JPH0214874A - Production of alumina ceramic - Google Patents

Production of alumina ceramic

Info

Publication number
JPH0214874A
JPH0214874A JP1131495A JP13149589A JPH0214874A JP H0214874 A JPH0214874 A JP H0214874A JP 1131495 A JP1131495 A JP 1131495A JP 13149589 A JP13149589 A JP 13149589A JP H0214874 A JPH0214874 A JP H0214874A
Authority
JP
Japan
Prior art keywords
powder
mgo
zro2
compound
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1131495A
Other languages
Japanese (ja)
Other versions
JPH0448749B2 (en
Inventor
Masachika Yaguchi
正親 矢口
Akihiro Kato
陽弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP1131495A priority Critical patent/JPH0214874A/en
Publication of JPH0214874A publication Critical patent/JPH0214874A/en
Publication of JPH0448749B2 publication Critical patent/JPH0448749B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alumina ceramic maintaining sufficiently high mechanical strength and corrosion resistance even in a high-temperature calcination as a container for the calcination of fluorescent material, etc., by mixing MgO powder, ZrO2 powder and Al2O3 powder at specific ratios and calcining the mixture. CONSTITUTION:The objective alumina ceramic is produced by selecting an aluminium compound, a magnesium compound and a zirconium compound from MgO powder, a magnesium compound capable of forming MgO by calcination, ZrO2 powder, a zirconium compound capable of forming ZrO2 by calcination, powder of sintered MgO.ZrO2, Al2O3 powder and an aluminum compound capable of forming Al2O3 by calcination, mixing the above compounds at the following ratios and calcining the mixture. The weight ratio of the magnesium compound to the zirconium compound is 2:8-7:3 in terms of MgO and ZrO2 and the sum of the above compounds is 0.1-0.65wt.% based on Al2O3.

Description

【発明の詳細な説明】 本発明は新規な組成のアルミナ磁器の製造方法に関する
ものであり、特に螢光体等の焼成用容器として、また透
光性に優れた性質を有する改良されたアルミナ磁器の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing alumina porcelain with a novel composition, and in particular, to an improved alumina porcelain that has excellent translucency and can be used as a container for firing phosphors, etc. Relating to a manufacturing method.

アルミナ磁器は機械的強度及び耐蝕性が大きく、更に透
光性を有する等の優れた素材であるので、各種用途に使
用されている。
Alumina porcelain is an excellent material that has high mechanical strength and corrosion resistance, and also has translucency, so it is used for various purposes.

螢光体製造の分野においても原料を焼成する際の容器(
ルツボ)としてアルミナ磁器が使用されている。ところ
で、螢光体は一般に母体構成原料、付活剤構成原料及び
融剤を混合し、これを焼成することによって製造される
In the field of phosphor manufacturing, containers (
Alumina porcelain is used as a crucible. Incidentally, a phosphor is generally manufactured by mixing a base material, an activator material, and a flux, and firing the mixture.

ここで、融剤としては一般に原料全体の約2゜〜80重
量%のアルカリ金属化合物及び/又はアルカリ土類金属
化合物が用いられる。この様な螢光体製造において、ア
ルミナ磁器ルツボを繰り返し使用すると、殆どの場合数
回で割れてしまう。
Here, as a fluxing agent, an alkali metal compound and/or alkaline earth metal compound is generally used in an amount of about 2 to 80% by weight of the total raw materials. When an alumina porcelain crucible is used repeatedly in the production of such a phosphor, it almost always breaks after a few times.

その原因としては、ルツボ内壁部のアルミナ(α−At
□0.)が螢光体原料の融剤中のアルカリ金属及び/又
はアルカリ土類金属と反応してβ−AIIO,に変化し
てルツボ外壁部のアルミナとは相の異なるものとなり、
その結果熱膨張係数に差が生じ、従って高温焼成及び冷
却の繰り返しにおいて歪を生じるためと考えられる。
The cause of this is that the alumina (α-At
□0. ) reacts with the alkali metal and/or alkaline earth metal in the flux of the phosphor raw material and changes into β-AIIO, which has a different phase from the alumina on the outer wall of the crucible,
As a result, a difference occurs in the coefficient of thermal expansion, which is thought to cause distortion during repeated high-temperature firing and cooling.

