JPH02147500A - Artificial satellite - Google Patents
Artificial satelliteInfo
- Publication number
- JPH02147500A JPH02147500A JP63301459A JP30145988A JPH02147500A JP H02147500 A JPH02147500 A JP H02147500A JP 63301459 A JP63301459 A JP 63301459A JP 30145988 A JP30145988 A JP 30145988A JP H02147500 A JPH02147500 A JP H02147500A
- Authority
- JP
- Japan
- Prior art keywords
- power
- satellite
- face
- paddle
- artificial satellite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 abstract description 9
- 230000005611 electricity Effects 0.000 abstract description 5
- 244000287680 Garcinia dulcis Species 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 240000001548 Camellia japonica Species 0.000 description 1
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、人工衛星に搭載された各種の電子機器へ、太
陽電池から電力を供給する場合の、季節による電力供給
量の変動を低減するようにした人工衛星に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to the seasonal power supply amount when power is supplied from solar cells to various electronic devices mounted on an artificial satellite. This invention relates to an artificial satellite designed to reduce fluctuations in .
(従来の技術)
人工衛星に搭載された各種の電子機器が必要とする電力
は、人工衛星に備えられた太陽電池から供給されている
。第3図は一般的な3軸姿勢制御型の静止型人工衛星を
示したもので、人工衛星本体の回転軸の延長線上に太陽
電池が多数設けられている。(Prior Art) Electric power required by various electronic devices mounted on an artificial satellite is supplied from solar cells provided on the artificial satellite. FIG. 3 shows a general 3-axis attitude control type geostationary artificial satellite, in which a large number of solar cells are provided on an extension of the rotational axis of the satellite body.
すなわら、第3図に示した人工衛星本体1の回転軸は、
地球の回転軸(すなわち南北方向)に−致させられてい
るとともに、回転の方向や回転角速度も、地球の自転の
方向や自転の角速度と一致させられている。従って、人
工衛星本体1は常に同じ面を地球に指向させている。人
工衛星本体1の回転軸の南北方向の延長線上に一対のパ
ドル2が設けられている。各パドル2の片面には、太陽
電池セル群から構成される太陽電池パネル3が、多数貼
りつけられている。そしてこのパドル2は、人工衛星本
体1の回転に拘らず、常に太陽の方向へ向くように制御
されているが、この制御はパドル駆動制a閤構4によっ
て行われている。なお、パドル2には、後述するシャン
ト装置5が設けられている。In other words, the rotation axis of the satellite main body 1 shown in Fig. 3 is
It is aligned with the earth's axis of rotation (that is, north-south direction), and its direction of rotation and rotational angular velocity are also made to match the direction of rotation and angular velocity of the earth. Therefore, the artificial satellite main body 1 always points the same side toward the earth. A pair of paddles 2 are provided on a north-south extension of the rotation axis of the satellite body 1. A large number of solar panels 3 each made up of a group of solar cells are attached to one side of each paddle 2 . The paddle 2 is controlled to always face the sun regardless of the rotation of the satellite main body 1, and this control is performed by a paddle drive control mechanism 4. Note that the paddle 2 is provided with a shunt device 5, which will be described later.
第4図は第3図に示した従来の人工衛星の太陽電池によ
って発生される電力プロファイルの例をホしたものであ
る。これによると、秋(線分〉、冬(冬至)、春(春分
)、夏(夏至)のように四季によって、発生する電力の
吊が大きく変動していることが良くわかるとともに、衛
星の打上げから年を経る毎に発生電力量が低減している
ことがわかる。FIG. 4 shows an example of the power profile generated by the solar cells of the conventional satellite shown in FIG. According to this, it is clear that the amount of electricity generated fluctuates greatly depending on the four seasons, such as autumn (line segment), winter (winter solstice), spring (vernal equinox), and summer (summer solstice). It can be seen that the amount of electricity generated has been decreasing with each passing year.
そして、打上げの年の最大電力発生量は約5300讐な
のに対し、10年目の最低電力発生量は約旧OO−であ
り、そこに1200Wの差を生じるので、この差を前)
本のシャント装置5で吸収するようにし、人工衛星に搭
載された電子機器では約4100Wの電力を消費するよ
うに設計されている。And, while the maximum power generation in the year of launch is about 5300W, the minimum power generation in the 10th year is about OO-, which creates a difference of 1200W, so let's consider this difference before)
It is designed to be absorbed by the shunt device 5, and the electronic equipment on board the satellite consumes approximately 4100W of power.
