JPH02150101A - Microplane patch antenna - Google Patents

Microplane patch antenna

Info

Publication number
JPH02150101A
JPH02150101A JP30437088A JP30437088A JPH02150101A JP H02150101 A JPH02150101 A JP H02150101A JP 30437088 A JP30437088 A JP 30437088A JP 30437088 A JP30437088 A JP 30437088A JP H02150101 A JPH02150101 A JP H02150101A
Authority
JP
Japan
Prior art keywords
patch antenna
dielectric
antenna
ultra
microplane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30437088A
Other languages
Japanese (ja)
Inventor
Yoshimoto Ogawa
小川 慶始
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP30437088A priority Critical patent/JPH02150101A/en
Publication of JPH02150101A publication Critical patent/JPH02150101A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To obtain a microplane patch antenna by using a dielectric with high dielectric constant in a plane patch antenna. CONSTITUTION:In the plane patch antenna consisting of a radiator 4, the dielectric 3, and a grand plane 2, for example, the dielectric with high dielectric constant (epsilonr>=24-36), for example, a ceramic dialectic used as a dielectric resonator or a filter element in a conventional system is used. Thereby, electrical characteristic can compare favorably with that of the plane patch antenna using the dielectric with low dielectric constant, and size is reduced to 1/4-1/2 compared with the conventional one, therefore, the microplane patch antenna assemblable in an IC card of non-contact radio system can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、音声1画像、データ等の各種無線通信に用
いる平面パッチアンテナの内、ICカード、小型携帯無
線機器、その他無線機等、実装上超小型化された平面パ
ッチアンテナが必要とされる分野に用いる超小型平面パ
ンチアンテナに関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is a planar patch antenna used for various wireless communications such as audio, images, data, etc. The present invention relates to an ultra-compact planar punch antenna used in fields where an ultra-compact planar patch antenna is required.

〔発明の概要〕[Summary of the invention]

本発明は、前述の各種無線通信に用いるアンテナにおい
て、放射器、誘電体、グランドプレーンからなる平面パ
ッチアンテナのtN iff電体に高誘電率(εr=2
4〜36、又はそれ以上)、例えば、セラミ、り等の誘
電体を用いる事により、従来の標準的誘電体、テフロン
系誘電体(εr=2.6)又はレジン系誘電体(t r
 =4.5)、さらには、アルミナセラミック系(εr
=9.8)等を用いた平面パッチアンテナに比較して寸
法を174〜1/2の超小型化を可能とした、超小型平
面パッチアンテナを実現しようとしたものである。
The present invention provides an antenna for use in various wireless communications described above, in which the tNiff electric body of a planar patch antenna consisting of a radiator, a dielectric, and a ground plane has a high dielectric constant (εr=2
4 to 36 or more), e.g., ceramic, phosphor, etc., can be used to convert conventional standard dielectrics, Teflon-based dielectrics (εr=2.6), or resin-based dielectrics (t r
= 4.5), and furthermore, alumina ceramic (εr
This is an attempt to realize an ultra-compact planar patch antenna that can be made ultra-small in size by 174 to 1/2 compared to a planar patch antenna using, for example, a flat patch antenna using an antenna (=9.8) or the like.

〔従来の技術〕[Conventional technology]

