JPH02150174A - Picture encoding system - Google Patents

Picture encoding system

Info

Publication number
JPH02150174A
JPH02150174A JP63302306A JP30230688A JPH02150174A JP H02150174 A JPH02150174 A JP H02150174A JP 63302306 A JP63302306 A JP 63302306A JP 30230688 A JP30230688 A JP 30230688A JP H02150174 A JPH02150174 A JP H02150174A
Authority
JP
Japan
Prior art keywords
components
matrix
image
transformation
transformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63302306A
Other languages
Japanese (ja)
Other versions
JP2557965B2 (en
Inventor
Takeshi Tono
豪 東野
Hisashi Ibaraki
久 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63302306A priority Critical patent/JP2557965B2/en
Publication of JPH02150174A publication Critical patent/JPH02150174A/en
Application granted granted Critical
Publication of JP2557965B2 publication Critical patent/JP2557965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently encode a picture signal by transforming the N components of a picture into uncorrelated components. CONSTITUTION:CMBk signals from a color scanner 1 are matrix-operated by a transformation matrix consisting of eigen vectors obtained by an eigen vector calculating part 3, and transformed into mutually uncorrelated components K1 to K4 by an uncorrelatively transforming part 4. The four pictures obtained in such a way are independently DCT-transformed by a DCT transformation part 6, and further transformation coefficients are quantized by the quantizer of a quantizing part 7. On the other hand, for the transformation matrix obtained by the eigen vector calculating part 3, the inverse matrix is calculated by an inverse matrix calculating part 5, it is delivered to a recording processing part 8 as the additional information at the time of decoding together with the quantized transformation coefficients obtained by the quantizing part 7, and it is encoded and recorded. Thus the N-color components are transformed into mutually uncorrelated components, and the printing picture can be efficiently encoded.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は、各画素がN個の色成分で表される画像を蓄積
、伝送するための符号化に関し、特に、相関を持つN成
分からなる画像を互いに無関係なN個の成分に変換する
ことによって、各成分を独立に符号化しても高能率に符
号化することのできる画像の符号化方式に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to encoding for storing and transmitting images in which each pixel is represented by N color components. The present invention relates to an image encoding method that can encode an image with high efficiency even if each component is encoded independently by converting an image into N components that are unrelated to each other.

(従来の技術) 従来、相関の高い成分からなる画像の符号化方式には例
えば印刷用画像の符号化として、″適応的ベクトル量子
化を用いた印刷用画像の圧縮″会津、高木、 1986
年度画像符号化シンポジウム、のようにシアン(C)、
マゼンタ(M)、イエロー(Y)。
(Prior Art) Conventionally, as a method for encoding images consisting of highly correlated components, for example, for encoding images for printing, there is a method called "Compression of Images for Printing Using Adaptive Vector Quantization," Aizu, Takagi, 1986.
Annual Image Coding Symposium, cyan (C),
Magenta (M), yellow (Y).

ブラック(Bk)間の相関を利用し、4×4のブロック
をCMYBkの方向にも拡げ、16次元のブロックとし
てベクトル量子化する技術である。
This is a technique that utilizes the correlation between black (Bk) colors, expands a 4×4 block in the CMYBk direction, and performs vector quantization as a 16-dimensional block.

ここで、ベクトル量子化とは、複数の画素を一括し、ベ
クトルを構成し、そのベクトルがとり得るパターンを、
より少ないパターン数のベクトルに近似することにより
実施される。このベクトル量子化では、より少ないパタ
ーンを示すインデックスを示すために必要なビット数で
、画像を近似でき1画像等では、近傍で似た画素が発生
しやすい特徴を利用して、パターン数を減少させている
Here, vector quantization means to group multiple pixels together to form a vector, and to calculate the possible patterns of that vector.
This is done by approximating a vector with fewer patterns. With this vector quantization, an image can be approximated with the number of bits required to indicate an index indicating a smaller number of patterns.In a single image, etc., the number of patterns can be reduced by taking advantage of the characteristic that similar pixels are likely to occur in the vicinity. I'm letting you do it.

