JPH02148638A - Relay driving device - Google Patents

Relay driving device

Info

Publication number
JPH02148638A
JPH02148638A JP30292788A JP30292788A JPH02148638A JP H02148638 A JPH02148638 A JP H02148638A JP 30292788 A JP30292788 A JP 30292788A JP 30292788 A JP30292788 A JP 30292788A JP H02148638 A JPH02148638 A JP H02148638A
Authority
JP
Japan
Prior art keywords
relay
temperature
time
temperature difference
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30292788A
Other languages
Japanese (ja)
Inventor
Yoshitada Nakao
善忠 中尾
Katsunori Zaizen
克徳 財前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30292788A priority Critical patent/JPH02148638A/en
Publication of JPH02148638A publication Critical patent/JPH02148638A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the precise opening and closing of a relay contact at 0 volt in the case of a significant change of temperature between the opening or closing motions of the relay by detecting this temperature difference and newly determining a driving phase based on the obtained temperature difference. CONSTITUTION:A temperature detecting means 12 detecting the temperature near a relay, a memory means 16 temporarily storing this output, and a temperature difference calculating means 17 determining the temperature difference from the previous switching time prior to the switching of the relay are provided. Further, a driving phase determining means 18 is provided, which means inputs the temperature difference obtained by the temperature difference calculating means 17, the synchronization signal from a power source synchronization signal generating means 9, and the switching signal from a switching phase detecting means 10, respectively, and determines the driving phase of a relay contact 16 based on the measurement signal from a time difference measuring means 11 measuring the time difference of these signals. Hence, when the temperature is significantly changed between two ON motions (or OFF motions) of the relay, the relay contact can precisely be closed (or opened) at 0 volt.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、交流電源のゼロボルト近辺でリレーの駆動を
行うリレー駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a relay driving device that drives a relay at around zero volts of an AC power source.

従来の技術 従来のこの種のリレー駆動装置においては、リレー接点
が開閉した位相と交流電源のゼロ位相との時間差を測定
し、この時間差測定値にもとづいてリレー接点を交流電
源のゼロボルト近辺で開閉して、リレー接点間で起きる
アーク放電を抑えることにより、接点の劣化を防ぐもの
があった。
Conventional technology In this type of conventional relay drive device, the time difference between the phase in which the relay contacts open and close and the zero phase of the AC power supply is measured, and the relay contacts are opened and closed at around zero volts of the AC power supply based on this time difference measurement value. Some relays prevent deterioration of the contacts by suppressing arc discharge that occurs between them.

発明が解決しようとする課題 しかしながら、このような構成のリレー駆動装置は、前
回のリレー接点の動作時間または復帰時間をもとにして
駆動位相を決定しているが、第8図に示すように動作時
間および復帰時間は温度が変化すると変わるので、2回
の開閉動作の間で大きく温度が変化すると、動作時間お
よび復帰時間も大きく変化することになり、その結果、
正しくゼロボルトで開閉できないという問題があった。
Problems to be Solved by the Invention However, the relay drive device with such a configuration determines the drive phase based on the previous operating time or return time of the relay contact, but as shown in FIG. The operating time and recovery time change as the temperature changes, so if the temperature changes significantly between the two opening and closing operations, the operating time and recovery time will also change significantly, and as a result,
There was a problem that it could not be opened and closed correctly at zero volts.

つまり、第9図に示すリレー駆動回路において、温度が
高くなると、リレーコイ^1aの抵抗が増大するため、
オン動作時にはリレーコイル1aを流れる電流が減少し
てリレー接点1bを引きつける力が弱くなり、動作時間
が長くなる。一方、オフ動作時にはダイオード2(フラ
イホイールダイオード)を通じてリレーコイル11Lに
流れる電流が小さくなるため、リレー接点1bの復帰を
妨げる力が減少して復帰時間が短くなる。
In other words, in the relay drive circuit shown in Fig. 9, as the temperature rises, the resistance of the relay coil ^1a increases.
During ON operation, the current flowing through the relay coil 1a decreases, the force that attracts the relay contact 1b becomes weaker, and the operation time becomes longer. On the other hand, during the OFF operation, the current flowing through the diode 2 (flywheel diode) to the relay coil 11L becomes smaller, so the force that prevents the relay contact 1b from returning is reduced and the return time is shortened.