従来、平面パッチアンテナに用いる誘電体としては、前
述の標準的誘電体、テフロン系誘電体(εr=2.6)
、レジン系誘電体(εr =4.5)、又は、アルミナ
セラミック系誘電体(εr =9.8)等がI BEE
論文、1を子通信学会論文、又は、テレビジョン学会論
文等で、種々発表され知られていた。前述の低誘電率誘
電体を使用して小型化を実現する手法としては、1/4
 λ型の平面パッチアンテナとすることが、電子通信学
会やその他の学会の論文等で発表され知られていた。
Conventionally, dielectrics used in planar patch antennas include the standard dielectric mentioned above and Teflon dielectric (εr=2.6).
, resin dielectric (εr = 4.5), alumina ceramic dielectric (εr = 9.8), etc.
It has been published and known in various ways, such as in the paper 1 of the Communication Society of Japan, or the paper of the Television Society. As a method of realizing miniaturization using the aforementioned low-permittivity dielectric material,
The use of a λ-type planar patch antenna was announced in papers from the Institute of Electronics and Communication Engineers and other academic societies and was known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、平面パッチアンテナの共振寸法計算を、テレビ
ジョン学界誌Vo1.38.隘11 (1984)に記
載されている方法及び円形の平面パッチアンテナの計算
式、r r p = (C/2 aFTT)(方形)又
はf r c = (xll/ 2 rr aFTT)
 C(円形)(frp、frc:共振周波数、a:バッ
チ寸法、C:光速、  X11=1.8 、41:主モ
ードの固有値〕を引用し7て計算を行った場合、誘電率
εrが計算式の分母側にあり、このεrの値によってバ
ッチ寸法aが決まるため、従来のようなテフロン系誘電
体(εr=2.6)、レジン系誘電体(εr=4.5 
) 、又は、アルミナセラミック系誘電体(εr =9
.8 )等の低誘電率誘電体を用いた平面パッチアンテ
ナでは、ICカード、小型携帯無線機器、その他色線機
等、実装上超小型化が必要な機器には、大きすぎて組み
込み実装ができない等の欠点があった。また、小型化の
手法として、前記低誘電率誘電体による1/4 λ型の
平面パッチアンテナが有るが、この1/4 λ型子面パ
ッチアンテナを製作する」二で放射器の端面とグランド
プレーンとの間をショート加工する等、加工が複雑とな
ったり、小型化のために高周波特性が劣化する等の欠点
が有った。
However, the resonant dimension calculation of a planar patch antenna is not explained in Television Academic Journal Vol. 1.38. 11 (1984) and the calculation formula for a circular planar patch antenna, r r p = (C/2 aFTT) (rectangular) or f r c = (xll/2 r r aFTT)
C (circle) (frp, frc: resonant frequency, a: batch size, C: speed of light, It is on the denominator side of the equation, and the batch size a is determined by the value of εr.
), or alumina ceramic dielectric (εr = 9
.. Planar patch antennas using low-permittivity dielectric materials such as 8) are too large to be incorporated into devices that require ultra-miniaturization, such as IC cards, small portable wireless devices, and other colored wire devices. There were other drawbacks. In addition, as a method of miniaturization, there is a 1/4 λ type planar patch antenna using the low-permittivity dielectric mentioned above, but in order to manufacture this 1/4 λ type plane patch antenna, the end face of the radiator and the ground There were drawbacks such as complicated processing, such as short-circuiting between planes, and deterioration of high frequency characteristics due to miniaturization.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、この発明は、前述のICカード、小型携帯無線
機器、その他色線機等、実装上超小型化が必要な機器に
、低誘電率の誘電体を用いた平面パッチアンテナでは大
きすぎて組み込み実装ができない等の欠点を解決するた
めに放射器、誘電体。
Therefore, this invention was developed to incorporate a planar patch antenna using a dielectric material with a low permittivity into devices that require ultra-miniaturization for implementation, such as the aforementioned IC cards, small portable wireless devices, and other colored wire devices. radiators and dielectrics to solve the drawbacks such as not being able to be mounted.

グランドプレーンからなる平面バンチアンテナにおいて
、該誘電体を従来のようなテフロン系P it体(εr
 =2.6)、  レジン系誘電体(εr−4,5)。
In a planar bunch antenna consisting of a ground plane, the dielectric material is a conventional Teflon-based Pit material (εr
=2.6), resin-based dielectric (εr-4,5).

又は、アルミナセラミック系誘電体(εr =9.8)
等の低誘電率誘電体を用いず、従来、誘電体共振器、フ
ィルター素子としてのみに用いられていた高誘電¥1(
εr−24〜36、又はそれ以上)、例えばセラミ、り
誘電体を用いることにより、超小型化が可能となり、I
Cカード、小型携帯無線機器。
Or alumina ceramic dielectric (εr = 9.8)
Conventionally, high-permittivity ¥1 (
εr-24 to 36 or more), for example, by using ceramic or dielectric material, ultra-miniaturization becomes possible, and I
C card, small portable radio device.

その他色線機等、実装上超小型化が必要な機器への平面
パッチアンテナの実装を実現した。
We have also realized the implementation of planar patch antennas in equipment that requires ultra-miniaturization for implementation, such as color line machines.