この従来の技術では、ベクトルをCMYBkにまたがっ
て設定することで、1つの色成分内だけでなく1包成分
間の相関も利用している。また、印刷画像には高品質が
要求されるため、近似するパターンをあまり小さくでき
ない、近似パターンが多い場合には、近似す、るための
パターンの選択を実施するために、膨大な計算量が必要
となる。
In this conventional technique, by setting vectors across CMYBk, correlations not only within one color component but also between one envelope component are utilized. In addition, since high quality is required for printed images, it is not possible to make the approximate pattern very small, and if there are many approximate patterns, a huge amount of calculation is required to select the pattern to approximate. It becomes necessary.

また、′印刷製版データの圧縮符号化に関する検討”中
嶋、安居院、他、 1987年度画像符号化シンポジウ
ム、のようにCMYBkの内、CMYからYIQに変換
してから、各成分独立に、GBTC,PO2,DCT−
VQ等の従来の符号化法を用いる技術がある。
In addition, as in ``Study on Compression Encoding of Printing Prepress Data'' by Nakajima, Yasuin et al., 1987 Image Coding Symposium, after converting CMY from CMY to YIQ, each component is independently converted to GBTC, PO2, etc. , DCT-
There are techniques that use conventional encoding methods such as VQ.

しかしながら、上述した前者の方法では、ベクトル量子
化という技術のためコードブックを作成するのに非常に
時間がかかるといった問題がある。
However, the former method described above has a problem in that it takes a very long time to create a codebook because of the technique called vector quantization.

この問題点は、要求される画像品質によって、コードブ
ックの量を減少させるといったような解決手段があるが
、印刷画像のような特に高品質を要求されるような画像
については適さない。
There are solutions to this problem, such as reducing the amount of codebooks depending on the required image quality, but these methods are not suitable for images that require particularly high quality, such as printed images.

また、後者の方法では、Bk成分との間の相関が残され
たままであるので、YIQ成分とBkを独立に符号化す
るのは効率上問題があった。更にYIQ成分についても
、3成分が互いに無相関ならば、YIQ空間において無
相関となる軸とYIQ軸とは一致し1両軸の間に開きは
無いはずであるが、第4図に示すように、実際は画像に
よって両軸との間には大きな開きがある。すなわち、3
成分間の相関が残留していることになり、各成分ごとに
符号化するには問題があった。
Furthermore, in the latter method, since the correlation between the Bk component and the Bk component remains, there is a problem in terms of efficiency when encoding the YIQ component and Bk independently. Furthermore, regarding the YIQ component, if the three components are uncorrelated with each other, the axis that is uncorrelated in the YIQ space should match the YIQ axis, and there should be no difference between the two axes, but as shown in Figure 4. However, in reality, there is a large difference between the two axes depending on the image. That is, 3
This means that correlations between components remain, and there is a problem in encoding each component separately.

(発明の目的) 本発明は、前記問題点を解決するために成されたもので
、成分間に相関があり、独立に符号化するには効率上問
題があるN個の成分を、画像ごとに、無相関な成分に変
換することで、N成分全てを独立に符号化して、効率良
く画像信号を符号化できることを目的とする。
(Object of the Invention) The present invention has been made to solve the above-mentioned problems, and it is possible to encode N components for each image, which have a correlation between the components and which is problematic in terms of efficiency when encoded independently. Another object of the present invention is to encode all N components independently by converting them into uncorrelated components, thereby efficiently encoding an image signal.

(発明の構成) (発明の特徴と従来技術との差異) 本発明は前記目的を達成するために、各画像の成分間の
共分散行列を求め、その固有ベクトルの方向に各成分を
投影することで、無相関な成分に変換し、その変換マト
リクスは復号のための付加情報とすることを最も主要な
特徴とする。
(Structure of the Invention) (Characteristics of the Invention and Differences from the Prior Art) In order to achieve the above object, the present invention calculates a covariance matrix between the components of each image and projects each component in the direction of its eigenvector. The main feature is that the conversion matrix is converted into uncorrelated components and the conversion matrix is used as additional information for decoding.