第10図は、16秒周期の任意の時間リレーをON(デ
ユーティ制御)してヒータを制御する炊飯器におけるリ
レー近傍の温度推移を示す特性図で、炊飯開始後、徐々
に温度が上昇し、約80℃で飽和する(■の区間)。炊
飯動作を終了して保温動作に移ると約40’Cで安定す
る(■区間)。
FIG. 10 is a characteristic diagram showing the temperature transition near the relay in a rice cooker that controls the heater by turning on the relay for an arbitrary period of 16 seconds (duty control). After the start of rice cooking, the temperature gradually rises. It is saturated at about 80°C (section marked ■). After finishing the rice cooking operation and moving to the warming operation, the temperature stabilizes at about 40'C (■ section).

ここで2回目の炊飯動作印を開始する際に、A点におけ
る動作時間および復帰時間をもとにB点でのリレー駆動
位相を決定すると、ムーB間の温度差が4a℃もあるた
めに、動作時間は0,8(!as)短かくなり、また復
帰時間は08(m;)長くなるため、正しくゼロボルト
で駆動することができない。また、炊飯動作も保温動作
もしていない状態(■区間)の前後では駆動点のずれは
一層大きくなる。
When starting the second rice cooking operation mark, if the relay drive phase at point B is determined based on the operation time and return time at point A, the temperature difference between Mu B is as much as 4a℃. , the operating time becomes 0.8 (!as) shorter and the return time becomes 0.8 (m;) longer, making it impossible to drive correctly at zero volts. In addition, the deviation of the driving point becomes even larger before and after the state where neither the rice cooking operation nor the warming operation is performed (section ■).

本発明はこのような課題を解決するもので、2回のリレ
ーのオン動作(またはオフ動作)の間で大きく温度が変
化した場合でも、正しくゼロボルトでリレー接点を閉成
(または開成)させることができるリレー、駆動装置を
提供することを目的とするものである。
The present invention solves these problems by correctly closing (or opening) a relay contact at zero volts even if the temperature changes significantly between two relay ON operations (or OFF operations). The purpose of this invention is to provide a relay and drive device that can.

課題を解決するだめの手段 上記目的を達成するために本発明は、リレー近傍の温度
を検出する温度検出手段と、この温度検出手段の出力を
一時記憶しておく記憶手段と、リレーの開閉に先立って
前回のリレーの開閉時との温度差を求める温度差演算手
段と、この温度差演算手段により得られた温度差および
電源同期信号発生手段からの電源同期信号と開閉位相検
知手段からの開閉信号とを各々入力しその時間差を測定
する時間差測定手段からの測定信号に基づきリレー接点
の駆動位相を決定する駆動位相決定手段とを備えたもの
である。
Means for Solving the Problems In order to achieve the above object, the present invention provides temperature detection means for detecting the temperature near the relay, storage means for temporarily storing the output of the temperature detection means, and a method for opening and closing the relay. Temperature difference calculation means that calculates the temperature difference from the previous relay opening/closing time, the temperature difference obtained by this temperature difference calculation means, the power synchronization signal from the power supply synchronization signal generation means, and the opening/closing signal from the opening/closing phase detection means. and drive phase determining means for determining the drive phase of the relay contact based on the measurement signal from the time difference measuring means for inputting the respective signals and measuring the time difference.