これを防止するために、従来Al2O3に微量のMgO
、Tie、、CaOあるいはLa2’s 、 Y2O3
、Er20a等の希土類元素酸化物を単独であるいは混
合して添加することが行われていたが、この様な従来の
添加剤を含むアルミナルツボを用いた場合でも、上記の
如きアルカリ金属化合物及び/又はアルカリ土類金属化
合物を大量に含む原料を焼成する螢光体製造においては
、破損する迄の繰り返し使用回数は依然として少ない。
To prevent this, conventionally a trace amount of MgO was added to Al2O3.
, Tie, , CaO or La2's, Y2O3
, Er20a, and other rare earth element oxides have been added singly or in combination, but even when using an alumina crucible containing such conventional additives, the above-mentioned alkali metal compounds and/or Alternatively, in the production of phosphors in which raw materials containing large amounts of alkaline earth metal compounds are fired, the number of repeated uses before breakage is still small.

そこで、本発明者は、螢光体製造の如き大量のアルカリ
金属化合物及び/又はアルカリ土類金属化合物との接触
下での高温焼成においても十分な機械的強度及び耐蝕性
をもち、多数回の繰り返し使用に耐えるアルミナ磁器を
製造すべ(種々検討の結果、特定の2種の添加剤を特定
割合で特定量混合することにより目的が達成されること
を見出した。
Therefore, the present inventor has developed a method that has sufficient mechanical strength and corrosion resistance even in high-temperature firing in contact with large amounts of alkali metal compounds and/or alkaline earth metal compounds, such as in the production of phosphors, and that can be used multiple times. To produce alumina porcelain that can withstand repeated use.As a result of various studies, it was discovered that this objective could be achieved by mixing two specific types of additives in specific amounts in specific proportions.

即ち、本発明は、MgO粉末、−焼成によりMgOに変
化し得るマグネシウム化合物、ZrO7粉末、焼成によ
りZrO□に変化し得るジルコニウム化合物、MgO・
ZrO2焼結体粉末、Al2O3粉末、焼成によりAl
2O.に変化し得るアルミニウム化合物の中からアルミ
ニウム化合物、マグネシウム化合物及びジルコニウム化
合物を選択し、マグネシウム化合物及びジルコニウム化
合物の重量比がMgO及びZrO□換算で2=8〜7:
3であり、且つその合計量がAl2O.に対し0.1〜
0.65重量%である量を秤量し、これらを混合し、焼
成することを特徴とするアルミナ磁器の製造方法である
That is, the present invention provides MgO powder, a magnesium compound that can be converted to MgO by firing, a ZrO7 powder, a zirconium compound that can be converted to ZrO□ by firing, and MgO.
ZrO2 sintered body powder, Al2O3 powder, Al by firing
2O. An aluminum compound, a magnesium compound, and a zirconium compound are selected from aluminum compounds that can be changed into
3, and the total amount is Al2O. 0.1~
This method of producing alumina porcelain is characterized by weighing out 0.65% by weight, mixing them, and firing them.

本発明のアルミナ磁器の製造方法は、常法に従いMgO
粉末及びZrO2粉末をAll0I粉末と混合して分散
せしめ、これを成形後焼成することによって実施される
。MgO粉末及びZrOz粉末はそれぞれ単、独の粉末
としてAltas粉末に添加してもよいし。
The method for manufacturing alumina porcelain of the present invention is carried out using MgO
This is carried out by mixing and dispersing the powder and ZrO2 powder with the AllIOI powder, molding the mixture, and then firing it. The MgO powder and the ZrOz powder may be added to the Altas powder as separate powders.

また予めMgO粉末とZrO□粉末とを適宜の割合で混
合し、焼結し、その後粉砕した焼結体粉末をAIJn粉
末に添加してもよい、 A1.O,粉末は一般に0.1
〜5μの平均粒径のものが使用され、MgO粉末は平均
粒径0.5〜2μのものが、ZrOi粉末は平均粒径0
.4〜3μのものが、またMg04rO□焼結体粉末は
平均粒径0.5〜3μのものが使用される。尚、A11
as 、MgO及びZrOzの代わりに、焼成によりこ
れらに変化し得るもの、たとえばA1. Mg及びZr
の硫酸塩、硫化物又は塩化物等を用いることもできる。
Alternatively, MgO powder and ZrO□ powder may be mixed in an appropriate ratio in advance, sintered, and then pulverized sintered body powder may be added to the AIJn powder. A1. O, powder is generally 0.1
An average particle size of ~5μ is used, MgO powder has an average particle size of 0.5 to 2μ, and ZrOi powder has an average particle size of 0.
.. Mg04rO□ sintered powder has an average particle size of 0.5 to 3μ. Furthermore, A11
as , MgO and ZrOz, those which can be converted into these by calcination, such as A1. Mg and Zr
It is also possible to use sulfates, sulfides, chlorides, and the like.

