JPH0214825A - Production of bi-based oxide superconducting material - Google Patents
Production of bi-based oxide superconducting materialInfo
- Publication number
- JPH0214825A JPH0214825A JP63163686A JP16368688A JPH0214825A JP H0214825 A JPH0214825 A JP H0214825A JP 63163686 A JP63163686 A JP 63163686A JP 16368688 A JP16368688 A JP 16368688A JP H0214825 A JPH0214825 A JP H0214825A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- electrodeposition
- layer
- powder
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 114
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 238000004070 electrodeposition Methods 0.000 claims abstract description 52
- 239000000843 powder Substances 0.000 claims abstract description 48
- 239000002887 superconductor Substances 0.000 claims abstract description 24
- 239000002243 precursor Substances 0.000 claims abstract description 5
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 claims abstract 3
- 238000010438 heat treatment Methods 0.000 claims description 25
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 37
- 239000000758 substrate Substances 0.000 abstract description 25
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 abstract description 7
- 239000004020 conductor Substances 0.000 abstract description 4
- 108010010803 Gelatin Proteins 0.000 abstract description 2
- 239000003792 electrolyte Substances 0.000 abstract description 2
- 239000008273 gelatin Substances 0.000 abstract description 2
- 229920000159 gelatin Polymers 0.000 abstract description 2
- 235000019322 gelatine Nutrition 0.000 abstract description 2
- 235000011852 gelatine desserts Nutrition 0.000 abstract description 2
- 238000001652 electrophoretic deposition Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 54
- 239000007788 liquid Substances 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 239000010408 film Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000002612 dispersion medium Substances 0.000 description 9
- 238000001962 electrophoresis Methods 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- -1 11M compound Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229910002482 Cu–Ni Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical class [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 229910014454 Ca-Cu Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、磁気浮上列車、医療装置、磁気推進船などに
使用される超電導マグネット用、または、電力輸送線用
などとして応用開発が進められているr1i系の酸化物
超7I!導材の製造方法に関する。[Detailed Description of the Invention] "Industrial Application Field" The present invention is being developed for use in superconducting magnets used in magnetic levitation trains, medical devices, magnetic propulsion ships, etc., and for power transmission lines. The r1i-based oxide super 7I! This invention relates to a method for manufacturing a conductive material.
「従来の技術J
最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(’l’c)が液体窒素温度を超える値を示す酸化
物超電導体が種々発見されている。この種の酸化物超?
tf導体は、−数式Y −B a−Cu−0あるいはI
I i−3r−Ca−Cu−0などで示される酸化物で
あり、液体ヘリウムで冷却することが必要であった従来
の合金系あるいは金属11M化合物系の超電導体と比較
して格段に有利な冷却条−件で使用できることから、実
用上極めて有望な超電導材料として研究が進められてい
る。``Prior art J'' Recently, various oxide superconductors have been discovered whose critical temperature ('l'c) for transitioning from a normal conducting state to a superconducting state exceeds the liquid nitrogen temperature.This type of oxidation Super?
The tf conductor has the formula Y -B a-Cu-0 or I
It is an oxide represented by Ii-3r-Ca-Cu-0, etc., and is significantly advantageous compared to conventional alloy-based or metal 11M compound-based superconductors, which require cooling with liquid helium. Because it can be used under cooling conditions, it is being researched as a highly promising superconducting material for practical use.
ところで従来、金属やセラミックスの基材上に1111
記酸化物超電導体からなる厚膜を形成する方法として、
酸化物超電導粉末にパインオイルなどの溶剤やff機バ
インダーを加えて印刷用材料を作成し、この印刷用材料
を基材上にスクリーン印刷する方法が考えられている。By the way, conventionally, 1111
As a method for forming a thick film made of an oxide superconductor,
A method has been considered in which a printing material is created by adding a solvent such as pine oil or an FF machine binder to oxide superconducting powder, and this printing material is screen printed onto a base material.
また、前記印刷用材料を製造する場合と同様な方法で塗
布液を作成し、この塗装液を基材表面にスプレー塗装す
る方法、あるいは、この塗装液に基材を浸漬して引き−
Lげ、その表面に塗装膜を形成する方法が考えられてい
る。Alternatively, a coating solution may be prepared in the same manner as in the production of the printing materials, and this coating solution may be spray-painted onto the surface of the substrate, or the substrate may be immersed in this coating solution and then drawn.
A method has been considered in which a coating film is formed on the surface of the L.
更に、半導体の製造分野などで用いられているスパッタ
リング法や蒸着法などの薄膜形成方法を用い、基材の表
面に酸化物超電導層を形成する方法が考えられている。Furthermore, a method has been considered in which an oxide superconducting layer is formed on the surface of a base material using a thin film forming method such as a sputtering method or a vapor deposition method used in the field of semiconductor manufacturing.
「発明が解決しようとする課題」
しかしながら面記スクリーン印刷法は、平板の表面や円
筒の外面などの単純な形状部分に適用することは可能で
あっても、線材の外周面やテープの周面などの曲率の大
きな部分を含む形状の基材、あるいは、四′凸部分を有
する複雑な形状の基材には適mできないn題があった。``Problem to be solved by the invention'' However, although the surface screen printing method can be applied to parts with simple shapes such as the surface of a flat plate or the outer surface of a cylinder, There is a problem that it cannot be applied to a base material having a shape including a portion with a large curvature, such as, or a base material having a complicated shape having a 4' convex portion.
また、スクリーン印刷法によって形成できる膜の厚さは
200μ−程度が限界であり、膜厚が200μ−以上の
超電導厚膜の形成が困難な問題があった。Further, the maximum thickness of a film that can be formed by screen printing is about 200 μm, and there is a problem in that it is difficult to form a superconducting thick film with a thickness of 200 μm or more.