作用 本発明のリレー駆動装置は、上記した構成とすることに
より、2回のリレーの開動作(または閉動作)の間で大
きく温度が変化しても、この温度差を検出し、それによ
り得られた温度差を基に改めて駆動位相を決定するため
、正しくゼロボルトでリレー接点を開閉できるものであ
る。
Operation The relay drive device of the present invention has the above-described configuration, so that even if the temperature changes significantly between two relay opening operations (or closing operations), this temperature difference can be detected and the resulting advantage can be obtained. Since the drive phase is determined again based on the temperature difference, the relay contacts can be opened and closed correctly at zero volts.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。第1図は本発明の一実施例におけるリレー駆動装置
の要部をブロックで示す回路図を示したもので、1aは
リレーコイル、1bはリレー接点、2はサージ吸収用の
ダイオード、3はリレー駆動手段で、抵抗4を介してト
ランジスタ5が接続されている。6は直流電源、7は交
流電源、8は負荷である。9は交流電源7のゼロボルト
に同期した信号を発生する電源同期信号発生手段、10
はリレー接点1bが開閉した位相を検知する開閉位相検
知手段、11は電源同期信号発生手段9からの電源同期
信号aと開閉位相検知手段1゜からの開閉信号eとを各
々入力しその時間差を測定する時間差測定手段、12は
温度検出手段で、リレーコイル1bの近傍に設けたサー
ミスタ13と抵抗14の分圧電位を入力とするム/D変
換器15とにより構成されている。16は温度検出手段
12の出力を一時記憶しておく記憶手段、17は記憶手
段16の温度データ16&と温度検出手段12の出力1
21Lとから温度差を求める温度差演算手段、18は駆
動位相決定手段で、前記時間差測定手段11の出力と、
前記温度演算手段17の出力とによりリレー接点1bの
駆動位相を決定するものである。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. FIG. 1 is a block circuit diagram showing the main parts of a relay drive device according to an embodiment of the present invention, where 1a is a relay coil, 1b is a relay contact, 2 is a surge absorption diode, and 3 is a relay. A transistor 5 is connected through a resistor 4 as a driving means. 6 is a DC power supply, 7 is an AC power supply, and 8 is a load. Reference numeral 9 denotes power supply synchronization signal generation means for generating a signal synchronized with zero volts of the AC power supply 7;
Reference numeral 11 indicates an opening/closing phase detection means for detecting the opening/closing phase of the relay contact 1b, and 11 inputs the power synchronization signal a from the power synchronization signal generating means 9 and the opening/closing signal e from the opening/closing phase detection means 1°, and calculates the time difference between them. The time difference measuring means 12 is temperature detecting means, and is composed of a thermistor 13 provided near the relay coil 1b and a Mu/D converter 15 which receives the divided potential of the resistor 14 as input. 16 is a storage means for temporarily storing the output of the temperature detection means 12; 17 is the temperature data 16& of the storage means 16 and the output 1 of the temperature detection means 12;
21L, a temperature difference calculating means for calculating the temperature difference from the output of the time difference measuring means 11, 18 is a drive phase determining means, and
The drive phase of the relay contact 1b is determined based on the output of the temperature calculation means 17.

前記電源同期信号発生手段9は、ダイオードブリッジ1
9と抵抗20.21とフォトカブラ22とで構成し、前
記開閉位相検知手段10は、ダイオードブリッジ23と
抵抗24.25と7オトカプラ26とで構成している。
The power synchronization signal generating means 9 includes a diode bridge 1
The opening/closing phase detecting means 10 is composed of a diode bridge 23, resistors 24, 25, and a photocoupler 26.

また、3と11および16〜18は、CPU 、 RO
M 、 RAM 、入出力ボート等ヲ備えたワンチップ
のマイクロコンピュータニより実現している。
In addition, 3 and 11 and 16 to 18 are CPU, RO
It is realized by a one-chip microcomputer equipped with M, RAM, input/output board, etc.

次に、上記のように構成した本実施例の動作を説明する
。第2図はリレー接点1bを閉成する場合の70−チャ
ートを示したもので、まずステップ1で前回のオン動作
の時との温度差をチエツクし、その温度差が10’C以
内であればステップ2へ進み、電源同期信号の立ち下が
りが入力されるのを待つ。そして電源同期信号の立ち下
がりが入力されると、時間(位相)toの測定をスター
ト(ステップ1)し、ステップ3,4でその時間t。
Next, the operation of this embodiment configured as described above will be explained. Figure 2 shows a 70-chart when closing the relay contact 1b.First, in step 1, the temperature difference from the previous on operation is checked, and if the temperature difference is within 10'C. If so, the process advances to step 2 and waits for the fall of the power synchronization signal to be input. When the falling edge of the power synchronization signal is input, measurement of time (phase) to is started (step 1), and the time t is measured in steps 3 and 4.