〔作用〕[Effect]

前述のように高誘電体で構成された超小型平面パッチア
ンテナを実現出来ることにより、電気的特性は従来の低
誘電率誘電体を用いた平面パッチアンテナと遜色なく、
寸法的には174〜l/2となり、無接触型無線方式I
Cカードに平面アンテナの組み込みが可能となり、さら
には、ハンディ−ターミナル等小型携帯無線機器、その
他色VA機等、実装上超小型化が必要な機器の実現が可
能となった。また、無線機器よりアンテナの突起を無く
すことも可能となった。
As mentioned above, by realizing an ultra-compact planar patch antenna made of a high dielectric material, the electrical characteristics are comparable to those of conventional planar patch antennas using a low dielectric material.
The dimensions are 174 to 1/2, and it is a contactless wireless system I.
It has become possible to incorporate a planar antenna into a C card, and furthermore, it has become possible to realize devices that require ultra-miniaturization for implementation, such as small portable wireless devices such as handheld terminals, and other color VA devices. It has also become possible to eliminate antenna protrusions from wireless devices.

(実施例〕 以下にこの発明の実施例を図面に基づいて説明する。第
1図は、この発明にかかわる断面図であり、高誘電体素
材3の片面にグランドプレーン2となる銅の薄板を接着
剤等を塗布し圧力をかけ圧接する。さらに、この高誘電
体素材のもう一方の面に放射器4となる銅の薄板を接着
剤等を塗布し圧力をかけ圧接し、両面銅箔基板様に製作
するや前述の共振寸法計算式により放射器の寸法を求め
、フォトエツチング法等により該両面銅箔基板の放射器
面を仕上げ、放射器4を製作する。尚、誘電体の両面に
銅のgt板を圧接するかわりに、該誘電体の両面を電解
メツキ法等により両面銅箔基板様の導体面を製作する方
法も可能である。無線機器より伝送路を接続するための
コネクター1、または同軸ケーブル1aの外装部をグラ
ンドプレーン2に半田等で固着する。コネクター1、ま
たは同軸ケーブル1aの芯線はグランドプレーン2より
絶縁し、高誘電率の誘電体3を貫通して放射器4のイン
ピーダンス整合点に半田等で接合され、また、別な手法
として、第2図に示すように前述のフォトエツチング法
等により放射器を製作と同時に、放射器と同一平面に、
放射器端面と誘電体3の端面3aの間にインピーダンス
整合の計算式:Z−膳−Zi(Z:整合インピーダンス
、ZO:アンテナインピーダンス、Zi:接続伝送路イ
ンピーダンス)、L−実効波長/4で求められるQマツ
チ整合回路5を設け、無線機器より伝送路を接続するた
めのコネクター1、または同軸ケーブル1aを、Qマツ
チ整合回路5を設けた近傍のアンテナ側面に配置し、外
装部を裏面のグランドブレーン2に、芯線をQマツチ整
合回路の一端に半田等で固着する。
(Example) An example of the present invention will be described below based on the drawings. Fig. 1 is a cross-sectional view related to the present invention, in which a thin copper plate serving as a ground plane 2 is placed on one side of a high dielectric material 3. Apply adhesive, etc., and apply pressure to bond.Furthermore, on the other side of this high dielectric material, apply adhesive, etc. to a thin copper plate that will become the radiator 4, and apply pressure to bond it, forming a double-sided copper foil board. After manufacturing the radiator as shown in FIG. Instead of pressure-welding a copper GT plate, it is also possible to fabricate a conductor surface similar to a double-sided copper foil board by electrolytic plating or the like on both sides of the dielectric.Connector 1 for connecting a transmission path from a wireless device , or fix the exterior part of the coaxial cable 1a to the ground plane 2 with solder or the like.The connector 1 or the core wire of the coaxial cable 1a is insulated from the ground plane 2, passes through the high dielectric constant dielectric 3, and connects to the radiator 4. As another method, as shown in Fig. 2, the radiator is manufactured by the photo-etching method described above, and at the same time, the radiator is bonded to the impedance matching point of the
Calculation formula for impedance matching between the radiator end face and the end face 3a of the dielectric 3: Z-Zen-Zi (Z: matching impedance, ZO: antenna impedance, Zi: connection transmission line impedance), L-effective wavelength/4 The required Q-match matching circuit 5 is provided, and the connector 1 or coaxial cable 1a for connecting the transmission line from the wireless device is placed on the side of the antenna near where the Q-match matching circuit 5 is provided, and the exterior part is placed on the back side. A core wire is fixed to one end of the Q-match matching circuit on the ground brain 2 with solder or the like.