次に、発生電力プロファイルが第4図のように変動する
理由を説明づる。Next, the reason why the generated power profile fluctuates as shown in FIG. 4 will be explained.
先ず、発生電力が秋、春に大ぎく冬、夏に小さいのは、
地球の自転軸と地球の公転面とが約23度傾いているこ
とによるものである。すなわら、秋と冬には、パドル2
の正面から太陽光が照射されるが、冬と夏には、太陽が
人工衛星の夫々南面と北面に位置するために、パドル2
に対し斜めに太陽光か照射されることになる。従って、
秋、春の発生電力を100%とすると、冬、夏では太陽
の傾き角の余弦倍すなわち約92%しか電力を発生しな
いことになる。First, the generated power is large in autumn and spring and small in winter and summer.
This is because the Earth's axis of rotation and the Earth's orbital plane are tilted by approximately 23 degrees. In other words, in autumn and winter, Paddle 2
However, in winter and summer, the sun is located on the south and north faces of the satellite, respectively, so paddle 2
The sunlight will be irradiated at an angle. Therefore,
If the power generated in autumn and spring is 100%, in winter and summer the power generated is only a cosine times the angle of inclination of the sun, or about 92%.
次に、冬、夏の発生電力の落込みが夏場に比較して冬場
の方が少ないのは、地球の公転軌道は楕円形であり、太
陽に対する近地点は冬至のすぐ後に位置し、また遠地点
は夏至のすぐ後に位置することにより、冬は夏に比べて
太陽のエネルギー束密度が高いことによるものである。Next, the reason why the power generation in winter and summer decreases less in winter than in summer is because the earth's orbit is elliptical, and the perigee with respect to the sun is located immediately after the winter solstice, and the apogee is This is due to the fact that it is located just after the summer solstice, so the solar energy flux density is higher in winter than in summer.
また、発生電力が人工衛星の打上げ後徐々に減少するの
は、太陽電池パネル3を構成する太陽電池セルの寿命に
よる経年変化に伴うものである。Further, the reason why the generated power gradually decreases after the launch of the artificial satellite is due to changes over time due to the lifespan of the solar cells constituting the solar battery panel 3.
さて、人工衛星の寿命を例えば10年と仮定した場合、
第4図に示した例では、打上げ後10年目の電力発生量
の最低値は約4100Wである。従って、人工衛星に搭
載する電子渫器等の総消v2電力は始めから4100W
以下に設計しておかなければならないことになる。Now, if we assume that the lifespan of an artificial satellite is, for example, 10 years,
In the example shown in FIG. 4, the lowest value of the power generation amount 10 years after launch is approximately 4100W. Therefore, the total v2 power consumption of electronic water pumps etc. installed on the satellite is 4100W from the beginning.
The design must be as follows.
ところが、10年目の電力発生量の最大値は約/170
0Wもあり、この差約600Wが無駄になっている。However, the maximum amount of electricity generated in the 10th year is approximately /170
There is also 0W, and this difference of about 600W is wasted.
(発明が解決しようとする課題)
上述の従来の人工衛星による電、力の発生は、四季によ
って大きく変動するという欠点があった。(Problems to be Solved by the Invention) The generation of electricity and power by the conventional artificial satellites described above has a drawback that it varies greatly depending on the seasons.
そこで本発明は、従来の課題を解決して、四季を通じて
略平準化した電力を発生できるようにし、以て発生電力
を有効に活用できる人工衛星を提供することを目的と覆
る。SUMMARY OF THE INVENTION Accordingly, the present invention aims to solve the conventional problems and to provide an artificial satellite that can generate substantially equalized power throughout the four seasons, thereby making effective use of the generated power.