がRAMに記憶している時間tonと一致した位相でリ
レー駆動信号を出力する(ステップ6)。リレー接点1
bが閉じられるとステップeで開閉信号の立ち下がりが
入力され、時間toの測定をストップする。この時間t
oと電源同期信号の周期の2倍で1とを比較し、等しく
ない場合のみ時間toと周期T1の差を前記時間ton
に加算し、その値を新しい時間tonとしてRAMに記
憶する(ステップ9)0すなわち、第3図に示すように
、電源同期信号aOの立ち下がりから時間tonが経過
した位相でリレー駆動信号boを出力すると、負荷8に
印加される交流電源電圧CQ−(1[+がゼロボルト近
辺の時、リレー接点1bが閉じられ、開閉信号eoの立
ち下がりまでの時間t□yl+’hは、電源同期信号I
Loの周期の2倍ので1 と等しい。
outputs a relay drive signal with a phase that matches the time ton stored in the RAM (step 6). Relay contact 1
When b is closed, the falling edge of the opening/closing signal is input in step e, and the measurement of time to is stopped. This time t
o and 1 at twice the period of the power synchronization signal, and only if they are not equal, calculate the difference between the time to and the period T1 to the time ton.
, and stores the value in the RAM as a new time ton (step 9). In other words, as shown in FIG. When output, when the AC power supply voltage CQ-(1 [+) applied to the load 8 is near zero volts, the relay contact 1b is closed, and the time t□yl+'h until the fall of the open/close signal eo is equal to the power synchronization signal I
It is twice the period of Lo, so it is equal to 1.

時間t2はリレーの動作時間でリレー個々によって異な
る。
The time t2 is the operating time of the relay and varies depending on each relay.

他方、時間tonが短かいため交流電源のゼロボルト近
辺でない時にリレー接点1bを閉じた場合は電源同期信
号2LOと、リレー駆動信号b1と、負荷8に印加され
る交流電源電圧C1−dlと、開閉信号e1の関係は第
4図に示すようになり、時間t5と周期T1との差t4
が時間tonに加算されてRAMに記憶され、第3図の
状態に戻る。
On the other hand, if the relay contact 1b is closed when the AC power supply is not near zero volts because the time ton is short, the power synchronization signal 2LO, the relay drive signal b1, the AC power supply voltage C1-dl applied to the load 8, and the opening/closing The relationship of the signal e1 is as shown in FIG. 4, and the difference t4 between the time t5 and the period T1 is
is added to the time ton and stored in the RAM, returning to the state shown in FIG.

ところが、第2図の70−チャートのステップ1におい
て、前回のオン時に比べて10℃以上の温度上昇がある
とステップ1oに進む。ステップ10では、第8図の動
作時間の温度特性より、10℃上昇あたり動作時間が0
.2m560長くなることがわかっているため、その増
加分を相殺するために予め温度上昇10℃ごとにton
を0.2m5eCずつ減らして、ステソゲ2に進むこと
により、第3図の状態を維持することができる。逆に、
ステップ1で温度の低下が判明した場合には、ステップ
11でtonを予め増加しておいてステップ2に進み、
第3図の状態を維持する。
However, in step 1 of chart 70 in FIG. 2, if there is a temperature rise of 10° C. or more compared to the previous turn-on, the process proceeds to step 1o. In step 10, based on the temperature characteristics of the operating time shown in Figure 8, the operating time is 0 per 10°C rise.
.. Since it is known that the length will increase by 2m560, in order to offset the increase, ton
By decreasing the value by 0.2 m5eC and proceeding to step 2, the state shown in Fig. 3 can be maintained. vice versa,
If a decrease in temperature is found in step 1, increase ton in advance in step 11 and proceed to step 2.
Maintain the state shown in Figure 3.