本発明のアルミナ磁器の製造方法においては、原料であ
るMgO粉末、ZrO□粉末及びMgO・ZrO□焼結
体粉末の平均粒径はAl2O.の平均粒径の0.5〜2
倍であることが好ましく、これによりAlaOs中への
添加剤の分散の均一性が高められ、焼結密度等の諸特性
の向上に役立つ。
In the method for producing alumina porcelain of the present invention, the average particle diameter of the raw materials MgO powder, ZrO□ powder, and MgO.ZrO□ sintered body powder is Al2O. 0.5 to 2 of the average particle size of
It is preferable that the amount is twice as high as that of the sintered material, thereby increasing the uniformity of dispersion of the additive into the AlaOs, which is useful for improving various properties such as sintered density.

また、これら原料の粒度分布はできるだけシャープであ
ることが磁器の耐久性向上に役立つので好ましい。均一
な粒度をもつ原料の製造にはゾルゲル法と称される新し
い方法を用いることが好ましい。ゾルゲル法とは、例え
ば金属のアルコキシドを調製し、これを加水分解して解
膠することによりゾルを形成し、これをゲル化する方法
である。ここで、ゲル化の際にゾルを非水溶媒中にオリ
フィスから滴下させ、これを乾燥せしめることにより粒
度分布の良好なゲルを得ることができる。例えば、アル
ミナのゲルを得るためには、アルミニウムイソプロポキ
シドを加水分解し、塩酸を添加して解膠し、このゾルを
オリフィスからヘキサン中に滴下し、撹拌し、乾燥する
。得られるゲルの粒度は撹拌速度によりコントロールで
きる。同様にMgO及びZrO□についてもゾルゲル法
により所望の均一な粒径のものを得ることができる。
Further, it is preferable that the particle size distribution of these raw materials be as sharp as possible, since this will help improve the durability of the porcelain. Preferably, a new method called sol-gel method is used to produce raw materials with uniform particle size. The sol-gel method is a method in which, for example, a metal alkoxide is prepared, hydrolyzed and peptized to form a sol, and the sol is turned into a gel. Here, during gelation, a gel with a good particle size distribution can be obtained by dropping the sol into a nonaqueous solvent from an orifice and drying it. For example, to obtain an alumina gel, aluminum isopropoxide is hydrolyzed, hydrochloric acid is added to peptize the sol, and the sol is dropped into hexane through an orifice, stirred, and dried. The particle size of the resulting gel can be controlled by the stirring speed. Similarly, MgO and ZrO□ can also be obtained with desired uniform particle diameters by the sol-gel method.

以上の如き本発明の製造方法によって得られたアルミナ
磁器は、大結晶粒子を含まず、密度が高く、アルカリ金
属化合物及びアルカリ土類金属化合物に対する耐蝕性が
良好であり、螢光体製造用ルツボとして使用した場合に
も従来のルツボに比較して極めて多数回の使用に耐える
The alumina porcelain obtained by the production method of the present invention as described above does not contain large crystal grains, has high density, has good corrosion resistance against alkali metal compounds and alkaline earth metal compounds, and is suitable for use in crucibles for producing phosphors. Even when used as a crucible, it can withstand much more use than conventional crucibles.