以上のような実施において、高誘電率の誘電体を用いる
事により、低誘電率の誘電体を使用して製作した平面パ
ッチアンテナに比較して174〜1/2の寸法となる超
小型な平面パッチアンテナを実現し、ICカード、小型
携帯無線機器、その地熱線機等、実装上超小型化が必要
な機器に平面パッチアンテナを実装可能とした。さらに
、前述の174λ型平面パッチアンテナに同様の手法を
用いるとさらに超小型化が可能なことは言うまでもない
In the implementation described above, by using a dielectric material with a high dielectric constant, an ultra-small planar antenna whose size is 174 to 1/2 that of a planar patch antenna fabricated using a dielectric material with a low dielectric constant is created. By realizing a patch antenna, we have made it possible to mount a planar patch antenna on devices that require ultra-miniaturization, such as IC cards, small portable wireless devices, and geothermal wire devices. Furthermore, it goes without saying that the above-described 174λ type planar patch antenna can be further miniaturized by using a similar method.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、放射器、誘電体、グラ
ンドブレーンからなる平面パンチアンテナにおいて、高
誘電率誘電体、例えば、セラミック誘電体(εr−24
〜36、又はそれ以上)を用いる事により低誘電率誘電
体で製作した平面パッチアンテナに比較して174〜1
/2の寸法となる超小型な平面パッチアンテナの実現を
可能とし、さらに、高誘電率誘電体を用い1/4 λ型
子面パッチアンテナを製作する手法によってもより超小
型化が可能となる。超小型化平面パッチアンテナをIC
カード、小型携帯無線機器、その地熱線機等、実装上ア
ンテナに超小型化が必要な機器に組み込む事により、各
種無線機器をさらに小型化することに効果がある。また
、将来的に、ある周波数帯を使用する腕時計型環無線機
に平面パッチアンテナ組み込むことも可能となる。
As explained above, the present invention is applicable to a planar punch antenna consisting of a radiator, a dielectric, and a ground plane, in which a high permittivity dielectric, such as a ceramic dielectric (εr-24
174 to 1 compared to a planar patch antenna fabricated with a low-permittivity dielectric.
It is possible to realize an ultra-compact planar patch antenna with dimensions of /2, and even further miniaturization is possible by using a method of manufacturing a 1/4 λ type surface patch antenna using a dielectric with a high permittivity. . IC for ultra-compact planar patch antenna
By incorporating it into devices such as cards, small portable wireless devices, and geothermal wire devices that require ultra-miniaturized antennas for mounting, it is effective in further miniaturizing various wireless devices. In the future, it will also be possible to incorporate a planar patch antenna into a wristwatch-type ring radio that uses a certain frequency band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる超小型パッチアンテナの断面図
、第2図はQマツチ整合回路を設けた平面図である。 1・・・・コネクター 1a・・・同軸ケーブル 2・・・・グランドブレーン 3・・・・誘電体 4・・・・放射器 以上 3持斃漆 出願人 セイコー電子工業株式会社 代理人 弁理士  林   敬 之 肋木発明15係る
超小型パラ壬アンテナの断面図第1図 Qマツチ整合回路を“Uけf二千■閃 第2図
FIG. 1 is a cross-sectional view of an ultra-small patch antenna according to the present invention, and FIG. 2 is a plan view in which a Q-match matching circuit is provided. 1...Connector 1a...Coaxial cable 2...Ground brain 3...Dielectric 4...Radiator and above 3 Mochio Lacquer Applicant Seiko Electronic Industries Co., Ltd. Agent Patent attorney Hayashi Takayuki A cross-sectional view of an ultra-small parasitic antenna according to Invention No. 15. Figure 1.