次に、リレー接点1bを開成する場合の動作について説
明する。第5図の70−チャートおよび第6図のタイミ
ング図で示すように、ステップ21〜23で、オン動作
の時と同様に、温度が高くなると復帰時間が短かくなる
分の補正を予めtoffに対して行なっておき、ステッ
プ24で電源同期信号の立ち上がりが入力されると、時
間t。
Next, the operation when opening the relay contact 1b will be explained. As shown in the 70-chart in Fig. 5 and the timing diagram in Fig. 6, in steps 21 to 23, as in the case of the on operation, compensation for the shortening of the return time as the temperature rises is made in advance to toff. When the rising edge of the power synchronization signal is input in step 24, time t is reached.

の測定をスタートしくステップ24)、その時間toが
RAMに記憶している時間toffと一致した位相でリ
レー駆動信号の出力を停止する(ステップ26)。次に
開閉信号の立ち上がりが入力されると、時間t1の測定
をスタートする(ステップ28)。開閉信号の立ち下が
りが入力された時(第e図■点)は、時間t1 の測定
をストップしてステップ27の動作へ戻り、開閉信号の
立ち下がりが入力されずに、時間t1が時間T2 (第
6図、交流電源のゼロボルト近辺での開閉信号がHig
hの時間)を越えた時(第6図■点)は、時間to 、
時間t1の測定をストップしてステップ33へ進む。ス
テップ33でこの時間toと時間t1の差(to−1+
)と、電源同期信号の2倍の周期T1とを比較し、等し
くない場合のみ周期T1と値(to−11)の差を時間
tofTに加算し、RAMに記憶する。
The measurement is started in step 24), and the output of the relay drive signal is stopped when the time to coincides with the time toff stored in the RAM (step 26). Next, when the rising edge of the opening/closing signal is input, measurement at time t1 is started (step 28). When the falling edge of the opening/closing signal is input (point ■ in Figure e), the measurement at time t1 is stopped and the process returns to step 27, and the falling edge of the opening/closing signal is not input, and time t1 becomes time T2. (Figure 6, the opening/closing signal near zero volts of the AC power supply is High.
h) (point ■ in Figure 6), the time to,
The measurement at time t1 is stopped and the process proceeds to step 33. In step 33, the difference between the time to and the time t1 (to-1+
) and the period T1 which is twice the power synchronization signal, and only if they are not equal, the difference between the period T1 and the value (to-11) is added to the time tofT and stored in the RAM.

第6図に交流電源のゼロボルト近辺でリレー接点を開い
ている時の電源同期信号&1と、リレー駆動信号b2と
、負荷8に印加される交流電源電圧02  ”2と、開
閉信号e2との関係を、第7図に交流電源のゼロボルト
近辺でない位相でリレー接点を開いた時の電源同期信号
&1と、リレー駆動信号b3と、負荷8に印加される交
流電源電圧as  asと、開閉信号e5との関係を示
す。
Figure 6 shows the relationship between the power synchronization signal &1, the relay drive signal b2, the AC power supply voltage 02''2 applied to the load 8, and the open/close signal e2 when the relay contact is open near zero volts of the AC power supply. Fig. 7 shows the power synchronization signal &1 when the relay contact is opened at a phase other than zero volts of the AC power supply, the relay drive signal b3, the AC power supply voltage as as applied to the load 8, and the opening/closing signal e5. shows the relationship between

第7図の場合は、時間t7が時間toffに加算されて
RAMに記憶され、次回は第6図の状態に戻る。第6図
、第7図の時間t5はリレーの復帰時間でリレー個々に
よって異なる値である。
In the case of FIG. 7, time t7 is added to time toff and stored in the RAM, and the state returns to FIG. 6 next time. The time t5 in FIGS. 6 and 7 is the return time of the relay, and the value differs depending on each relay.