本発明のもう一つの局面は、MgO及びzrOxを重量
比2:8〜7:3にて含み、その合計量がAl2O3に
対し0.1〜0.65重量%であるA120i、MgO
及びZrO2からなる混合物を水素雰囲気中で焼成する
ことを特徴とする透光性アルミナ磁器の製造方法である
。このように水素雰囲気中で焼成を行なうと透光性焼成
焼結体が得られ、これはアルカリ金属蒸気にもおかされ
ないためナトリウムランプ等のアルカリ金属蒸気放電灯
の発光管として使用可能である。
Another aspect of the invention is an A120i, MgO containing MgO and zrOx in a weight ratio of 2:8 to 7:3, the total amount of which is 0.1 to 0.65% by weight relative to Al2O3.
and ZrO2 is fired in a hydrogen atmosphere. By performing firing in a hydrogen atmosphere in this manner, a translucent fired sintered body is obtained, which is not affected by alkali metal vapor and can therefore be used as an arc tube for an alkali metal vapor discharge lamp such as a sodium lamp.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 平均粒子径0.3μの純度99.8%のα−A120m
、ならびに平均粒子径0.5μのMgO1ZrO□及び
MgO・ZrO□焼結体をそれぞれの添加量を変化させ
、十分に分散混合しスプレードライヤーで乾燥後、ラバ
ープレス(1500kg/ cm”)で内径50mm、
高さ50mmの円筒形に成形し、1650℃で2時間焼
結してアルミナ磁器ルツボを製造した。
Example 1 α-A120m with an average particle size of 0.3μ and a purity of 99.8%
, and MgO1ZrO□ and MgO・ZrO□ sintered bodies with an average particle size of 0.5 μ were varied in their respective addition amounts, sufficiently dispersed and mixed, dried with a spray dryer, and then dried with a rubber press (1500 kg/cm”) to an inner diameter of 50 mm. ,
It was molded into a cylindrical shape with a height of 50 mm and sintered at 1650° C. for 2 hours to produce an alumina porcelain crucible.

このルツボ中にて螢光体の焼成を行うために、螢光体の
母体構成原料二酸化イツトリウム(平均粒径3μ)、付
活剤原料:酸化ユーロピウム、融剤;炭酸ナトリウム及
び炭酸カリウムを従来の組成比にて調合し、十分混合し
たものを装入した。
In order to fire the phosphor in this crucible, yttrium dioxide (average particle size 3 μm), the base material of the phosphor, europium oxide, an activator material, and sodium carbonate and potassium carbonate as a flux were used in the conventional manner. The mixture was prepared according to the composition ratio, and the mixture was thoroughly mixed and charged.

これを1100℃の温度で2時間焼成した。この焼成を
ルツボが割れる迄繰り返し行った。
This was baked at a temperature of 1100° C. for 2 hours. This firing process was repeated until the crucible cracked.

ルツボの各組成における焼結密度と繰り返し使用回数と
を表−1に示す。
Table 1 shows the sintered density and number of repeated uses for each composition of the crucible.

Al2O3に対するMgO+ZrO2の添加量が0,3
重量%である場合のMgO/ ZrO□(重量比)と繰
り返し使用回数(回)との関係を図示すると第1図のよ
うになる。また、MgO/ZrO□の重量比が5015
0である場合のAl2O3に対するMgO+ZrO2の
添加量(重量%)と繰り返し使用回数(回)との関係を
図示すると第2図のようになる。第1図から明らかなよ
うに、顕著な効果の達成されるMgO/ZrO□(重量
比)の範囲は2:8〜7:3である。
The amount of MgO+ZrO2 added to Al2O3 is 0.3
The relationship between MgO/ZrO□ (weight ratio) and the number of times of repeated use (times) in terms of weight % is shown in FIG. In addition, the weight ratio of MgO/ZrO□ is 5015
The relationship between the amount of MgO+ZrO2 added to Al2O3 (weight %) and the number of times of repeated use (times) in the case of 0 is shown in FIG. As is clear from FIG. 1, the range of MgO/ZrO□ (weight ratio) in which significant effects are achieved is from 2:8 to 7:3.

また、第2図から明らかなように、顕著な効果の達成さ
れるAl2O.に対するMgO+ ZrO□の添加量(
重量%)は0.1〜0.65である。
Moreover, as is clear from FIG. 2, Al2O. Amount of MgO + ZrO□ added to (
weight%) is 0.1 to 0.65.

実施例2 市販のアルミニウムイソプロポキシド番こ水を加えて加
水分解した後、塩酸を0.2モル添加して70℃で7日
間かけて解膠を行い、これを無水ヘキサン中に0.1m
m径のオリフィスより滴下し、強力に撹拌することによ
り平均粒子径0.3μの透明なアルミナを得た。同様に
してマグネシウムとジルコニウムのインプロポキシドか
らそれぞれゾルを調製し、ゲル化させた。それぞれ0.
3μ及び0.5μの平均粒子径を有する透明体であった
Example 2 Commercially available aluminum isopropoxide was hydrolyzed by adding diluted water, then peptized by adding 0.2 mol of hydrochloric acid at 70°C for 7 days, and 0.1 mol of this was added to anhydrous hexane.
Transparent alumina with an average particle size of 0.3 μm was obtained by dropping the solution through an orifice with a diameter of m and stirring vigorously. Sols of magnesium and zirconium impropoxide were prepared in the same manner and gelatinized. 0 each.
They were transparent bodies with average particle diameters of 3μ and 0.5μ.