更に、前記塗装法および浸漬法においては、複雑な形状
の基材を用いようとする場合、塗布液の粘性を高くする
と、基材の隅々まで塗布液を均一に塗布ケることか困難
であり、塗布液の粘性を低くすると、基材を慎布液から
引き出した際に塗布液が流れ落ちて基材表面に均一な塗
布ができないために、複雑な形状の基材には適用できな
い問題があった。また、基材表面に塗装層を形成し、更
に熱処理を施して塗装層に含まれる物質を焼結して酸化
物超電導体を生成する場合、塗装層に含まれるバインダ
ーなどの樹脂成分が燃焼するために、基材から酸化物超
電導体が剥離するla1題があった。Furthermore, in the above-mentioned painting method and dipping method, when using a substrate with a complicated shape, if the viscosity of the coating liquid is increased, it may be difficult to uniformly apply the coating liquid to every corner of the substrate. However, if the viscosity of the coating liquid is lowered, the coating liquid will run down when the substrate is pulled out of the cloth liquid, making it impossible to apply it uniformly to the surface of the substrate, making it impossible to apply it to substrates with complex shapes. there were. In addition, when forming a paint layer on the surface of a base material and then applying heat treatment to sinter the substances contained in the paint layer to generate an oxide superconductor, resin components such as binders contained in the paint layer burn. Therefore, there was a problem that the oxide superconductor peeled off from the base material.
一方、前記スパッタリング法などのAI[膜形成方法に
おいては、形成できるWAIiが数μ−程度であって成
膜時間も長いために、200μi以−りといった厚さの
酸化物超電導厚膜の形成は困難であり、数μIi程度の
厚さの超電導薄膜でも製造時間が長くなる問題がある。On the other hand, in the AI film forming method such as the sputtering method, the WAIi that can be formed is about several microns and the film forming time is long, so it is difficult to form an oxide superconducting thick film with a thickness of 200 microns or more. This is difficult, and there is a problem in that even a superconducting thin film with a thickness of several μIi requires a long manufacturing time.
また、これらの方法では、真空中などの特定の雰囲気中
で成膜を行う必要があるために、基材の大きさが製造装
置内に収納可能な大きさに限定され、長尺で大面積の基
材には適用できない問題があった。In addition, these methods require film formation in a specific atmosphere such as a vacuum, so the size of the substrate is limited to a size that can be stored in the manufacturing equipment. There was a problem that it could not be applied to base materials.
本発明は、前記問題に鑑みてなされたもので、基材の表
面に緻密な厚膜状の酸化物超電導体を短時間で形成する
ことができ、臨界温度などの超電導特性が優れ、かつ機
械強度が高いBi系の酸化物超電導材を効率よく製造す
る方法の提供を目的とする。The present invention has been made in view of the above-mentioned problems, and is capable of forming a dense thick film of oxide superconductor on the surface of a base material in a short time, has excellent superconducting properties such as critical temperature, and has excellent mechanical properties. The purpose of the present invention is to provide a method for efficiently manufacturing a Bi-based oxide superconducting material with high strength.
[課題を解決するための手段」
本発明の酸化物超電導体の製造方法においては、Di系
の酸化物超電導体を具備してなる酸化物超電導材の製造
方法において、前記酸化物超電導体の粉末または酸化物
超電導体の前駆体粉末をN−Nジメチルホルムアミド中
に分散させたm養液中において、少なくとも表面部分に
導電性を有する基材を陰極として電気泳動電着を行い、
該基材の表面に酸化物超電導体を構成する元素を含む電
着層を形成し、この後に熱処理を施すことを課題解決の
手段とした。[Means for Solving the Problems] In the method for producing an oxide superconductor of the present invention, in the method for producing an oxide superconducting material comprising a Di-based oxide superconductor, a powder of the oxide superconductor is used. Alternatively, electrophoretic electrodeposition is performed in a nutrient solution in which precursor powder of an oxide superconductor is dispersed in N-N dimethylformamide, using a base material having conductivity at least on the surface as a cathode,
The method of solving the problem was to form an electrodeposited layer containing the elements constituting the oxide superconductor on the surface of the base material, and then to perform heat treatment.
「作用」
基材の表面に、電気泳動電着によりIli系の酸化物超
電導体の粉末または酸化物超電導体の前駆体粉末を11
着して酸化物超電導体を構成する元素を含むWi竹層を
形成し、この後熱処理を施すことにより、基材の表面に
緻密なりi系酸化物超電導体の焼結層が均一な状態で形
成される。"Operation" Ili-based oxide superconductor powder or oxide superconductor precursor powder is applied to the surface of the base material by electrophoretic electrodeposition.
By depositing and forming a Wi bamboo layer containing the elements constituting the oxide superconductor, and then applying heat treatment, a dense and uniform sintered layer of i-based oxide superconductor is formed on the surface of the base material. It is formed.
「実施例」
第1図ないし第4図は、本発明方法により[3i−S
?−Ca−Cu−0系の超電導材を製造する例について
説明する丸めの図である。この例による超電導材の製造
方法では、まず丸線状の基材lを、電着槽2に収容され
た電着液3中に押入し、電気泳動7tf若を行って、そ
の表面に電着層4を形成して第2図に断面構造を示す超
電導素材5を作成する。"Example" Figures 1 to 4 show that [3i-S
? FIG. 3 is a rounded diagram illustrating an example of manufacturing a -Ca-Cu-0-based superconducting material. In the method for manufacturing a superconducting material according to this example, first, a round wire-shaped base material 1 is pushed into an electrodeposition liquid 3 contained in an electrodeposition bath 2, and electrophoresis is performed for 7 tf to deposit the electrodeposition on its surface. A layer 4 is formed to produce a superconducting material 5 whose cross-sectional structure is shown in FIG.
この例において使用される基材菫として、好ましくは、
融点800℃以上でかつ耐酸化性の良好な、貴金属、’
11. ’1” as Z ts I−I Is V
%N b%W sCu等の単体金屑やCu−N i合金
、Cu−A I系合金、N i−A I系合金、T i
−V系合金゛、モネルメタル、ステンレス、クロメル、
アロメル、カンタルなどの金属基材などが用いられ、更
には、石英ガラス、ジルコニア、YSZ、アルミナ、サ
ファイア、チタン酸ストロンヂウムなどのチタン酸化合
物、マグネシア、酸化チタン等のセラミックス基材の表
面に、無電解メツキ法、スパッタリング法、イオンブレ
ーティング法、真空蒸着法などの緯模形成手段を用いて
Ags N 1% Cuなどの金属被覆を施した基材な
どが使用される。The base material violet used in this example is preferably:
A noble metal with a melting point of 800°C or higher and good oxidation resistance.