従来技術とは、本発明の符号化方式によれば、画像のN
個の成分を無相関な成分に変換することにより、各成分
を完全に独立に符号化することが可能となり、また、こ
の操作は、各画像ごとに行われるので1画像単位に最も
効果的な処理が可能となる点が異なる。
The conventional technology means that according to the encoding method of the present invention, N of the image is
By converting these components into uncorrelated components, it is possible to encode each component completely independently, and since this operation is performed for each image, it is possible to The difference is that processing is possible.

(実施例) 以下1本発明の一実施例を図面を用いて具体的に説明す
る。
(Example) An example of the present invention will be specifically described below with reference to the drawings.

尚、実施例を説明するための全回において、同一機能を
有するものは同一符号をつけ、その繰り返しの説明は省
略する。
It should be noted that throughout the explanation of the embodiments, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

第1図は1本発明のシアン(C)、マゼンタ(M)。Figure 1 shows cyan (C) and magenta (M) of the present invention.

イエロー(Y)、ブラック(B k)から成る印刷用画
像へ応用した場合の符号化方式のシステム構成を示すブ
ロック図を示している。
A block diagram showing a system configuration of an encoding method when applied to a printing image consisting of yellow (Y) and black (Bk) is shown.

第1図において、1はカラースキャナ、2はCMYBk
間の共分散列算出部、3は前記共分散列の固有ベクトル
算出部で、固有ベクトルから成る変換マトリクスが出力
される。4はCMYBk各成分を互いに無相関にする変
換部、5は前記変換マトリクスの逆変換マトリクス算出
部、6はDCT変換部、7は量子化部、8は記録処理部
である。
In Figure 1, 1 is a color scanner, 2 is CMYBk
3 is an eigenvector calculation unit for the covariance sequence, which outputs a transformation matrix composed of eigenvectors. Reference numeral 4 designates a conversion unit that makes the CMYBk components uncorrelated with each other, 5 a unit that calculates an inverse transformation matrix for the conversion matrix, 6 a DCT conversion unit, 7 a quantization unit, and 8 a recording processing unit.

本実施例の画像符号化方式は、カラースキャナ1から入
力された画像信号のCMYBk成分が共分散行列算出部
2に送られる。ここでは、まず、各成分の平均値が求め
られ、その平均値と画素値との差分をC,M、Y、Bk
間で積算し、全画素数で除することによって4×4の共
分散行列が求められる。その共分散行列の固有ベクトル
が固有ベクトル算出部3で、共分散行列を対角化するこ
とによって計算される。
In the image encoding method of this embodiment, CMYBk components of an image signal input from a color scanner 1 are sent to a covariance matrix calculation section 2. Here, first, the average value of each component is calculated, and the difference between the average value and the pixel value is calculated as C, M, Y, Bk.
A 4×4 covariance matrix is obtained by integrating between the pixels and dividing by the total number of pixels. The eigenvector of the covariance matrix is calculated by the eigenvector calculation unit 3 by diagonalizing the covariance matrix.