上記したように、本実施例のリレー駆動装置は、第2図
、第5図のフローチャートに示す動作を繰り返すことに
より、温度が変化してリレー接点1bの動作時間・復帰
時間が増減してもリレー駆動位相(時間ton及び時間
tof’f )を交流電源のゼロボルト近辺でリレー接
点1bが開閉するように決定する。従ってリレー接点1
bの開閉時の接点間電圧がほぼ零となり、アーク放電の
発生を著しく低減できる。
As described above, the relay drive device of this embodiment repeats the operations shown in the flowcharts of FIGS. 2 and 5, so that even if the operating time and return time of the relay contact 1b increase or decrease due to temperature changes, The relay drive phase (time ton and time tof'f) is determined so that the relay contact 1b opens and closes near zero volts of the AC power supply. Therefore, relay contact 1
The voltage between the contacts when opening and closing b becomes almost zero, and the occurrence of arc discharge can be significantly reduced.

なお、本実施例では温度による補正を10℃ごとに行な
ったが、これに限定されるものではなく、他の温度区分
で補正しても同様の効果を奏するものである。
In this embodiment, the temperature correction is performed in steps of 10° C., but the invention is not limited to this, and the same effect can be achieved even if the correction is performed in other temperature ranges.

発明の効果 以上の説明から明らかなように、本発明のリレー駆動装
置によれば、交流電源のゼロボルト近辺でリレー接点の
開閉を行なう際の信頼度を著しく向上させることができ
、その結果、負荷電流の開閉時に接点間で起きるアーク
放電が抑えられるため、接点の寿命が著しく向上し、か
つ、寿命のバラツキも小さくすることができ、しかも信
頼性が向上してリレーによる電力のデユーティ制御が可
能となるものである。
Effects of the Invention As is clear from the above explanation, the relay drive device of the present invention can significantly improve the reliability when opening and closing relay contacts near zero volts of the AC power supply, and as a result, the load Since arc discharge that occurs between contacts when switching current is suppressed is suppressed, the lifespan of the contacts is significantly improved, and variations in the lifespan can be reduced.In addition, reliability is improved and power duty control using relays is possible. This is the result.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるリレー駆動装置の要
部をブロックで示した回路図、第2図は同リレー駆動装
置のリレーのオン動作時のフローチャート、第3図、第
4図は同リレーのオン動作時の信号のタイミング図、第
6図は同リレー駆動装置のリレーのオフ動作時のフロー
チャート、第6図、第7図は同リレーのオフ時の信号の
タイミング図、第8図はリレーの開閉時の温度特性図、
第9図は従来のリレー駆動回路図、第10図は炊飯に伴
うリレーの温度推移の一例を示す特性図である。 3・・・・・・リレー駆動手段、9・・・・・・電源同
期信号発生手段、10・・・・・・開閉位相検知手段、
11・・・・・・時間差測定手段、12・・・・・・温
度検出手段、161.・0.。 記憶手段、17・・・・・・温度差演算手段、18・川
・・駆動位相決定手段。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第2
0 第 第 図 一一一一一一一りm−」し 第 図 第 図 第 図 (−−τ+)= t 第80 ル−VX+情21 C”c〕 第 図
FIG. 1 is a circuit diagram showing the main parts of a relay driving device in an embodiment of the present invention in blocks, FIG. 2 is a flowchart of the same relay driving device when the relay is turned on, and FIGS. 3 and 4 are Figure 6 is a flowchart of the signal when the relay is turned on; Figure 6 is a flowchart when the relay is turned off; Figures 6 and 7 are timing diagrams of the signal when the relay is turned off. The figure shows the temperature characteristics when the relay opens and closes.
FIG. 9 is a conventional relay drive circuit diagram, and FIG. 10 is a characteristic diagram showing an example of a temperature change of the relay during rice cooking. 3...Relay drive means, 9...Power synchronization signal generation means, 10...Opening/closing phase detection means,
11... Time difference measuring means, 12... Temperature detecting means, 161.・0. . Storage means, 17...Temperature difference calculation means, 18. Drive phase determining means. Name of agent: Patent attorney Shigetaka Awano and 1 other person 2nd
0 Figure 111111 m-'' Figure Figure Figure Figure (--τ+) = t Figure

Claims (1)