11. '1' as Z ts I-I Is V
%Nb%W Single metal scrap such as sCu, Cu-Ni alloy, Cu-AI alloy, Ni-AI alloy, Ti
-V alloy, monel metal, stainless steel, chromel,
Metal base materials such as allomel and kanthal are used, and furthermore, ceramic base materials such as quartz glass, zirconia, YSZ, alumina, sapphire, titanate compounds such as strondium titanate, and magnesia and titanium oxide are used. A base material coated with a metal such as Ags N 1% Cu using a pattern forming method such as an electrolytic plating method, a sputtering method, an ion blating method, or a vacuum evaporation method is used.
前記電着液3は、E l + S r + Ca +
Cu t OXなる組成などのようなりi系の超1ば導
お)末を、N−Nジメチルホルムアミド中に分散さ仕た
らのが使用される。この分散媒Ie中の超電導粉末のm
は1〜50(Hの範囲とすることが望ましい。超電導粉
末の量を50097(1以上とすると、基材表面に超電
導粉末が緻密かつ均一な状態で電着されなくなり、また
超電導粉末のmをII/(l以下とするとボ着効率が悪
くなる。また分散媒中に超電導粉末を分散させるには、
超音波撹拌を行うことが望ましく、更に分散媒中に少量
の水、ゼラチン、デンプン、電解質などを添加して撹拌
操作を行っても良い。この際、分散媒として用いるN−
Nジメチルホルムアミド中に含まれる水分量かI vo
l、%までは、水の電解によるガスの発生が起こらず、
また、超電導粉末の分散状態ら良好となって全く問題が
なかった。なお、電着液3には、必要に応じて酸化チタ
ン等の酸化物超電導体の焼結助剤となる材料が添加され
る。The electrodeposition liquid 3 is E l + S r + Ca +
An i-based super-conducting powder having a composition such as Cu t OX is dispersed in N-N dimethylformamide. m of superconducting powder in this dispersion medium Ie
is preferably in the range of 1 to 50 (H). If the amount of superconducting powder is 50097 (1 or more), the superconducting powder will not be electrodeposited on the surface of the substrate in a dense and uniform state, and If it is less than II/(l, the voiding efficiency will deteriorate. Also, in order to disperse the superconducting powder in the dispersion medium,
It is desirable to perform ultrasonic stirring, and the stirring operation may also be performed by adding a small amount of water, gelatin, starch, electrolyte, etc. to the dispersion medium. At this time, N- used as a dispersion medium
The amount of water contained in N dimethylformamide I vo
Up to l,%, no gas is generated due to water electrolysis,
Further, the dispersion state of the superconducting powder was good and there were no problems at all. Note that, if necessary, a material such as titanium oxide that serves as a sintering aid for the oxide superconductor is added to the electrodeposition liquid 3.
nq記超超電導粉末、粒径50μ−以下のものか使用さ
れ、特に粉末粒子の沈降を防止し、均一に分散させるた
めに粒径30μm以下の粉末が好適に使用される。この
超電導粉末を作成する方法としては、例えば、Diの酸
化物粉末とCuの酸化物粉末とCaの炭酸塩粉末とSf
の炭酸塩粉末をBi:Sr:Ca:Cu= I :I
:l :2(モル比)となるように均一に混合して混合
粉末とし、次いでこの混合粉末を大気中あるいは酸素雰
囲気中において、750〜850℃で数分間〜数十時間
仮焼して仮焼粉末とし、次いでこの仮焼粉末に、圧粉成
形−加熱−・粉砕の一連の操作を1回あるいは2回以上
繰り返し行って、B1−8 r−Ca−Cu−0系超電
導粉末を作成する粉末混合法が好適である。また粉砕処
理は自動乳鉢、ボールミルなど一般の粉砕処理装置を用
いて行うことができ、更にN−Nジメチルホルムアミド
を加えてボールミル粉砕を行う湿式粉砕処理を用いても
良い。なお、超電導粉末の作成方法は前記粉末混合法に
限定されることなく、共沈法やゾルゲル法を用いても良
い。また、電着液3中の超電導粉末の代わりに、上述の
仮焼粉末(萌駆体粉末)を用いても良い。The superconducting powder mentioned above is preferably one having a particle size of 50 μm or less, and in particular, a powder having a particle size of 30 μm or less is preferably used in order to prevent the powder particles from settling and to disperse them uniformly. As a method for producing this superconducting powder, for example, Di oxide powder, Cu oxide powder, Ca carbonate powder, and Sf
Carbonate powder of Bi:Sr:Ca:Cu=I:I
:l:2 (molar ratio) to obtain a mixed powder, and then this mixed powder is calcined in the air or oxygen atmosphere at 750 to 850°C for several minutes to several tens of hours. This calcined powder is then subjected to a series of operations of compaction, heating, and pulverization once or twice or more to create B1-8 r-Ca-Cu-0 based superconducting powder. Powder mixing methods are preferred. The pulverization process can be carried out using a general pulverization apparatus such as an automatic mortar or a ball mill, and a wet pulverization process in which NN dimethylformamide is added and ball mill pulverization is performed may also be used. Note that the method for producing the superconducting powder is not limited to the powder mixing method described above, and a coprecipitation method or a sol-gel method may be used. Further, instead of the superconducting powder in the electrodeposition liquid 3, the above-mentioned calcined powder (preparative precursor powder) may be used.
そして、第1図に示す電気泳動y!&!1こよって基材
1の表面に電着I44を形成するには、基材1を電着液
3内に仲人するとともに、この基材1を陰極とし、この
基材1と電着槽2内に配設された陽極6との間に電圧を
印加する。この電気泳動電着では定電圧法、定電流法の
いずれも可能であり、さらに電流波形は直流の他、基材
1が一時的にせよ陰極となるようなパルス、交直ffi
畳、断続などの電流波形とすることが可能である。定H
E法を用いる場合にはIV以上の電圧を印加すれば良く
、また定電流密度法を用いる場合Iこは電流臂度をI〜
500μA/as”の範囲とするのが望ましい。なお、
陽極6としては、白金板、ステンレス板、炭素電極など
通常の電極材料を使用することができる。またこの陽極
6の表面積は、g;材1の表面積よりら大きくすること
が望ましい。Then, the electrophoresis y! shown in FIG. &! 1. Therefore, in order to form electrodeposition I44 on the surface of the base material 1, the base material 1 is placed in the electrodeposition liquid 3, this base material 1 is used as a cathode, and this base material 1 and the electrodeposition tank 2 are A voltage is applied between the anode 6 and the anode 6 disposed at. In this electrophoretic electrodeposition, both the constant voltage method and the constant current method are possible, and in addition to direct current, the current waveform can be pulsed, AC/DC ffi, etc. in which the substrate 1 temporarily serves as a cathode.
