3)の手前でフラッジユングが
生じ、冷却能力が低下する等の正常運転をするまでの立
上げが遅れ異常停止する等の問題点があった。
[Problems to be Solved by the Invention] Conventional cooling devices are configured as described above, but the system between the cooling device and the load has an operation pattern of cooling during the day and heating at night during the intermediate period. When starting the cooling system, overload operation is performed during the transition period, or the cooling water temperature of the condenser (2) is decreasing, so the pressure of the high-pressure refrigerant decreases, the saturation temperature decreases, and the expansion valve (3) There were problems such as flashing occurring at the front, a decrease in cooling capacity, and a delay in startup until normal operation, resulting in abnormal shutdowns.

この発明は、かかる問題点を解消するためになされたも
ので、過負荷運転することなく冷却性能を向上させ早期
に定格運転ができるようにした冷房装置を得ることを目
的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a cooling device that improves cooling performance without overload operation and enables early rated operation.

[課題を解決するための手段] この発明に係る冷房装置は、蒸発器の冷水出口に取付け
られ冷水出口の冷水温度を検知する温度センサーと、こ
の温度センサーの値が設定値を越えると圧縮機の容量制
御運転をさせて前記冷水が所定の温度以下になるまで半
負荷運転を行なわせるとともに前記凝縮器の冷却水流量
を減少させる圧縮機等制御手段とを備えたものである。
[Means for Solving the Problems] The air conditioner according to the present invention includes a temperature sensor that is attached to the cold water outlet of the evaporator and detects the temperature of the cold water at the cold water outlet, and a compressor when the value of the temperature sensor exceeds a set value. The compressor or the like is provided with a control means such as a compressor that performs a capacity control operation to perform half-load operation until the temperature of the cold water becomes below a predetermined temperature and decreases the flow rate of the cooling water of the condenser.

[作  用コ この発明における冷房装置は、冷房運転を開始したとき
、温度センサーの値が設定値を越えているときには、圧
縮機等部r御手段の働きにより、圧縮機は容量制御運転
を行ない、かつ凝縮器の冷却水流量は減少して高圧冷媒
の圧力低下は防止される。
[Function] In the cooling device of this invention, when the temperature sensor value exceeds the set value when cooling operation is started, the compressor performs capacity control operation by the compressor control means. , and the flow rate of cooling water in the condenser is reduced to prevent a pressure drop in the high-pressure refrigerant.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す系統図であり、第6
図および第7図と同一または相当部分は同一一4= 符号を付し、その説明は省略する。
FIG. 1 is a system diagram showing one embodiment of the present invention.
The same or equivalent parts as in the figures and FIG.

図において、(7)は常閉形温度スイッチ、(7a)は
冷水出入口(5)の出口側に取付けられた温度センサー
で、この温度センサー(7a)の検出値が設定値を越え
たとき温度スイッチ(7)は開路する。(8)は冷却水
出入口(6)の入口側に取付けられた冷却水制御用電磁
弁である。
In the figure, (7) is a normally closed temperature switch, (7a) is a temperature sensor installed on the outlet side of the cold water inlet/outlet (5), and when the detected value of this temperature sensor (7a) exceeds the set value, the temperature switch is switched off. (7) is open. (8) is a cooling water control solenoid valve installed on the inlet side of the cooling water inlet/outlet (6).

第2図は第1図の冷房装置における制御用電気回路図で
あり、給電線p、q間にはメインスイッチMSとツレ−
XIのコイルXICとが直列接続され、またリレーX1
の常開接点X I&と圧縮機(1)のモータ起動用コン
ダクタCMとが直列接続されている。圧縮機等制御手段
であるリレーSの常開接点S 1aと電磁弁US (9
)とが直列接続され、温度スイッチ(7)とリレーSの
コイルSCとが直列接続されている。リレーSの常開接
点S 2aと冷却水制御用電磁弁SW (8)とが直列
に接続されている。
FIG. 2 is a control electrical circuit diagram of the air conditioner shown in FIG.
The coil XI and the coil XIC are connected in series, and the relay X1
The normally open contact XI& of the compressor (1) and the motor starting conductor CM of the compressor (1) are connected in series. The normally open contact S 1a of the relay S, which is a control means for the compressor, etc. and the solenoid valve US (9
) are connected in series, and the temperature switch (7) and the coil SC of the relay S are connected in series. A normally open contact S2a of the relay S and a cooling water control solenoid valve SW (8) are connected in series.

第3図ないし第5図は第1図の冷房装置における凝縮器
(2)を示すものであり、(10)は冷却水出入口承蓋
、(11)は冷却水の返し測水蓋である。
3 to 5 show the condenser (2) in the cooling system of FIG. 1, where (10) is a cooling water inlet/outlet cover, and (11) is a cooling water return water metering cover.

次に、動作について説明する。圧縮機(1)から吐出さ
れた高温高圧のガス状冷媒は水冷の凝縮器(2)に導入
され、フィン付パイプ外を通流される過程で冷却水出入
口(6)を通る冷却水と熱交換により冷却される。その
冷媒は凝縮液化されて膨張弁(3)を通過後、蒸発器(
4)で被冷却物である冷水と熱交換により気化され、再
び圧縮機(1)に還流されて前記した過程を反復する。
Next, the operation will be explained. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor (1) is introduced into the water-cooled condenser (2), where it exchanges heat with the cooling water that passes through the cooling water inlet and outlet (6) as it flows through the outside of the finned pipe. Cooled by The refrigerant is condensed and liquefied, passes through the expansion valve (3), and then passes through the evaporator (
In step 4), it is vaporized by heat exchange with the cold water to be cooled, and is returned to the compressor (1) to repeat the above process.

この動作自体は第6図に示した従来の冷房装置の場合と
同じである。
This operation itself is the same as that of the conventional cooling device shown in FIG.

冷房装置を作動すべくメインスイッチMSを閉じるとリ
レーX1のコイルXICが励磁され、その常開接点X 
I8が閉路され、圧縮機モータ起動用コンダクタCMが
作動されて圧縮機(1)が起動し、冷房装置は運転を開
始する。このとき、蒸発器(4)の冷水出口温度が設定
値よりも高い時は温度スイッチ(7)は開路されており
、従って圧縮機等制御手段であるリレーSのコイルSC
が無励磁状態にあってその常開接点S Hgは開路され
ている。そのため、容量制御用電磁弁US (9)は無
励磁となり圧縮機(1)は容量制御を行なう。
When the main switch MS is closed to operate the cooling system, the coil XIC of the relay X1 is energized, and its normally open contact X
I8 is closed, the compressor motor starting conductor CM is activated, the compressor (1) is started, and the cooling device starts operating. At this time, when the cold water outlet temperature of the evaporator (4) is higher than the set value, the temperature switch (7) is open, and therefore the coil SC of the relay S, which is the control means for the compressor, etc.
is in a non-energized state and its normally open contact S Hg is open. Therefore, the capacity control solenoid valve US (9) is de-energized and the compressor (1) performs capacity control.

また、リレーSの常開接点S 2aが開路されているの
で、冷却水制御用電磁弁SW (8)は無励磁状態とな
り、電磁弁SW (8)は閉じてその冷却水は水M(1
0)に対し下半分の片側からtjlE人し、十才分の片
側から流出する。その結果、冷水温度が低くても高圧冷
媒の圧力低下は防止され、保護装置が作動することなく
早期に定格運転をすることかできる。
In addition, since the normally open contact S2a of the relay S is open, the cooling water control solenoid valve SW (8) is in a non-excited state, the solenoid valve SW (8) is closed, and the cooling water is supplied to the water M (1
0), tjlE people flow from one side of the lower half, and flow out from one side of the 10-year-old. As a result, even if the chilled water temperature is low, the pressure of the high-pressure refrigerant is prevented from decreasing, and rated operation can be carried out quickly without the protection device being activated.

一方、蒸発器(4)の冷水出口温度が設定値よりも低い
時は温度センサー(7a)によって温度スイッチ(7)
は閉路されているために、リレーSのコイルSCが励磁
状態となり、その常開接点Sが閉路されて容量制御用電
磁弁us (9)は励磁となり、圧縮機(1)は容量制
御を行なわない。
On the other hand, when the cold water outlet temperature of the evaporator (4) is lower than the set value, the temperature switch (7) is activated by the temperature sensor (7a).
Since is closed, the coil SC of the relay S becomes energized, its normally open contact S is closed, the capacity control solenoid valve US (9) becomes energized, and the compressor (1) performs capacity control. do not have.

また、リレーSのスイッチS 2aが開路されているか
ら冷却水制御用電磁弁SW (8)は励磁状態となる。
Furthermore, since the switch S2a of the relay S is open, the cooling water control solenoid valve SW (8) is in an excited state.

冷却水制御用電磁弁sw (8)が励磁すれば、電磁弁
SW (8)は開き凝縮器(2)に流れる冷却水は水差
(10)に対し下半分から流入し、上半分から流出する
When the cooling water control solenoid valve SW (8) is energized, the solenoid valve SW (8) opens and the cooling water flowing into the condenser (2) flows into the water difference (10) from the lower half and flows out from the upper half. do.

[発明の効果] 以上説明したように、この発明の冷房装置は、蒸発器の
冷水出口の冷水温度を検知する温度センサーと、圧縮機
等制御手段とを備えたことにより、例えばホイラ−によ
る暖房運転から冷房装置による冷房運転を即開始したと
き、冷房装置が過負荷運転することなく正常運転が迅速
に確保されるという効果がある。
[Effects of the Invention] As explained above, the air conditioner of the present invention includes a temperature sensor that detects the temperature of cold water at the cold water outlet of the evaporator, and a means for controlling a compressor, etc. When cooling operation by the air conditioner is immediately started from operation, there is an effect that normal operation is quickly ensured without overloading the air conditioner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す冷媒系統図、第2図
は第1図の電気回路図、第3図は第1図の凝縮器の正面
図、第4図は第3図の左側面図、第5図は第3図の右側
面図、第6図は従来の冷房装置の一例を示す冷媒系統図
、第7図は第6図の電気回路図である。 図において、(1)は圧縮機、(2)は凝縮器、(3)
は膨張弁、(4)は蒸発器、(7a)は温度センサー、
Sはリレー(圧縮機等制御手段)である。 なお、各図中、同一符号は同−又は相当部分を示す。 第 図 圧縮係 7a: 温度センサー 第 図 S:リレー(圧縮様等制御手段)
Fig. 1 is a refrigerant system diagram showing an embodiment of the present invention, Fig. 2 is an electric circuit diagram of Fig. 1, Fig. 3 is a front view of the condenser shown in Fig. 1, and Fig. 4 is a diagram of the condenser shown in Fig. 3. 5 is a right side view of FIG. 3, FIG. 6 is a refrigerant system diagram showing an example of a conventional cooling device, and FIG. 7 is an electric circuit diagram of FIG. 6. In the figure, (1) is the compressor, (2) is the condenser, and (3)
is an expansion valve, (4) is an evaporator, (7a) is a temperature sensor,
S is a relay (compressor control means). In each figure, the same reference numerals indicate the same or corresponding parts. Compression section 7a: Temperature sensor S: Relay (compression control means)

Claims (1)

【特許請求の範囲】[Claims] ガス状冷媒を圧縮する圧縮機と、この圧縮機で加圧され
たガス状冷媒を冷却水により冷却して凝縮液化する凝縮
器と、この凝縮器で液化した冷媒を絞り膨張し冷媒の圧
力を下げる膨張弁と、この冷媒が潜熱を吸収して蒸発す
る蒸発器とを有する冷房装置において、前記蒸発器の冷
水出口に取付けられ冷水出口の冷水温度を検知する温度
センサーと、この温度センサーの値が設定値を越えると
前記圧縮機の容量制御運転をさせて前記冷水が所定の温
度以下になるまで半負荷運転を行なわせるとともに前記
凝縮器の冷却水流量を減少させる圧縮機等制御手段とを
備えたことを特徴とする冷房装置。
A compressor that compresses a gaseous refrigerant, a condenser that cools the gaseous refrigerant pressurized by the compressor with cooling water and condenses it into liquefaction, and a condenser that throttles and expands the liquefied refrigerant to reduce the pressure of the refrigerant. In a cooling device having an expansion valve that lowers the temperature, and an evaporator in which the refrigerant absorbs latent heat and evaporates, there is provided a temperature sensor that is attached to the cold water outlet of the evaporator and detects the temperature of the cold water at the cold water outlet, and a value of this temperature sensor. a compressor control means for controlling the capacity of the compressor to perform half-load operation until the temperature of the chilled water reaches a predetermined temperature or lower and reducing the flow rate of the cooling water of the condenser when the temperature exceeds a set value; A cooling device characterized by:
JP63304173A 1988-12-02 1988-12-02 Cooler Pending JPH02150665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304173A JPH02150665A (en) 1988-12-02 1988-12-02 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304173A JPH02150665A (en) 1988-12-02 1988-12-02 Cooler

Publications (1)

Publication Number Publication Date
JPH02150665A true JPH02150665A (en) 1990-06-08

Family

ID=17929923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304173A Pending JPH02150665A (en) 1988-12-02 1988-12-02 Cooler

Country Status (1)

Country Link
JP (1) JPH02150665A (en)

Similar Documents

Publication Publication Date Title
JPH02150665A (en) Cooler
JPH02230056A (en) Operation control device for freezer
JPH0359358A (en) Air conditioner
JPS6237983Y2 (en)
JPH0623880Y2 (en) Heat pump device
JPH05157431A (en) Control device for refrigerator
JPH084680A (en) Refrigerating device
JPH08313076A (en) Refrigerating apparatus
KR200147716Y1 (en) Outdoor fan control device of multi airconditioner
JPH02272249A (en) Operation control device for air conditioner
JP2656314B2 (en) Air conditioner
JPH0518587A (en) Controlling method for air conditioner
JP2508381B2 (en) Operation control device for air conditioner
JP2512072B2 (en) Air conditioner refrigeration cycle
JPS62213634A (en) Capacity control device for air conditioner
JP2545661B2 (en) Air conditioner
JP2890975B2 (en) Operation control device for refrigeration equipment
JP2867794B2 (en) Heating and cooling machine
JPH0519709Y2 (en)
JPH0618113A (en) Air conditioner
JPH01155154A (en) Air conditioner
JPH04302958A (en) Control method of air-conditioner
JPH11211245A (en) Air-conditioning equipment
JPH01314858A (en) Refrigerating device
JPH01147269A (en) Emergency controller for air conditioner