上記アルミナに対しそれぞれ0.15重重量の上記酸化
マグネシウム及び酸化ジルコニウムを添加し、乾燥後、
実施例1におけると同様な成形体とし、1300℃で焼
成して透明な焼結体(ルツボ)を得た。この時の焼結密
度は3.96であった。
0.15 weight of each of the above magnesium oxide and zirconium oxide was added to the above alumina, and after drying,
A molded body similar to that in Example 1 was prepared and fired at 1300° C. to obtain a transparent sintered body (crucible). The sintered density at this time was 3.96.

このルツボを使用して実施例1と同様な螢光体焼成繰り
返しテストを行ったところ、35回をすぎても何ら変化
がなかった。
When this crucible was used to perform a repeated phosphor firing test similar to that in Example 1, no change was observed even after 35 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法によって得たアルミナ磁器に
おけるMgO/ ZrOa (重量比)と繰り返し使用
回数(回)との関係を示すグラフである。 第2図は本発明の製造方法によって得たアルミナ磁器に
おけるAl2O3に対するMgO+ ZrO□の添加量
(重量%)と繰り返し使用回数(回)との関係を示すグ
ラフである。 第 図 M90/ZrO2ft’g>c) 第 図
FIG. 1 is a graph showing the relationship between MgO/ZrOa (weight ratio) and the number of repeated uses (times) in alumina porcelain obtained by the manufacturing method of the present invention. FIG. 2 is a graph showing the relationship between the amount of MgO+ZrO□ added to Al2O3 (wt%) and the number of times of repeated use (times) in alumina porcelain obtained by the manufacturing method of the present invention. Fig. M90/ZrO2ft'g>c) Fig.

Claims (4)

【特許請求の範囲】[Claims] (1)MgO粉末、焼成によりMgOに変化し得るマグ
ネシウム化合物、ZrO_2粉末、焼成によりZrO_
2に変化し得るジルコニウム化合物、MgO・ZrO_
2焼結体粉末、Al_2O_3粉末、焼成によりAl_
2O_3に変化し得るアルミニウム化合物の中からアル
ミニウム化合物、マグネシウム化合物及びジルコニウム
化合物を選択し、マグネシウム化合物及びジルコニウム
化合物の重量比がMgO及びZrO_2換算で2:8〜
7:3であり、且つその合計量がAl_2O_3に対し
0.1〜0.65重量%である量を秤量し、これらを混
合し、焼成することを特徴とするアルミナ磁器の製造方
法。
(1) MgO powder, magnesium compound that can be converted to MgO by firing, ZrO_2 powder, ZrO_2 powder by firing
Zirconium compound that can be changed into 2, MgO・ZrO_
2 sintered body powder, Al_2O_3 powder, Al_
An aluminum compound, a magnesium compound, and a zirconium compound are selected from aluminum compounds that can be converted into 2O_3, and the weight ratio of the magnesium compound and zirconium compound is 2:8 to 2:8 in terms of MgO and ZrO_2.
7:3, and the total amount thereof is 0.1 to 0.65% by weight based on Al_2O_3. A method for producing alumina porcelain, comprising weighing, mixing, and firing.
(2)上記焼成が水素雰囲気中で行なわれることを特徴
とする特許請求の範囲第1項記載のアルミナ磁器の製造
方法。
(2) The method for manufacturing alumina porcelain according to claim 1, wherein the firing is performed in a hydrogen atmosphere.
(3)上記焼成が大気中で行なわれることを特徴とする
特許請求の範囲第1項記載のアルミナ磁器の製造方法。
(3) The method for producing alumina porcelain according to claim 1, wherein the firing is performed in the atmosphere.
(4)上記Al_2O_3、MgO及びZrO_2の少
なくとも1種がゾルゲル法を用いて造られたものである
ことを特徴とする特許請求の範囲第(1)項、第(2)
項又は第(3)項記載のアルミナ磁器の製造方法。
(4) Claims (1) and (2) characterized in that at least one of the above Al_2O_3, MgO and ZrO_2 is produced using a sol-gel method.
The method for producing alumina porcelain according to item (3) or item (3).
JP1131495A 1989-05-26 1989-05-26 Production of alumina ceramic Granted JPH0214874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131495A JPH0214874A (en) 1989-05-26 1989-05-26 Production of alumina ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131495A JPH0214874A (en) 1989-05-26 1989-05-26 Production of alumina ceramic