Claims (1)

【特許請求の範囲】[Claims] 放射器、誘電体、グランドプレーンからなる平面パッチ
アンテナにおいて、該誘電体に高誘電率の誘電体を用い
る事により超小型化を可能とした超小型平面パッチアン
テナ。
An ultra-compact planar patch antenna consisting of a radiator, a dielectric, and a ground plane, which can be miniaturized by using a dielectric with a high dielectric constant as the dielectric.
JP30437088A 1988-12-01 1988-12-01 Microplane patch antenna Pending JPH02150101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30437088A JPH02150101A (en) 1988-12-01 1988-12-01 Microplane patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30437088A JPH02150101A (en) 1988-12-01 1988-12-01 Microplane patch antenna

Publications (1)

Publication Number Publication Date
JPH02150101A true JPH02150101A (en) 1990-06-08

Family

ID=17932205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30437088A Pending JPH02150101A (en) 1988-12-01 1988-12-01 Microplane patch antenna

Country Status (1)

Country Link
JP (1) JPH02150101A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684235A1 (en) * 1991-11-25 1993-05-28 Gemplus Card Int INTEGRATED CIRCUIT CARD COMPRISING MEANS OF PROTECTING THE INTEGRATED CIRCUIT.
JPH05166018A (en) * 1991-12-12 1993-07-02 Fujitsu Ltd Non-contact ic card
EP0734063A3 (en) * 1991-02-19 1997-01-29 Gemplus Card Int Integrated circuit micromodule obtained by continuous assembly of patterned strips
JPH09232856A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Planar antenna
EP1195845A2 (en) * 2000-10-09 2002-04-10 Philips Corporate Intellectual Property GmbH Miniaturised microwave antenna
KR100372727B1 (en) * 1994-06-28 2003-05-23 소니 케미카루 가부시키가이샤 Antenna for short distance communication and its manufacture and use
US7741999B2 (en) 2006-06-15 2010-06-22 Kathrein-Werke Kg Multilayer antenna of planar construction
US7821460B2 (en) 2006-08-17 2010-10-26 Kathrein-Werke Kg Tunable patch antenna of planar construction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734063A3 (en) * 1991-02-19 1997-01-29 Gemplus Card Int Integrated circuit micromodule obtained by continuous assembly of patterned strips
FR2684235A1 (en) * 1991-11-25 1993-05-28 Gemplus Card Int INTEGRATED CIRCUIT CARD COMPRISING MEANS OF PROTECTING THE INTEGRATED CIRCUIT.
JPH05166018A (en) * 1991-12-12 1993-07-02 Fujitsu Ltd Non-contact ic card
KR100372727B1 (en) * 1994-06-28 2003-05-23 소니 케미카루 가부시키가이샤 Antenna for short distance communication and its manufacture and use
JPH09232856A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Planar antenna
EP1195845A2 (en) * 2000-10-09 2002-04-10 Philips Corporate Intellectual Property GmbH Miniaturised microwave antenna
EP1195845A3 (en) * 2000-10-09 2004-01-02 Philips Intellectual Property & Standards GmbH Miniaturised microwave antenna
US7741999B2 (en) 2006-06-15 2010-06-22 Kathrein-Werke Kg Multilayer antenna of planar construction
US7821460B2 (en) 2006-08-17 2010-10-26 Kathrein-Werke Kg Tunable patch antenna of planar construction

Similar Documents

Publication Publication Date Title
US6535167B2 (en) Laminate pattern antenna and wireless communication device equipped therewith
US5874926A (en) Matching circuit and antenna apparatus
TW520583B (en) Antenna device and radio communication card module having antenna device
TW529206B (en) Miniaturized microwave antenna
US6271803B1 (en) Chip antenna and radio equipment including the same
JP3296276B2 (en) Chip antenna
KR20000017328A (en) Dielectric resonator antenna
EP0829917A1 (en) Antenna device
US6720925B2 (en) Surface-mountable dual-band monopole antenna of WLAN application
US5499005A (en) Transmission line device using stacked conductive layers
EP0746054A1 (en) Antenna device and communication apparatus incorporating the same
JPH07193421A (en) Compact antenna for portable radio equipment
JP2003163528A (en) Printed circuit board, smd antenna, and communication equipment
JPH05259724A (en) Print antenna
JPH0750508A (en) Antenna module
CN101971419B (en) Radio communication device
EP1363359A1 (en) An Antenna Module
US5446471A (en) Printed dual cavity-backed slot antenna
JPH02150101A (en) Microplane patch antenna
JPH11340726A (en) Antenna device
JP3227631B2 (en) antenna
JP2004260343A (en) Small antenna system
JP2001085920A (en) Portable wireless terminal
JP2000278036A (en) Stacked chip antenna
JPH0773282A (en) High frequency circuit device