Current waveforms such as tatami, intermittent, etc. can be used. Constant H
When using the E method, it is sufficient to apply a voltage of IV or more, and when using the constant current density method, the current intensity should be set to I~
It is desirable to set it in the range of 500 μA/as”.
As the anode 6, common electrode materials such as a platinum plate, a stainless steel plate, and a carbon electrode can be used. Further, it is desirable that the surface area of the anode 6 be larger than the surface area of the material 1.
前記のように、陰極となる基材lと陽極6間に電圧を印
加することにより、電着液3中に分散している超電導粉
末はプラスに帯電し、陰極である基材1の表面に電着さ
れる。そして基材1の表面jこは超電導粉末からなる緻
密な1n層4が形成され、第2図に示す超電導素材5と
なる。電着槽2内で所定の厚さの?Ii若層4が形成さ
れた超電導素材5は、fri看M2から引き上げられ、
次いで烈風による乾燥処理を行って、表面部分に残留す
るN−Nジメチルホルムアミドを除去する。この乾燥処
理は、200℃程度の温度で数分間加熱することで十分
であ・る。As mentioned above, by applying a voltage between the base material 1, which serves as a cathode, and the anode 6, the superconducting powder dispersed in the electrodeposition liquid 3 becomes positively charged, and the surface of the base material 1, which serves as a cathode, is charged. Electrodeposited. Then, a dense 1N layer 4 made of superconducting powder is formed on the surface of the base material 1, resulting in a superconducting material 5 shown in FIG. of a predetermined thickness in the electrodeposition bath 2? The superconducting material 5 on which the Ii young layer 4 is formed is pulled up from the fried M2,
Next, drying treatment using strong air is performed to remove N--N dimethylformamide remaining on the surface portion. For this drying treatment, heating at a temperature of about 200° C. for several minutes is sufficient.
次に、この超電導素材5に熱処理を施す。この熱処理は
、超電導素材5を大気中あるいは酸素雰囲気中において
、700〜1000℃で数分〜数10時間加熱した後、
室温まで冷却することによって行われる。Next, this superconducting material 5 is subjected to heat treatment. This heat treatment is performed by heating the superconducting material 5 at 700 to 1000°C for several minutes to several tens of hours in the air or oxygen atmosphere.
This is done by cooling to room temperature.
この熱処理Iこより、基材1の表面の11若層4は焼結
され、この部分にB il S rl Cal Cut
o xなる組成の超電導層号が形成される。以上の各操
作により、第3図に示すように基材!の表面に超電導層
7が形成された超電導材へが10られる。Through this heat treatment I, the 11 young layer 4 on the surface of the base material 1 is sintered, and B il S rl Cal Cut is applied to this portion.
A superconducting layer having a composition ox is formed. By each of the above operations, the base material is completed as shown in Fig. 3! A superconducting material 10 having a superconducting layer 7 formed on its surface is applied.
そして、このようにし−て得られた超電導材Aの表面に
は、必要に応じて第4図に示すような披)υ層8が形成
される。この被覆層8の材料としてはAg、Cu、AI
、Ni%Cu−Niなどの金属あるいはポリイミドやポ
リウレタン、ポリエステル、アミドイミド、ポリテトラ
フルオロエチレンなどの合成樹脂あるいはアモルファス
カーボンなどが好適にII■いられる。第4図に示す超
電導材Bは、被覆層8により超電導層7が保護されて、
長期にわたって超電導特性の劣化を防止することができ
るとともに、超電導層7の剥離やクラックの発生を防い
で、機械強度が更に高いものとなる。Then, on the surface of the superconducting material A thus obtained, a layer 8 as shown in FIG. 4 is formed as necessary. The material of this coating layer 8 is Ag, Cu, AI.
, Ni%Cu-Ni, or other metals, polyimide, polyurethane, polyester, amide-imide, polytetrafluoroethylene, or other synthetic resins, or amorphous carbon. In the superconducting material B shown in FIG. 4, the superconducting layer 7 is protected by the covering layer 8,
Deterioration of superconducting properties can be prevented over a long period of time, and peeling and cracking of the superconducting layer 7 can be prevented, resulting in even higher mechanical strength.
上述の超電導材Aの製造方法では、基材1の表面に、電
気泳動meによりD I + S r + Ca r
Cu t OXなる組成の酸化物超電導粉末を電着して
緻密な電着層4を形成させることができるので、この後
の熱処理による収縮が少なく、基材1の表面に緻密な超
電導層7を形成させることができる。このため、超電導
層7に焼成時の収縮に伴う亀裂などの不良を生じること
がなく、高臨界電流密度(Jci)を発揮する高性能の
超電導材Aを製造できる。In the method for manufacturing superconducting material A described above, D I + S r + Car is deposited on the surface of the base material 1 by electrophoresis.
Since the oxide superconducting powder having the composition Cu t OX can be electrodeposited to form a dense electrodeposited layer 4, shrinkage due to subsequent heat treatment is small, and a dense superconducting layer 7 can be formed on the surface of the base material 1. can be formed. Therefore, a high-performance superconducting material A that exhibits a high critical current density (Jci) can be manufactured without causing defects such as cracks in the superconducting layer 7 due to shrinkage during firing.
また、上述の超電導材Aは、基材Iの表面に、電気泳動
電着により緻密な電着層4を形成し、この後熱処理を施
して超電導層7を生成するので、超電導層7は基材1に
対して密着性が良好となり、可撓性に俊れ、機械強度の
高い超電導材Aを製造することができる。In addition, in the above-mentioned superconducting material A, a dense electrodeposited layer 4 is formed on the surface of the base material I by electrophoretic electrodeposition, and then a heat treatment is performed to generate a superconducting layer 7. Superconducting material A that has good adhesion to material 1, has good flexibility, and has high mechanical strength can be manufactured.