カラースキャナ1からのCMYBk信号は固有ベクトル
算出部3で求められた固有ベクトルから成る変換マトリ
クスでマトリクス演算されることで、互いに無相関な成
分Kl、に2.に3.に4に無相関化変換部4で変換さ
れる。こうして得られた4枚の画像は、DCT変換部6
で独立にDCT変換され、更にその変換係数は、量子化
部7の量子化器で量子化される。一方、固有ベクトル算
出部3で求められた変換マトリクスは、逆行列算出部5
でその逆行列が計算され、復号の際の付加情報として、
量子化部7で得られた、量子化された変換係数と共に、
記録処理部8に渡され、符号化、記録される。
The CMYBk signals from the color scanner 1 are subjected to matrix calculation using a conversion matrix consisting of the eigenvectors obtained by the eigenvector calculation unit 3, and are divided into mutually uncorrelated components Kl, 2. 3. 4 in the decorrelation conversion unit 4. The four images obtained in this way are transferred to the DCT converter 6
, and the transform coefficients are quantized by a quantizer in a quantizer 7 . On the other hand, the transformation matrix obtained by the eigenvector calculation unit 3 is
The inverse matrix is calculated, and as additional information during decoding,
Together with the quantized transform coefficients obtained by the quantization unit 7,
The data is passed to the recording processing unit 8, encoded and recorded.

第2図は、本発明を印刷用画像の符号化に応用した別の
実施例のシステム構成を示すブロック図である。
FIG. 2 is a block diagram showing the system configuration of another embodiment in which the present invention is applied to encoding images for printing.

第2図において、9は固有値、固有ベクトル算出部、1
0は正規化、サンプリング制御部、11は正規化部、1
2はサブサンプリング部を示す。
In FIG. 2, 9 is an eigenvalue, an eigenvector calculation unit, 1
0 is normalization, sampling control section, 11 is normalization section, 1
2 indicates a sub-sampling section.

本実施例は、第1図に示す実施例に正規化部11および
サブサンプリング部12を付加したもので。
This embodiment is obtained by adding a normalization section 11 and a subsampling section 12 to the embodiment shown in FIG.

無相関化変換部4で互いに無相関になった4成分は、正
規化、サブサンプリング制御部10に入力され、固有値
、固有ベクトル算出部9で固有ベクトルと同時に求めら
れた固有値をある定められた値と比較することにより、
正規化するか、あるいはサブサンプリングするかが判断
される。
The four components that have become uncorrelated with each other in the decorrelation conversion section 4 are input to the normalization and subsampling control section 10, and the eigenvalue and eigenvector calculation section 9 converts the eigenvalues obtained at the same time as the eigenvectors into a certain predetermined value. By comparing,
It is determined whether to perform normalization or subsampling.

ここで、正規化とは、操作の便宜上、データがある定め
られた範囲内に収まるようにするためのものである。正
規化の判断がなされた成分は、正規化部11に入力され
、固有値の平方根で正規化される。また、サブサンプリ
ングの判断がなされた成分はサブサンプリング部12に
入力され、サブサンプリング後の折り返し雑音を抑制す
るために平滑化フィルタリングを施された後、横方向に
1/2にサブサンプリングされる。第2図の場合に1が
正規化、K2.に3.に4がサブサンプリングと判断さ
れた場合を示している。
Here, normalization is for making the data fall within a certain range for convenience of operation. The components determined to be normalized are input to the normalization unit 11 and normalized by the square root of the eigenvalue. The components for which subsampling has been determined are input to the subsampling unit 12, where they are subjected to smoothing filtering to suppress aliasing noise after subsampling, and then subsampled to 1/2 in the horizontal direction. . In the case of FIG. 2, 1 is normalized, K2. 3. This shows the case where 4 is determined to be subsampling.

更に、正規化、或いはサブサンプリングされた成分は、
DCT変換部6で変換され、変換係数は、量子化部7で
量子化される。量子化された変換係数は、逆行列算出部
5から出力された、逆行列と、正規化部11から出力さ
れた正規化ファクターの付加情報と共に、記録処理部8
で、符号化、記録される。
Furthermore, the normalized or subsampled components are
The DCT transformer 6 transforms the transform coefficients, and the quantizer 7 quantizes the transform coefficients. The quantized transformation coefficients are stored in the recording processing unit 8 along with the inverse matrix outputted from the inverse matrix calculation unit 5 and the additional information of the normalization factor outputted from the normalization unit 11.
is encoded and recorded.