[発明の構成]
(課題を解決するための手段)
この発明による人工衛星は、地球の回転軸と地球の自転
角速度に夫々一致するように、回転軸および回転角速度
が制御される人工衛星において、この人工衛星の回転軸
方向に取付けられ常に太陽の方向を指向するように制御
されるパドルと、このパドルに設けられた第1の太陽電
池群と、前記パドルの軸方向に直交する北面または南面
の少なくとも一方の面に位置するように前記人工衛星に
設けた第2の太陽電池群とを僅えることを特徴とする。[Structure of the Invention] (Means for Solving the Problems) An artificial satellite according to the present invention is an artificial satellite whose rotational axis and rotational angular velocity are controlled so as to coincide with the rotational axis of the earth and the rotational angular velocity of the earth, respectively. A paddle that is attached in the direction of the rotational axis of this artificial satellite and controlled to always point in the direction of the sun, a first solar cell group provided on this paddle, and a north face or south face perpendicular to the axial direction of the paddle. and a second solar cell group provided on the artificial satellite so as to be located on at least one surface of the artificial satellite.
(作 用)
上記の手段によれば、冬と夏に太陽が第1の太陽電池群
に対して傾いて照射されることに伴う、第1の太陽電池
群によって不足する冬、夏の発生電力を、第2の太陽電
池群で補うことができ、四季を通じて発生電力量を略平
準化することができる。(Function) According to the above means, the power generated by the first solar cell group in winter and summer is insufficient due to the sun being irradiated at an angle to the first solar cell group in winter and summer. This can be supplemented by the second solar cell group, and the amount of power generated can be approximately equalized throughout the four seasons.
(実施例)
以下本発明の一実施例を第1図および第2図を参照して
詳細に説明する。なお、第1図において、第3図と同一
部分には同一符号を付し詳細な説明は省略する。(Example) An example of the present invention will be described in detail below with reference to FIGS. 1 and 2. Note that in FIG. 1, the same parts as in FIG. 3 are given the same reference numerals, and detailed explanations are omitted.
第1図は、本発明に係る人工衛星の一実施例を示した概
念図である。FIG. 1 is a conceptual diagram showing an embodiment of an artificial satellite according to the present invention.
第3図に示した従来のものと同様に、人工衛星本体1の
回転軸は、地球の回転軸(すなわち南北方向)に一致さ
せられているとともに、回転の方向や回転角速度も、地
球の自転の方向や自転の角速度と一致させられている。Similar to the conventional satellite shown in Fig. 3, the rotation axis of the satellite body 1 is aligned with the rotation axis of the earth (that is, north-south direction), and the rotation direction and rotational angular velocity are also controlled by the rotation of the earth. The direction of rotation and the angular velocity of rotation are matched.
従って、人工衛星本体1は譜に同じ面を地球に指向させ
ている。人工衛星本体1の回転軸の南北方向の延長線上
に一対のパドル2が設けられていて、各パドル2の片面
には、太陽電池セル群から構成される太陽電池パネル3
が、多数貼りつけられている。そしてこのパドル2は、
人工衛星本体1の回転に拘らず、常に太陽の方向へ向く
ように、パドル駆動制御機構4によって制御されている
。なお、パドル2には、余剰電力を消費するためのシャ
ント装置5が設けられている。Therefore, the satellite main body 1 has the same side facing the earth. A pair of paddles 2 are provided on a north-south extension of the rotational axis of the satellite body 1, and on one side of each paddle 2, a solar panel 3 composed of a group of solar cells is installed.
However, many are attached. And this paddle 2 is
Regardless of the rotation of the satellite main body 1, it is controlled by a paddle drive control mechanism 4 so that it always faces toward the sun. Note that the paddle 2 is provided with a shunt device 5 for consuming surplus power.
そして、人工衛星本体1の北面6および南面7に、夫々
太陽電池セル群から成る太陽電池パネル8が設置されて
いる。この北面6と南面1に設置する太陽電池パネル8
は、パドル2の太陽電池パネル3全体による発生電力を
100%としたとき、北面6では約20%、南面7では
約10%となるように設定する。On the north face 6 and south face 7 of the satellite main body 1, solar panels 8 each consisting of a group of solar cells are installed. Solar panel 8 installed on this north face 6 and south face 1
is set to be about 20% on the north face 6 and about 10% on the south face 7, assuming that the power generated by the entire solar panel 3 of the paddle 2 is 100%.