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56162823A Division JPS5864262A (en) 1981-10-14 1981-10-14 Alumina ceramic

Publications (2)

Publication Number Publication Date
JPH0214874A true JPH0214874A (en) 1990-01-18
JPH0448749B2 JPH0448749B2 (en) 1992-08-07

Family

ID=15059339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131495A Granted JPH0214874A (en) 1989-05-26 1989-05-26 Production of alumina ceramic

Country Status (1)

Country Link
JP (1) JPH0214874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172169A (en) * 1990-04-09 1992-12-15 Ricoh Company, Ltd. Developer carrier of a developing device and a method of producing the same
US5315061A (en) * 1989-10-13 1994-05-24 Ricoh Company, Ltd. Developing apparatus using a developer carrier capable of forming microfields
WO2018223544A1 (en) * 2017-06-09 2018-12-13 深圳市光峰光电技术有限公司 Luminous ceramic and preparation process thereof
WO2020045432A1 (en) * 2018-08-29 2020-03-05 京セラ株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315061A (en) * 1989-10-13 1994-05-24 Ricoh Company, Ltd. Developing apparatus using a developer carrier capable of forming microfields
US5451713A (en) * 1989-10-13 1995-09-19 Ricoh Company, Ltd. Developing apparatus using a developer carrier capable of forming microfields
US5172169A (en) * 1990-04-09 1992-12-15 Ricoh Company, Ltd. Developer carrier of a developing device and a method of producing the same
WO2018223544A1 (en) * 2017-06-09 2018-12-13 深圳市光峰光电技术有限公司 Luminous ceramic and preparation process thereof
WO2020045432A1 (en) * 2018-08-29 2020-03-05 京セラ株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck
KR20210011408A (en) * 2018-08-29 2021-02-01 교세라 가부시키가이샤 Electrostatic chuck and manufacturing method of electrostatic chuck
CN112534565A (en) * 2018-08-29 2021-03-19 京瓷株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck
JPWO2020045432A1 (en) * 2018-08-29 2021-08-26 京セラ株式会社 Manufacturing method of electrostatic chuck and electrostatic chuck

Also Published As

Publication number Publication date
JPH0448749B2 (en) 1992-08-07

Similar Documents

Publication Publication Date Title
JPS6121586B2 (en)
US4495300A (en) Method for manufacture of low thermal expansion cordierite ceramics
CN100390330C (en) Method for preparing flake alpha Al2O3 monocrystal grains at low temperature
US2805167A (en) Synthetic spinel refractory products
US3959002A (en) Method of manufacturing white furnace boats for firing ceramic articles and novel furnace boats
US3567472A (en) Magnesium-aluminatespinel member having calcium oxide addition and method for preparing
CN1315982C (en) Method for preparing silicate inorganic luminescent material
JPH0214874A (en) Production of alumina ceramic
US4631144A (en) Aluminate phosphor
JP2001288465A (en) Production method for green-luminescent alkaline earth aluminate phosphor for vuv excitation light emission apparatus
JP3301887B2 (en) Arc tube for metal vapor discharge lamp
US3287143A (en) Gas-tight refractory article and method of making same
JPH0157072B2 (en)
JP2002128563A (en) Ceramic member for thermal treatment which has good thermal shock resistance
US5286688A (en) Rare earth oxide powder
US3686007A (en) Aluminous ceramic compositions with tio2+mno2 flux
JPH0412054A (en) Production of alumina ceramic
US2494276A (en) Ceramic batch
US3737331A (en) Thoria-yttria-based ceramic materials
US6841093B2 (en) Method for manufacturing spherical blue fluorescent substance
JP2001302337A (en) Ceramic-made heat treating member excellent in thermal shock resistance
JP3230063B2 (en) Refractories for firing furnaces in alkaline gas atmosphere
JPS6081062A (en) High strength ceramic material
JP4023222B2 (en) Method for producing silicate phosphor
EP1341870A1 (en) Method for manufacturing spherical blue fluorescent substance