更に、基材1の表面に、電気泳動電着で超電導粉末から
なる電着層4を形成するので、印加電圧と電着時間など
の電着条゛件を制御することにより超電導層7の厚さを
所望の値に正確に制御することができる。更にまた、電
気泳動電着によって電?J層4を形成するので、200
μ自以上、例えば、1ii程度の厚い電着層4を短時間
の電着操作で形成することができ、超電導材Aの製造効
率を14上さけることができる。また、基材lの表面に
形成する電着層4を十分に厚いらのにするならば、熱処
理の際に基材1中の不要元素が超電導層7中に拡散し、
拡散部分の超電導特性が劣化する現象が生じた場合であ
っても、超電導層7の全体の厚さに対する劣化部分の割
合を小さくできるために、全体として高性能の超電導材
A8製造できる。Furthermore, since the electrodeposition layer 4 made of superconducting powder is formed on the surface of the base material 1 by electrophoretic electrodeposition, the thickness of the superconducting layer 7 can be controlled by controlling the electrodeposition conditions such as the applied voltage and electrodeposition time. can be precisely controlled to a desired value. Furthermore, electrophoretic electrodeposition can be used to Since J layer 4 is formed, 200
It is possible to form an electrodeposition layer 4 as thick as μ or more, for example, about 1II, in a short time, and the production efficiency of the superconducting material A can be increased by 14 times. Furthermore, if the electrodeposited layer 4 formed on the surface of the base material 1 is made sufficiently thick, unnecessary elements in the base material 1 will diffuse into the superconducting layer 7 during heat treatment.
Even if a phenomenon occurs in which the superconducting properties of the diffusion portion deteriorate, the ratio of the deteriorated portion to the total thickness of the superconducting layer 7 can be reduced, so that the superconducting material A8 can be manufactured with high performance as a whole.
なお、先の例では、基材として丸線状の基材1を用いた
が、基材の形状はこれに限定されることなく、板状、箔
状、柱状、リボン状、凹凸部や孔を有する複雑な形状の
ものなど種々の形状の基材を使用することができる。ま
た、本発明による製造方法では、電気泳動電着により基
材表面に超電導粉末からなる緻密な電着層4を形成する
ので、つき回り性が良く、基材表面に凹凸があってら、
この凹凸に沿って均一な厚さの電着Ji14が形成され
る。In the previous example, a round wire-shaped base material 1 was used as the base material, but the shape of the base material is not limited to this, and may be plate-shaped, foil-shaped, columnar, ribbon-shaped, uneven parts, or holes. Substrates of various shapes can be used, including those with complex shapes. In addition, in the manufacturing method according to the present invention, since a dense electrodeposited layer 4 made of superconducting powder is formed on the surface of the substrate by electrophoretic electrodeposition, it has good throwing power and even if the surface of the substrate is uneven,
Electrodeposition Ji 14 having a uniform thickness is formed along this unevenness.
また、基材としてセラミック基材を用いる場合に、その
表面に金属被覆を施す代わりにスクリーン印刷法により
導電性ペーストを印刷塗布し、これを焼結するなどの方
法をRJ′ITすることができる。Furthermore, when a ceramic base material is used as the base material, RJ'IT can be performed by printing and applying a conductive paste using a screen printing method and sintering this instead of applying a metal coating to the surface of the ceramic base material. .
まだ、セラミック基材の表面に導電性塗装を施したしの
を用いても良い。さらにまた、萌記金属被覆や導電性塗
装などの導電性表面処理は基材の全面に施される他、例
えば回路基板や電磁シールドなどを作成する場合には、
通常のマスキング法等を用いて導電回路部分のみに導電
性表面処理を施し、この回路パターン上に超電導層を形
成しても良い。However, a ceramic base material whose surface is coated with conductive coating may also be used. Furthermore, conductive surface treatments such as Moeki metal coating and conductive coating are applied to the entire surface of the base material. For example, when creating circuit boards and electromagnetic shields,
A superconducting layer may be formed on the circuit pattern by subjecting only the conductive circuit portion to a conductive surface treatment using a normal masking method or the like.
ところで、超電導素材5を焼結する際に、基材を燃焼消
滅させたり、溶融流出させることにより超7[導体部分
のみを残す用途に適用させることができる。従ってこの
場合は、低融点金属や、高分子6機物からなる糸やシー
トなどの種々の成形物に導電性表面処理を施したものを
基材に用いても良い。By the way, when the superconducting material 5 is sintered, the base material can be burnt out or melted and flowed out, so that it can be applied to applications where only the conductor portion remains. Therefore, in this case, various molded products such as threads and sheets made of low melting point metals or polymers, which have been subjected to conductive surface treatment, may be used as the base material.
次に、本発明の製造方法をB i−S r−Ca−Cu
−0系の長尺の超電導線のtJ?s方法に適■したーI
について説明する。Next, the manufacturing method of the present invention is applied to B i-S r-Ca-Cu
-0 series long superconducting wire tJ? Suitable for method
I will explain about it.
第5図は超電導線材の製造に好適に使用される電気泳動
装置の一例を示す図であって、符号!lは、基材として
用いる線材、12はフTt看槽である。FIG. 5 is a diagram showing an example of an electrophoresis device suitably used for manufacturing superconducting wires, and the reference numeral ! 1 is a wire rod used as a base material, and 12 is a fuTt tank.
なお、この?Ilf看槽!2内には先の例で用いたしの
と同様の電着液3が収容されている。Furthermore, this? Ilf tank! 2 contains an electrodeposition liquid 3 similar to that used in the previous example.
この廟において好適に使1aされる線材11としては、
先の例と同様の融点800℃以」−でかつ耐酸化性の良
好な金属材料で作られた金属線材、石英ガラス、サファ
イアなどのセラミックスファイバーの表面にAgなどの
金属波頂を施した複合線材、炭素繊維等が好適に使用さ
れる。The wire 11 preferably used 1a in this temple is as follows:
Similar to the previous example, a composite consisting of a metal wire material made of a metal material with a melting point of 800°C or higher and good oxidation resistance, a ceramic fiber such as quartz glass, or sapphire with a metal wave crest made of Ag on the surface. Wire rods, carbon fibers, etc. are preferably used.
この何による超電導材の製造方法では、第5図1こ示ず
電気泳動装置をnlい、図rlx矢印で示すように線材
11を電着液3中で一定の速度で移動させ、この線材1
1を陰極とし、この線材11とif着槽重2内に配設さ
れた陽極14との間に電圧を印加する。この電圧の印加
条件は先の例と同様であり、陽極14は、先の何で11
Tいた陽極6と同様の6のを使用することができる。ま
た、電着液3中の超電導粉末の濃度は電着操作の進行に
とともに低下してくるため、電着操作の進行にともなっ
て、電着槽12中の電着液3に超電導粉末を直接供給す
るか、所定濃度の?Ii着液3を供給することが好まし
い。In this method for producing a superconducting material, an electrophoresis apparatus (not shown in FIG.
1 is used as a cathode, and a voltage is applied between this wire 11 and an anode 14 disposed in the if loading tank weight 2. The conditions for applying this voltage are the same as in the previous example, and the anode 14 is
A similar anode 6 can be used. In addition, since the concentration of the superconducting powder in the electrodeposition liquid 3 decreases as the electrodeposition operation progresses, the superconducting powder is directly added to the electrodeposition liquid 3 in the electrodeposition bath 12 as the electrodeposition operation progresses. Supply or predetermined concentration? It is preferable to supply Ii liquid 3.
?I!着液1z内で所定の厚さの電着層が形成されたな
らば、超電導素線13を電着槽12から引き14 L、
次いで熱風による乾燥処理を行って、表面部分に残留す
るN−Nジメチルホルムアミドを除去する。? I! Once an electrodeposited layer of a predetermined thickness is formed in the deposited liquid 1z, the superconducting wire 13 is pulled out from the electrodeposition bath 12 14L,
Next, drying treatment with hot air is performed to remove N--N dimethylformamide remaining on the surface portion.
次に、この超電導素線13に熱処理を施す。この熱処理
は、先の例と同様に、酸素雰囲気中において、700〜
1000℃で数分〜数lO時間加熱した後、室温まで冷
却する条件に設定することが望ましい。Next, this superconducting wire 13 is subjected to heat treatment. As in the previous example, this heat treatment was performed in an oxygen atmosphere at a temperature of 700 to
It is desirable to set the conditions to be heated at 1000° C. for several minutes to several 10 hours and then cooled to room temperature.
なお、この熱処理時に、所定速度で移動する超71導素
線13を連続的に加熱、徐冷できるような加熱手段、例
えば長尺のトンネル形の加熱炉などを用いても良く、さ
らにこのような加熱炉を上述の71i気泳動装置と組み
合わせて、線材11に電気泳動電着→乾燥→熱処理の各
処理を連続的に施ずにうにhq成してら良い。Note that during this heat treatment, a heating means capable of continuously heating and gradually cooling the super 71 conductive wire 13 moving at a predetermined speed, such as a long tunnel-shaped heating furnace, may be used; By combining a heating furnace with the above-mentioned 71i pneumatic migration apparatus, the wire rod 11 can be formed into hq without successively performing the electrophoretic electrodeposition → drying → heat treatment.
以1−の各処理により、線材11の表面に、B++Sr
+Ca+CutOxなる組成の緻密な超電導層が形成さ
れた長尺の超電導線材が製造される。なお、得られた超
電導線材の表面には、先の例と同様に被覆層を形成して
も良い。Through each of the treatments described in 1- below, B++Sr is added to the surface of the wire rod 11.
A long superconducting wire in which a dense superconducting layer having a composition of +Ca+CutOx is formed is manufactured. Note that a coating layer may be formed on the surface of the obtained superconducting wire as in the previous example.
この例による超電導線材の製造方法は、先の例による超
電導材の製造方法とほぼ同様の効果が得られる他、線材
11の表面に1着層を形成し、この後熱処理を施す一連
の操作を連続的に実施することが容易であり、長尺の超
電導線材の製造を自動化することができ、超電導線材の
製造効率を向上させることができる。The method for manufacturing a superconducting wire according to this example provides almost the same effect as the method for manufacturing a superconducting material according to the previous example, and also includes a series of operations in which a first layer is formed on the surface of the wire 11 and then heat treatment is performed. It is easy to carry out continuously, the production of long superconducting wires can be automated, and the production efficiency of superconducting wires can be improved.
なお、上述の例では、1回の電気泳動m着操作により1
着層を形成したが、この電気泳動電着操作は2回以上繰
り返し行ってら良い。In addition, in the above example, one electrophoresis m-deposition operation results in 1
Although a deposited layer has been formed, this electrophoretic electrodeposition operation may be repeated two or more times.
「実施例I」
B LOs粉末とS rCOa粉末とCaCO5粉末と
CuO粉末をBi:Sr:Ca:Cu= l:I :I
:2(モル比)となるように自動乳鉢で均一に混合し
て混合粉末とし、次いでこの混合粉末を大気中において
、820℃で24時間仮焼して仮焼粉末とし、次いでボ
ールミルによるわ)砕処理を行って、平均粒径G、3u
mの1311 S r+ Cal Cu*o y、なる
組成の超電導粉末を作成した。"Example I" B LOs powder, S rCOa powder, CaCO5 powder, and CuO powder are Bi:Sr:Ca:Cu= l:I :I
: 2 (molar ratio) to make a mixed powder, then this mixed powder is calcined in the atmosphere at 820°C for 24 hours to make a calcined powder, and then by a ball mill) After crushing, the average particle size G, 3u
A superconducting powder having a composition of 1311 S r+ Cal Cu*o y was prepared.
次いでこの超電導粉末15gをN−Nジメチル;1:ル
ムアミド300m1中に分散させて電着液とした。Next, 15 g of this superconducting powder was dispersed in 300 ml of N-N dimethyl;1:lumamide to prepare an electrodeposition liquid.
この7I!着液を第1図に示すものと同等の構成の71
i気泳動装置の電着槽に収納し、このWi着液中に、陽
極となるステンレス板(SUS304、厚さl I。This 7I! 71 with the same structure as that shown in Fig. 1
A stainless steel plate (SUS304, thickness lI.
幅50s+i、長さI OOff1s)と、陰極となる
基材を挿入し、ステンレス板(陽極)と基材(陰極)に
10〜500vの直流定電圧を印加して、電気泳動電着
を2分11g行った。なお、基材はZr、′ri、Ag
の各金属を材料とする商都1 、 Olta、長さ5c
mの丸線材を用いた。これらの基材は使用11りにエタ
ノール中で超音波洗浄を施した。Insert the substrate (width 50s+i, length IOOff1s) and the cathode, apply a constant DC voltage of 10 to 500v to the stainless steel plate (anode) and the substrate (cathode), and perform electrophoretic electrodeposition for 2 minutes. I went 11g. In addition, the base material is Zr, 'ri, Ag
Commercial capital 1, Olta, length 5c made of each metal.
A round wire rod with a diameter of m was used. These substrates were subjected to ultrasonic cleaning in ethanol before use.
続いて萌記電気泳動7i着を終了した各々の基材を20
0℃で5分1/l熱風乾燥した後、大気中において86
0℃で12時間加熱し、−400℃/時間で室温まで徐
冷してDi系超超電導線材得た。Subsequently, each substrate that had been subjected to Moeki electrophoresis 7i was subjected to 20
After drying with 1/l hot air for 5 minutes at 0℃,
It was heated at 0°C for 12 hours and slowly cooled to room temperature at -400°C/hour to obtain a Di-based superconducting wire.
そして、前述と同等の手順により、基材の種類と処理電
圧の異なる複数の超電導材を作成し、これらの超電導材
の膜厚を顕微鏡を用いて測定した。Then, a plurality of superconducting materials having different base material types and processing voltages were created using the same procedure as described above, and the film thicknesses of these superconducting materials were measured using a microscope.
また、これらの超電導材の臨界温度(’l’c)を4端
子法で測定した。これらの測定結果を第1表に示す。In addition, the critical temperature ('l'c) of these superconducting materials was measured using a four-terminal method. The results of these measurements are shown in Table 1.
第1表
第1表に示すように、Zr、Ti%Agのいずれの基材
にも高い臨界温度を示す超電導層を形成することができ
た。また、各超電導材において超電導層の剥離やクラッ
クの発生などは認められなかった。As shown in Table 1, a superconducting layer exhibiting a high critical temperature could be formed on either the Zr or Ti%Ag base material. Furthermore, no peeling or cracking of the superconducting layer was observed in each superconducting material.
「実施例2」
分散媒としてN−Nジメチルホルムアミドを用い、幅1
0mm、長さ2011厚さ1mmの安定化ジルコニア(
ysz)基板とチタン酸ストロンチウムJl(板を用い
、これらの基板の表面に、塩化スズ、塩化パラジウム水
溶液で前処理後、無電解N1メツキを行って厚さ約2μ
mの導電層を形成した後に、面記実施例1と同等の条件
で電気泳動電着および熱処理を行って、基材の種類と処
理電圧の異なるル散の超電導材を作成し、実施例1と同
様にこれらの超電導材の膜厚および臨界温度(’rc)
を測定した。これらの測定結果を第2表に示す。"Example 2" Using N-N dimethylformamide as a dispersion medium, the width is 1
0mm, length 2011, thickness 1mm stabilized zirconia (
ysz) substrate and strontium titanate Jl (plate), the surfaces of these substrates were pretreated with an aqueous solution of tin chloride and palladium chloride, and then electroless N1 plating was performed to a thickness of approximately 2μ.
After forming a conductive layer of m, electrophoretic electrodeposition and heat treatment were performed under the same conditions as in Example 1 to create superconducting materials with different base material types and processing voltages. Similarly, the film thickness and critical temperature ('rc) of these superconducting materials
was measured. The results of these measurements are shown in Table 2.
第2表
第2表に示すように、前記各基材のいずれにも高い臨界
温度を示すBi系の超電導層を形成することができた。As shown in Table 2, a Bi-based superconducting layer exhibiting a high critical temperature could be formed on each of the base materials.
また、各超電導材において超電導層の剥離やクラックの
発生(1認められなかった。In addition, in each superconducting material, peeling and cracking of the superconducting layer (1 was not observed).
「比較例」
本発明方法と比較するために、N−Nジメチルホルムア
ミド以外の有機溶媒を分散媒に用いて超電導材の製造を
実施した。"Comparative Example" In order to compare with the method of the present invention, a superconducting material was manufactured using an organic solvent other than N-N dimethylformamide as a dispersion medium.
ノルマルヘキサン、トルエン、キシレンを分散媒として
用い、これらの分散媒中に実施例1で用いたものと同等
の基材を用い、実施例1と同等の条件で電気泳動電着を
行った。その結果、分散媒としてノルマルヘキサン用い
たちのセは、基材の表面に電着層が全く形成されず、ト
ルエンおよqキシレンを用いたものでは、基材の表面に
少量の電着層が形成されたものの、基材との密着性が悪
く、緻密に形成されないために、基材を電着液から引き
上げる際に剥がれ落ちてしまった。Electrophoretic electrodeposition was performed under the same conditions as in Example 1 using n-hexane, toluene, and xylene as dispersion media, and using the same base material as that used in Example 1 in these dispersion media. As a result, when normal hexane was used as the dispersion medium, no electrodeposited layer was formed on the surface of the substrate, and when toluene and xylene were used, a small amount of electrodeposited layer was formed on the surface of the substrate. Although it was formed, the adhesion to the base material was poor and it was not formed densely, so it peeled off when the base material was pulled up from the electrodeposition solution.
「発明の効果」
以上説明したように本発明によるBii酸化物超電導材
の製造方法では、基材の表面に、電気泳動電着によりB
ii酸化物超電導粉末を電着して緻密な電着層を形成さ
せることができるので、この後の熱処理による収縮が少
なく、亀裂などの発生のない緻密なりi系超電導層が基
材上に形成された超電導特性の優れた高臨界温度の[1
i系酸化物超電導材を得ることができる。"Effects of the Invention" As explained above, in the method for producing a Bii oxide superconducting material according to the present invention, B is applied to the surface of the base material by electrophoretic electrodeposition.
ii) Oxide superconducting powder can be electrodeposited to form a dense electrodeposited layer, so there is less shrinkage due to subsequent heat treatment, and a dense i-based superconducting layer without cracks is formed on the substrate. [1] with a high critical temperature and excellent superconducting properties.
An i-based oxide superconducting material can be obtained.
また基材の表面に、電気泳動電着により緻密な電着層を
形成し、この後熱処理を施してBii系超電導層焼結体
層を生成させるので、超電導層は基材に対して密着性が
良好となり、可撓性に優れ、機械強度の高いBi系超電
導材を製造することができる。In addition, a dense electrodeposited layer is formed on the surface of the base material by electrophoretic electrodeposition, and then heat treatment is performed to generate a sintered layer of Bii superconducting layer, so the superconducting layer has good adhesion to the base material. This makes it possible to produce a Bi-based superconducting material with excellent flexibility and high mechanical strength.
さらに、基材の表面に、電気泳動電着でBi系超超電導
粉末らなるv&@層を形成するので、Wi若条件を制御
することによって超電導層の厚さを正確に制御すること
ができる。Furthermore, since the v&@ layer made of Bi-based superconducting powder is formed on the surface of the base material by electrophoretic electrodeposition, the thickness of the superconducting layer can be accurately controlled by controlling the Wi layer conditions.
また、電気泳動電着によって電着層を形成するので、2
00μ量以上の比較的厚い電着層を短時間の電着操作で
形成することができ、Bi系超電導材の製造効率を向上
させることができる。In addition, since the electrodeposition layer is formed by electrophoretic electrodeposition, 2
A relatively thick electrodeposited layer having an amount of 00μ or more can be formed in a short time by electrodeposition, and the production efficiency of Bi-based superconducting material can be improved.
第1図ないし第4図は本発明の製造方法の−例を説明・
□するためのものであって、第1図は電気泳動装置の概
略構成図、第2図は超電導素材の断面図、第3図は超電
導材の断面図、第4図は第3図に示す超電導材に被覆を
施した例を示す超電導材の断面図、第5図は本発明の酸
化物超電導材の製造方法により超電導線材をtl造する
に好適に使用される電気泳動装置の概略構成図である。
!・・・基材、3・・・電着液、4・・・M18層、5
・・・超電導素材、6・・・陽極、7・・・超電導層、
A、r3・・・超電導材、!1・・・線材(基材)、1
3・・・超電導素線、14・・・陽極。Figures 1 to 4 illustrate examples of the manufacturing method of the present invention.
□ Figure 1 is a schematic diagram of the electrophoresis device, Figure 2 is a cross-sectional view of the superconducting material, Figure 3 is a cross-sectional view of the superconducting material, and Figure 4 is shown in Figure 3. A cross-sectional view of a superconducting material showing an example of a superconducting material coated with a coating, and FIG. 5 is a schematic configuration diagram of an electrophoresis device suitably used for manufacturing a superconducting wire by the method for manufacturing an oxide superconducting material of the present invention. It is. ! ...Base material, 3... Electrodeposition liquid, 4... M18 layer, 5
... superconducting material, 6... anode, 7... superconducting layer,
A, r3... superconducting material! 1...Wire rod (base material), 1
3... Superconducting wire, 14... Anode.
Claims (1)
してなる酸化物超電導材の製造方法において、前記酸化
物超電導体の粉末または酸化物超電導体の前駆体粉末を
N−Nジメチルホルムアミド中に分散させた電着液中に
おいて、少なくとも表面部分に導電性を有する基材を陰
極として電気泳動電着を行い、該基材の表面に酸化物超
電導体を構成する元素を含む電着層を形成し、この後に
熱処理を施すことを特徴とするBi系酸化物超電導材の
製造方法。In a method for producing an oxide superconducting material comprising a Bi-Sr-Ca-Cu-O-based oxide superconductor, the oxide superconductor powder or the oxide superconductor precursor powder is mixed with N-N dimethyl Electrophoretic electrodeposition is performed in an electrodeposition solution dispersed in formamide using a base material having conductivity at least on the surface as a cathode, and electrodeposition containing elements constituting an oxide superconductor is carried out on the surface of the base material. A method for producing a Bi-based oxide superconducting material, which comprises forming a layer and then subjecting it to heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63163686A JP2583577B2 (en) | 1988-06-30 | 1988-06-30 | Method for producing Bi-based oxide superconducting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63163686A JP2583577B2 (en) | 1988-06-30 | 1988-06-30 | Method for producing Bi-based oxide superconducting material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0214825A true JPH0214825A (en) | 1990-01-18 |
JP2583577B2 JP2583577B2 (en) | 1997-02-19 |
Family
ID=15778669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63163686A Expired - Lifetime JP2583577B2 (en) | 1988-06-30 | 1988-06-30 | Method for producing Bi-based oxide superconducting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2583577B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114016113A (en) * | 2021-12-17 | 2022-02-08 | 北京科技大学 | Method for preparing bismuth-based superconducting thin film by electrophoretic deposition and thin film |
-
1988
- 1988-06-30 JP JP63163686A patent/JP2583577B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114016113A (en) * | 2021-12-17 | 2022-02-08 | 北京科技大学 | Method for preparing bismuth-based superconducting thin film by electrophoretic deposition and thin film |
Also Published As
Publication number | Publication date |
---|---|
JP2583577B2 (en) | 1997-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107732008A (en) | A kind of oleic acid passivation organic inorganic hybridization perovskite resistance-variable storing device and preparation method thereof | |
JPH0214825A (en) | Production of bi-based oxide superconducting material | |
US6332967B1 (en) | Electro-deposition of superconductor oxide films | |
Mizuguchi et al. | Characterization of YBa2Cu3 O 7− x Layers Prepared by Electrophoretic Deposition | |
Pawar et al. | Electrodeposition of Dy Ba Cu alloyed films from aqueous bath | |
US5073240A (en) | Anhydrous electrophoretic silver coating technique | |
JPH01247599A (en) | Production of oxide superconducting material | |
JPH01247600A (en) | Production of oxide superconducting material | |
JPH01246395A (en) | Production of oxide superconducting material | |
JP2551624B2 (en) | Manufacturing method of oxide superconducting material | |
JP2595274B2 (en) | Method of forming oxide-based superconductor layer | |
JPH01287297A (en) | Production of bi-containing oxide superconducting material | |
JPH01247598A (en) | Production of oxide superconducting material | |
JPH01287296A (en) | Production of oxide superconducting material | |
Casañ-Pastor et al. | YBa2Cu3O7− δ wires by electrodeposition of metallic elements and by electrophoresis | |
US5550104A (en) | Electrodeposition process for forming superconducting ceramics | |
JPH01169816A (en) | Formation of superconductive layer | |
DE19964478B4 (en) | Process for metallically coating high temperature superconductors comprises galvanically applying copper and a metallic copper sample as anode, and partially covering between the anode and the high temperature superconductor | |
JP2583576B2 (en) | Manufacturing method of oxide superconducting material | |
JPH01283714A (en) | Manufacture of superconductive material | |
JP2901243B2 (en) | Method for producing oxide-based superconducting wire | |
EP0376060A1 (en) | Process for manufacturing a super conductor | |
US20020165099A1 (en) | Dip coating of YBCO precursor films on substrates | |
Cao et al. | Lateral growth of coating on Co2Z ferrite during electroplating of multilayer chip inductors | |
JP2003308746A (en) | Method and device for manufacturing oxide superconductive wire |