このようにすると、北面6に設置された太陽電池パネル
8からは夏に、一方南面7に設置した太陽電池パネル8
からは冬に、夫々最大電力を発生し、通常は南北面と太
陽とのなす角度の正弦に比例した電力を発生し、これら
がパドル2に設けられている太陽電池パネル3の発生電
力に加算される。In this way, the solar battery panel 8 installed on the north face 6 will be able to access the solar battery panel 8 installed on the south face 7 in summer, while the solar battery panel 8 installed on the south face 7
In winter, each generates maximum power, and usually generates power proportional to the sine of the angle between the north and south planes and the sun, and this is added to the power generated by the solar panel 3 installed on the paddle 2. be done.
第2図は本発明による人工衛星の発生電力プロファイル
例を示したものであるが、夏と冬の発生電力の落込みか
、北面パネル6と南面パネル7の太陽電池パネル8によ
って補償され、年間を通じて略平準化された電力を得る
ことができる。FIG. 2 shows an example of the generated power profile of the artificial satellite according to the present invention. The drop in generated power in summer and winter is compensated for by the solar panels 8 on the north panel 6 and the south panel 7, and the annual Almost equalized power can be obtained through this process.
なお本発明を3軸姿勢制御型の衛星を例として説明した
が、これに限らず本発明は例えばスピン型の人工衛星に
も適用できるし、また、静止型衛星に限ることもなく、
軌道傾斜角が0度に近い人工衛星の全てに適用されるも
のである。さらに、北面パネル6と南面パネル7に設け
た太陽電池パネル8は、人工衛星本体1自体の北面また
は南面に限らず、人工衛星本体1の北面、南面に平行な
任意の面に位置するように設置してもよい。Although the present invention has been explained using a three-axis attitude control type satellite as an example, the present invention is not limited to this, and can be applied to, for example, a spin type artificial satellite, and is not limited to a geostationary type satellite.
This applies to all artificial satellites whose orbital inclination angle is close to 0 degrees. Furthermore, the solar panels 8 provided on the north panel 6 and the south panel 7 are not limited to the north or south surface of the satellite body 1 itself, but can be positioned on any surface parallel to the north or south surface of the satellite body 1. It may be installed.
このような本発明にJ:ると、冬および夏の発生電力の
落込みを補償することができ、本実施例では、打上げ1
0年後に約4700Wの電力が得られるので、人工衛星
に搭載する電子機器をそれに合わせて設計できるし、も
し従来のように4100Wの消費電力でよければ、設置
する太陽型6池パネルの量を少なくすることができる。By incorporating the present invention, it is possible to compensate for the drop in power generation in winter and summer.
Approximately 4,700W of power will be obtained after 0 years, so the electronic equipment installed on the satellite can be designed accordingly.If 4,100W of power consumption is acceptable as in the past, the amount of solar type 6-cell panels to be installed can be reduced. It can be reduced.
また、余剰電力が少なくなれば、それを消費するために
設けであるシャント装置5も小形化でき、さらにパドル
2の太陽電池パネル3での電力発生量を少なくすれば、
そこから衛星本体1へ電力を送るためのパドル駆動機構
4のスリップリングを小形化、簡易化することができる
。Furthermore, if the surplus power decreases, the shunt device 5 provided to consume it can be made smaller, and if the amount of power generated by the solar panel 3 of the paddle 2 is reduced,
The slip ring of the paddle drive mechanism 4 for transmitting power from there to the satellite main body 1 can be made smaller and simpler.
[発明の効果]
以上詳)ホしたように本発明によれば、人工衛星の太陽
電池パネルによって発生させる電力を四季を通じて略平
準化させることができ、電力を有効活用できるとともに
、余剰電力を発生させることに伴う無駄を排除し、人工
衛星の軽量化を図ることができる。[Effects of the Invention] As described above, according to the present invention, it is possible to substantially equalize the electric power generated by the solar panel of an artificial satellite throughout the four seasons, and it is possible to use electric power effectively and to generate surplus electric power. It is possible to eliminate the waste associated with this process and reduce the weight of the artificial satellite.