【特許請求の範囲】[Claims] 交流電源のゼロボルトに同期した信号を発生する電源同
期信号発生手段と、リレー接点が開閉した位相を検知す
る開閉位相検知手段と、前記電源同期信号発生手段から
の電源同期信号と前記開閉位相検知手段からの開閉信号
とを各々入力しその時間差を測定する時間差測定手段と
、リレー近傍の温度を検出する温度検出手段と、この温
度検出手段の出力を一時記憶しておく記憶手段と、リレ
ーの開閉に先立って前回のリレーの開閉時との温度差を
求める温度差演算手段と、この温度差演算手段により得
られた温度差および前記時間差測定手段からの測定信号
に基づき前記リレー接点の駆動位相を決定する駆動位相
決定手段と、この駆動位相決定手段からの出力信号によ
って前記リレー接点を交流電源のゼロボルト近辺で開閉
するリレー駆動手段とを備えたリレー駆動装置。
power synchronization signal generation means for generating a signal synchronized with zero volts of the AC power source; opening/closing phase detection means for detecting the open/close phase of a relay contact; and the power synchronization signal from the power synchronization signal generation means and the opening/closing phase detection means. a time difference measuring means for inputting open/close signals from the relay and measuring the time difference; a temperature detecting means for detecting the temperature near the relay; a memory means for temporarily storing the output of the temperature detecting means; a temperature difference calculation means for calculating the temperature difference from the previous time of opening and closing of the relay; and a drive phase of the relay contact based on the temperature difference obtained by the temperature difference calculation means and a measurement signal from the time difference measurement means. What is claimed is: 1. A relay drive device comprising a drive phase determining means for determining a drive phase, and a relay drive means for opening and closing the relay contacts at around zero volts of an AC power source based on an output signal from the drive phase determining means.
JP30292788A 1988-11-30 1988-11-30 Relay driving device Pending JPH02148638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30292788A JPH02148638A (en) 1988-11-30 1988-11-30 Relay driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30292788A JPH02148638A (en) 1988-11-30 1988-11-30 Relay driving device

Publications (1)

Publication Number Publication Date
JPH02148638A true JPH02148638A (en) 1990-06-07

Family

ID=17914804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30292788A Pending JPH02148638A (en) 1988-11-30 1988-11-30 Relay driving device

Country Status (1)

Country Link
JP (1) JPH02148638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022155A1 (en) * 1993-03-18 1994-09-29 Hydro-Quebec System for opening/closing circuit breakers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022155A1 (en) * 1993-03-18 1994-09-29 Hydro-Quebec System for opening/closing circuit breakers

Similar Documents

Publication Publication Date Title
KR960016506B1 (en) Clock generator with an automatic frequency change function
US7158361B2 (en) Method and apparatus for regulating a current through an inductive load
US7724100B2 (en) Oscillator structure
US5341286A (en) Current detecting method
KR100824836B1 (en) System and method to eliminate the dead time influence pwm-driven systme
KR900004761B1 (en) Relay driving circuit
JP2004297985A (en) Soft start method of switching power source, output control circuit, and the switching power source
US4121149A (en) Timing control for AC power circuit
JPH02148638A (en) Relay driving device
US4656402A (en) Electric motor control apparatus
JP3184816U (en) Temperature controller with phase control function and zero cross period control function
JPH05289704A (en) Heating/cooling controller
US20180076703A1 (en) Load driving apparatus
JPH0245296B2 (en) RIREESEIGYOKAIRONOSETSUTENHOGOSOCHI
JPS58172719A (en) Temperature controller
JP2012016268A (en) Control method and system for compensating for dead time in pwm control
JPS5829720B2 (en) Power supply device for single-phase stepping motor for watches
JPH02246769A (en) Power control circuit
JPH0785381B2 (en) Relay drive
US7439815B2 (en) Method and apparatus for switching on an ultrasound oscillation system
JPS58192117A (en) Temperature controller
JP3570212B2 (en) Relay drive
JPS63281391A (en) High frequency heating device
JPH0345846B2 (en)
JP3633288B2 (en) Power switching control device