(発明の効果) 以上説明したように、本発明によれば、N色成分は互い
に無相関な成分に変換されるので、各成分を独立に符号
化できる。また、この変換は画像ごとに行われるので1
画像単位に最適な処理となり、高品質を重視される印刷
用画像の符号化に適したものである。
(Effects of the Invention) As described above, according to the present invention, N color components are converted into mutually uncorrelated components, so each component can be encoded independently. Also, since this conversion is performed for each image, 1
This process is optimal for each image, and is suitable for encoding images for printing, where high quality is important.

本発明の第2図に示す実施例に基づきシミュレーション
を行った結果、第3図に示すように、CMY−Y IQ
変換による手法に比べてS/Nが約1dB向上した。
As a result of simulation based on the embodiment shown in FIG. 2 of the present invention, as shown in FIG. 3, CMY-Y IQ
Compared to the method using conversion, the S/N was improved by about 1 dB.

上述した実施例において、CMYBkの4色成分からな
る印刷用画像の符号化方式について示したが、本発明は
、2色成分からなる画像やRGB等の3色成分からなる
画像、更に、C,M、Y。
In the above-described embodiment, the encoding method for a printing image consisting of four color components of CMYBk was described, but the present invention can also encode an image consisting of two color components, an image consisting of three color components such as RGB, and furthermore, M.Y.

Bkの混色では彩度が低下するため新たに特色を加えて
5色以上にするといったような場合にも適用可能である
Since the saturation decreases when mixing Bk colors, it can also be applied to cases where a new spot color is added to make the number of colors five or more.

また、符号化法は、DC,T変換法以外にも、ブロック
・トランケーション・コーディング(BTC)や、ベク
トル量子化法(V Q)、或いは、カルーネン・レーベ
(KL)変換等を用いても可能である。
In addition to the DC and T transform methods, other encoding methods such as block truncation coding (BTC), vector quantization (VQ), or Karhunen-Loewe (KL) transform can also be used. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明を印刷用画像の符号化方
式に実施した場合の各システム構成を示すブロック図、
第3図は、第2図に示す実施例に基づくシミュレーショ
ンの結果を表した図、第4図は従来技術におけるYIQ
空間において1分布が無相関となる軸と、Y、I、Q軸
が成す角を示す図である。 1 ・・・カラースキャナ、 2・・・共分散行列算出
部、 3 ・・・固有ベクトル算出部、4・・・無相関
化変換部、 5・・・逆行列算出部、 6・・・DCT
変換部、 7・・・量子化部、 8・・・記録処理部、
 9 ・・・固有値、固有ベクトル算出部、10・・・
正規化、サブサンプリング制御部、11・・・正規化部
、12・・・サブサンプリング部。 第 図 第 図 第 図
FIGS. 1 and 2 are block diagrams showing each system configuration when the present invention is applied to a printing image encoding method;
FIG. 3 is a diagram showing the results of simulation based on the example shown in FIG. 2, and FIG. 4 is a diagram showing the YIQ in the conventional technology.
FIG. 3 is a diagram showing the angles formed by the axis where one distribution is uncorrelated in space and the Y, I, and Q axes. DESCRIPTION OF SYMBOLS 1...Color scanner, 2...Covariance matrix calculation unit, 3...Eigenvector calculation unit, 4...Decorrelation conversion unit, 5...Inverse matrix calculation unit, 6...DCT
Conversion unit, 7... Quantization unit, 8... Recording processing unit,
9...Eigenvalue, eigenvector calculation unit, 10...
Normalization and subsampling control section, 11... normalization section, 12... subsampling section. Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 各画像がN個の色成分で表される画像の符号化を行なう
場合、各成分間の共分散行列を求める手段と、N次元空
間内で、該共分散行列の固有ベクトルの方向を新たな座
標軸として、各成分を表現し直すことにより、互いに無
相関なN個の成分を得る手段と、N次元空間内の座標変
換のためのマトリクスを付加情報として、得られたN個
の互いに無相関なN個の成分をある定められた符号化法
により独立に符号化する手段とからなることを特徴とす
る画像の符号化方式。
When encoding an image in which each image is represented by N color components, there is a method for determining the covariance matrix between each component, and a new coordinate axis in which the direction of the eigenvector of the covariance matrix is set in the N-dimensional space. By re-expressing each component, we obtain N mutually uncorrelated components, and by using a matrix for coordinate transformation in the N-dimensional space as additional information, we obtain N mutually uncorrelated components. 1. An image encoding method comprising: means for independently encoding N components using a predetermined encoding method.
JP63302306A 1988-12-01 1988-12-01 Image coding method Expired - Fee Related JP2557965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63302306A JP2557965B2 (en) 1988-12-01 1988-12-01 Image coding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63302306A JP2557965B2 (en) 1988-12-01 1988-12-01 Image coding method