第1図は本発明に係る人工衛星の一実施例を示す概念図
、第2図は本発明にもとづく発生電力のプロファイル例
を示した線図、第3図は従来の3軸姿勢iti制御型人
工衛星の概念図、第4図は従来の人工衛星での発生電力
のプロファイルを示した線図である。
1・・・人工衛星本体
2・・・パドル
3.8・・・太陽電池パネル
4・・・パドル制御駆動機構
5・・・シャント装置
6・・・北面パネル
7・・・南面パネル
代理人 弁理士 大 胡 典 夫
4−、バP)し剃椿店1z象p祠(茹47゜
南6白 、ぐネ、し
第
図
図
第
図Fig. 1 is a conceptual diagram showing an embodiment of an artificial satellite according to the present invention, Fig. 2 is a diagram showing an example of a generated power profile based on the present invention, and Fig. 3 is a conventional three-axis attitude iti control type. FIG. 4, a conceptual diagram of an artificial satellite, is a diagram showing the profile of power generated in a conventional artificial satellite. 1...Satellite body 2...Paddle 3.8...Solar panel 4...Paddle control drive mechanism 5...Shunt device 6...North panel 7...South panel agent Patent attorney Shi Daigo Norifu 4-, BaP) Shisha camellia store 1z Elephant p shrine (Boiled 47° South 6 White
Claims (1)
、回転軸および回転角速度が制御される人工衛星におい
て、この人工衛星本体の回転軸方向に取付けられ常に太
陽の方向を指向するように制御されるパドルと、このパ
ドルに設けられた第1の太陽電池群と、前記パドルの軸
方向に直交する北面または南面の少なくとも一方の面に
位置するように前記人工衛星本体に設けた第2の太陽電
池群とを備えることを特徴とする人工衛星。In an artificial satellite whose rotational axis and rotational angular velocity are controlled to match the rotational axis of the earth and the rotational angular velocity of the earth, it is attached in the direction of the rotational axis of the satellite body and controlled so that it always points in the direction of the sun. a first solar cell group provided on the paddle, and a second solar cell group provided on the satellite main body so as to be located on at least one of the north face and the south face perpendicular to the axial direction of the paddle. An artificial satellite characterized by comprising a group of solar cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63301459A JPH02147500A (en) | 1988-11-29 | 1988-11-29 | Artificial satellite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63301459A JPH02147500A (en) | 1988-11-29 | 1988-11-29 | Artificial satellite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02147500A true JPH02147500A (en) | 1990-06-06 |
Family
ID=17897150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63301459A Pending JPH02147500A (en) | 1988-11-29 | 1988-11-29 | Artificial satellite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02147500A (en) |
-
1988
- 1988-11-29 JP JP63301459A patent/JPH02147500A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6015116A (en) | Fuel efficient methods for satellite stationkeeping and momentum dumping | |
JP2542094B2 (en) | Satellite control system | |
AU639504B2 (en) | Satellite roll and yaw attitude control method | |
US5697582A (en) | Method of adjusting the position of satellites by means of solar pressure torques | |
US4508297A (en) | Satellite on an equatorial orbit with improved solar means | |
JPS5912000A (en) | Method of maintaining station northern and southern axis of artificial satellite in equator plane | |
JP2569268B2 (en) | Magnetic torque attitude control system | |
US5895014A (en) | Satellite solar array and method of biasing to reduce seasonal output power fluctuations | |
JP2001509110A (en) | Satellite attitude control system using low thrust thrusters | |
US6070833A (en) | Methods for reducing solar array power variations while managing the system influences of operating with off-pointed solar wings | |
US5158250A (en) | Spin-stabilized artificial satellite with passive compensation of solar radiation pressure | |
JPH02147500A (en) | Artificial satellite | |
EP0959001A1 (en) | Method and apparatus for performing two axis solar array tracking in a geostationary satellite | |
JP2009196496A (en) | Artificial satellite | |
Landis | A supersynchronous solar power satellite | |
JPH05213288A (en) | Solar battery paddle system for space navigating body | |
JPS61290508A (en) | Solar battery paddle developing and tracking device for atrificial satellite | |
CN112758354B (en) | Low-orbit satellite double-shaft solar wing control and energy balance coupling calculation method | |
JPS60117300U (en) | satellite solar paddle | |
Hague et al. | Performance of International Space Station electric power system during station assembly | |
Landis et al. | Solar array orientations for a space station in low earth orbit | |
Lievre | Solar sailing attitude control of large geostationary satellite | |
JPS6114959Y2 (en) | ||
Williams et al. | Design considerations for an amateur solar sail spacecraft | |
CN117910134A (en) | Method for designing sun orbit control gesture of orbit satellite |