Publications (2)

Publication Number Publication Date
JPH02150174A true JPH02150174A (en) 1990-06-08
JP2557965B2 JP2557965B2 (en) 1996-11-27

Family

ID=17907378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63302306A Expired - Fee Related JP2557965B2 (en) 1988-12-01 1988-12-01 Image coding method

Country Status (1)

Country Link
JP (1) JP2557965B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326935A (en) * 1992-08-12 1994-07-05 Totoku Electric Co., Ltd. Multi-layered insulated wire for high frequency transformer winding
EP0673044A2 (en) 1992-08-19 1995-09-20 Totoku Electric Co., Ltd. Multi-layered insulated wire for high frequency transformer winding
EP0795841A3 (en) * 1996-03-13 1999-10-06 Siemens Aktiengesellschaft Method for creating an image transform matrix

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326935A (en) * 1992-08-12 1994-07-05 Totoku Electric Co., Ltd. Multi-layered insulated wire for high frequency transformer winding
EP0673044A2 (en) 1992-08-19 1995-09-20 Totoku Electric Co., Ltd. Multi-layered insulated wire for high frequency transformer winding
EP0684617A2 (en) 1992-08-19 1995-11-29 Totoku Electric Co., Ltd. Multi-layered insulated wire for high frequency transformer winding
EP0795841A3 (en) * 1996-03-13 1999-10-06 Siemens Aktiengesellschaft Method for creating an image transform matrix

Also Published As

Publication number Publication date
JP2557965B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US5109451A (en) Orthogonal transform coding system for image data
CN100558141C (en) Image processing equipment and method and messaging device and method
US7181076B1 (en) Wavelet-based data compression using principal components transformation
US6754383B1 (en) Lossy JPEG compression/reconstruction using principal components transformation
JP2000511363A (en) Method and apparatus for compressing images
US5301241A (en) Image compression method and apparatus employing principal component analysis
US7580166B2 (en) Converting image data in an input color space to an output color space in a transform domain
US5293228A (en) Method for the coding of color images at high compression rate without filtering, corresponding decoding method, coder, decoder and applications
JP3857509B2 (en) Image processing apparatus, image processing system, image encoding method, and storage medium
JPH02150174A (en) Picture encoding system
US20030223633A1 (en) Method and system for compressing digital images
US6915019B2 (en) Method for combining vector-quantization decoding with color transform or halftoning or both
JPH11164152A (en) Color image data compression device
GB2620228A8 (en) Image compression with inter-channel encoding of codewords
JP2618944B2 (en) Coding method of color image information
JP2629035B2 (en) Image coding processor
JP2000316174A (en) Color picture compression method and its device
US7580167B2 (en) Determining whether to convert image data in an input color space to an output color space in a transform domain or real domain
JPS62283776A (en) Color picture input/output device
JPS63185163A (en) Color picture data converting system
JPH07154605A (en) Color picture processing method
JP2975675B2 (en) Color image processing equipment
JPH05227441A (en) Digital picture signal compression device
JPH10112870A (en) Image encoder
JPH04167869A (en) Picture data coding device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees