JPH02147170A - Gas shielded arc welding method for hydrogen-induced cracking resistant steel - Google Patents

Gas shielded arc welding method for hydrogen-induced cracking resistant steel

Info

Publication number
JPH02147170A
JPH02147170A JP12209188A JP12209188A JPH02147170A JP H02147170 A JPH02147170 A JP H02147170A JP 12209188 A JP12209188 A JP 12209188A JP 12209188 A JP12209188 A JP 12209188A JP H02147170 A JPH02147170 A JP H02147170A
Authority
JP
Japan
Prior art keywords
welding
hydrogen
gas
content
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12209188A
Other languages
Japanese (ja)
Other versions
JPH0355231B2 (en
Inventor
Toshiya Matsuyama
松山 隼也
Atsushi Shiga
志賀 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12209188A priority Critical patent/JPH02147170A/en
Publication of JPH02147170A publication Critical patent/JPH02147170A/en
Publication of JPH0355231B2 publication Critical patent/JPH0355231B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To perform satisfactory gas shielded arc welding by using a welding wire containing the specific quantity of Ti at the time of welding the title hydrogen-induced cracking resistant steel in the globular transfer region. CONSTITUTION:The hydrogen-induced cracking resistant steel containing a rare earth element and/or Ca in >=0.10 quantity of a value of (A) in the formula as base metal to be welded is subjected to shielded gas welding by using a gaseous carbon dioxide by DC reverse polarity in the globular transfer region of a welding current from 230 to 600A. RE in the formula denotes the rear earth element. When the welding wire having 0.03-0.20wt.% Ti content is used, spatter loss is reduced remarkably. When the welding wire having <0.03wt.% Ti content is used, the quantity of generation of spatter loss increases rapidly. Since excessive Ti causes are instability even in the globular transfer region, Ti content is suppressed to 0.20wt.%.

Description

【発明の詳細な説明】 この発明は、耐水素誘起われ鋼のガスシールドアーク溶
接法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a process for gas-shielded arc welding of hydrogen-resistant induced steel.

耐水素誘起われ対策として希土類元素(以下rRJと略
す)及び/又はカルシウム(以下rca」と略す)の添
加の有効性については既知であるが、ガスシールドアー
ク溶接に際して溶接性に問題がある。
The effectiveness of adding rare earth elements (hereinafter abbreviated as rRJ) and/or calcium (hereinafter abbreviated as RCA) as a countermeasure against hydrogen-induced corrosion is known, but there are problems with weldability during gas shielded arc welding.

この発明はかような限局条件における溶接性の改善を目
的とするものである。
The object of the present invention is to improve weldability under such localized conditions.

近年エネルギー需要の増大にともない、極寒地あるいは
深海底より採取した石油またはガス資源を安全かつ能率
的に輸送するために、高品質パイプへの要求が一段と高
まっている。ここにパイプメーカー、パイプユーザーに
とって最も重大な問題は、使用中のパイプ破壊である。
With the increase in energy demand in recent years, the demand for high-quality pipes has further increased in order to safely and efficiently transport oil or gas resources extracted from extremely cold regions or the deep seabed. The most serious problem for pipe manufacturers and pipe users is pipe breakage during use.

最近の非破壊検査技術の進歩とあいまって破壊の発生源
となるようなパイプ製造時の内部欠陥はほとんど皆無に
することも可能となったが、パイプ内搬送物質からもた
らされる水素ガスによる水素誘起われ(以下胴Cと略す
)はその予防が著しく困難である。
Coupled with recent advances in non-destructive testing technology, it has become possible to almost completely eliminate internal defects during pipe manufacturing, which can be the source of fractures; It is extremely difficult for me (hereinafter abbreviated as Torso C) to prevent this.

パイプのみならず硫化水素など水素源の多い環境下で用
いられる鋼材は環境脆化として旧Cの危険にさらされて
いる。
Steel materials used not only in pipes but also in environments with many hydrogen sources such as hydrogen sulfide are exposed to the risk of old C as environmental embrittlement.

一方このような旧Cを予防するために鋼メーカーらは種
々の研究から、旧Cは鋼板中の延展したマンガンサルフ
ァイド(MnS)  と水素の結合に起因すること、そ
して鋼中にRIE及び/又はCaを添加してSと結合さ
せ、MnSの形成を阻止することが旧C対策に有効であ
ることを見出し、すでにその実用の段階に到達しつつあ
って、今後はますますこの種の耐量C鋼の需要は増大の
一途をたどると考えられる。
On the other hand, in order to prevent such old C, steel manufacturers have found through various studies that old C is caused by the bonding of hydrogen with expanded manganese sulfide (MnS) in the steel sheet, and that RIE and/or It has been discovered that adding Ca to combine with S to prevent the formation of MnS is effective as a countermeasure against old C, and has already reached the stage of practical use. It is thought that the demand for steel will continue to increase.

ところで鋼板はほとんど不可欠に溶接加工によって鋼構
造体に形成され、自動溶接技術の進歩の結果、手溶接に
匹敵する以上にガスシールドアーク溶接が多用されてい
るのが現状であって、パイプを連結する円周溶接の場合
もその例にもれない。
By the way, steel plates are almost always formed into steel structures by welding, and as a result of advances in automatic welding technology, gas-shielded arc welding is now used more frequently than manual welding. The same can be said for circumferential welding.

上記のような新規な鋼種である耐量CI!!のガスシー
ルドアーク溶接性について発明者らが検討を行った結果
、 ■ RE及び/又はCaは、発明者らが見出したパラメ
ータのもとに相加的に溶接作業性への悪影響をもたらす
こと、 ■ この悪影響は溶接電流に依存するワイヤからの溶滴
移行形態によって特性が異なること、■ それぞれに対
しワイヤ組成とシールドガス組成を総合的に適正選択す
ることにより良好なガスシールドアーク溶接が行えるこ
と が見出された。
Withstand capacity CI, which is a new type of steel as mentioned above! ! As a result of the inventors' examination of the gas-shielded arc weldability of ■ The characteristics of this adverse effect vary depending on the form of droplet transfer from the wire, which depends on the welding current; ■ Good gas shield arc welding can be achieved by comprehensively selecting the appropriate wire composition and shielding gas composition for each. was discovered.

ガスシールドアーク溶接におけるシールドガスとしては
一般に、CO□単独又はCO2とArなどの不活性ガス
との混合ガスが用いられ、また溶接ワイヤには、通常の
C,Si、 Mnとともに、必要に応じる合金成分とし
てNi、 Cr、 Mo、  Bなどを含み、また不可
避にP、  Sが混入する以外に、脱酸剤としてAr、
TIを含有する場合も多い。
The shielding gas in gas-shielded arc welding is generally CO□ alone or a mixture of CO2 and an inert gas such as Ar, and the welding wire is made of ordinary C, Si, Mn as well as alloys as required. It contains Ni, Cr, Mo, B, etc. as components, and in addition to unavoidably containing P and S, it also contains Ar, deoxidizing agents, etc.
It often contains TI.

このうち溶接ワイヤ組成についてREやCaのごときが
アーク特性に影響を及ぼすことは、古くから定性的に知
られてはいたが、従来これらの元素は積極的にワイヤや
鋼板などに添加されることはなく、その必要もなかった
ことからそれらのシールドガスアーク溶接性への悪影響
のごときはその実態として全く把握されていない。なお
鋼板中のRBによるアーク溶接性への影響に関しては若
干の報告はあるが、上記旧C対策としてはREと同時に
Ca添加を不可欠とする場合が多くこれらの影響を把握
しない限りにおいては、耐量C鋼のガスシールドアーク
溶接に適合し得ないのである。
It has been qualitatively known for a long time that RE and Ca in the welding wire composition affect arc characteristics, but in the past these elements were not actively added to wires or steel plates. Since there was no such thing and there was no need for it, the actual situation of these adverse effects on shielded gas arc weldability is not understood at all. Although there are some reports regarding the influence of RB in steel sheets on arc weldability, in many cases it is essential to add Ca at the same time as RE as a countermeasure for the old C mentioned above. It is not suitable for gas shielded arc welding of C steel.

つまり従来公知の技術にあっては、 ■ シールドガス溶接におけるアーク不安定に対するR
EとCaの単独または複合挙動の具体的な内容、 ■ 溶接条件、ワイヤ組成、シールドガス組成に関連し
た溶接時のアーク不安定発生状況の詳細、が把握されて
いなかったと同時に、当然■ それに対処すべき具体的
、定量的方法は見出されてはいなかったのである。
In other words, in the conventionally known technology, ■ R against arc instability in shield gas welding.
The specific details of the individual or combined behavior of E and Ca, ■ the details of the occurrence of arc instability during welding related to welding conditions, wire composition, and shielding gas composition were not understood. No specific, quantitative method has been found to do so.

そこで発明者らは、耐HIC鋼のガスシールド溶接のア
ーク安定化をはかるべく種々検討を行った結果、上記■
と■の間に存在する・特別な関係を見出し、同時に■を
可能ならしめる方法を確立したのである。
Therefore, the inventors conducted various studies to stabilize the arc in gas shield welding of HIC-resistant steel, and found that
He discovered the special relationship that exists between and ■, and at the same time established a method to make ■ possible.

発明者らは、耐量C鋼のガスシールドアーク特性につい
て検討した結果、鋼板中のRB及び/又はCa添加量と
溶接作業性の間に以下の関係があることを見出した。
As a result of studying the gas-shielded arc characteristics of C steel, the inventors found that there is the following relationship between the amount of RB and/or Ca added to the steel sheet and welding workability.

1) シールドガス組成がCD。100%の場合、鋼中
RE。
1) Shield gas composition is CD. If 100%, RE in steel.

Caの影響は次式で示すRE、 Caの成分パラメータ
(A)に従って相加的であり、かつパラメータ(A)の
値が0.10以上になるとアークが乱れて著しく溶接が
不安定になる。
The influence of Ca is additive according to the RE and Ca component parameter (A) shown by the following equation, and when the value of parameter (A) exceeds 0.10, the arc is disturbed and welding becomes extremely unstable.

(A) = (〔RB) 10.14) + ((Ca
ll 10.04)式中〔〕は表示成分含有量(wt%
) 2) 溶接不安定現象は、溶滴移行形態によってもその
様相が異なり、次にあげる直流逆極性の場合 とくに溶接電流Iが約230Aをこえ600Aまでのい
わゆるグロビュラー移行領域ではスパッタロスが異常発
生する。
(A) = ([RB) 10.14) + ((Ca
ll 10.04) In the formula, [] is the indicated component content (wt%
) 2) The welding instability phenomenon differs depending on the form of droplet transfer, and in the case of DC reverse polarity described below, abnormal spatter loss occurs especially in the so-called globular transfer region where the welding current I exceeds about 230A and reaches 600A. do.

上記のようにパラメータ(A)が0.10以上の場合に
形成されるRB酸化物、Ca酸化物又はRE−Ca複合
酸化物から激しくアークが発生することに加え、溶接ワ
イヤ中のTi含有量が0. Q3wt%に満たない場合
は、Tiによる脱酸不足の傾向が相乗して溶滴の不規則
移行とCOガス気泡の爆発を起こすためである。
In addition to intense arc generation from the RB oxide, Ca oxide, or RE-Ca composite oxide that is formed when parameter (A) is 0.10 or more as described above, the Ti content in the welding wire is 0. This is because if it is less than Q3wt%, the tendency of insufficient deoxidation by Ti will combine to cause irregular migration of droplets and explosion of CO gas bubbles.

従ってこのような、いわばアーク不安定性の原因はいず
れも鋼板中のRB及び/又はCaの含有量が止揚数式で
示すパラメータで(A) ≧0.10となり、かつシー
ルドガスがC02を主体とする酸化性雰囲気であること
と、ワイヤ中のTi量との総合的な効果が何れもスムー
ズな溶滴のグロビュラー移行をもたらすべきアーク安定
化に関し重要なポイントとなっている。
Therefore, the cause of such so-called arc instability is that the content of RB and/or Ca in the steel plate is (A) ≧0.10 in the parameter expressed by the final formula, and the shielding gas is mainly composed of C02. The overall effects of the oxidizing atmosphere and the amount of Ti in the wire are important points regarding arc stabilization, which should result in smooth globular transfer of droplets.

第1図は、グロビュラー移行領域におけるパラメータ(
^)、スパッタロス、シールドガス組成およびワイヤ中
のTi量の影響を総合的に示すように、シールドガス組
成がCO2100VO1%で、かつワイヤ中のTiがO
,Q3wt%に満たない場合(■)には、とくにパラメ
ータ(A)が0.10以上でスパッタロス発生量は約4
%から11%へと急増している。
Figure 1 shows the parameters (
^), to comprehensively show the effects of sputter loss, shielding gas composition, and Ti content in the wire, the shielding gas composition is CO2100VO1% and the Ti in the wire is O.
, Q3wt% (■), especially when parameter (A) is 0.10 or more, the amount of sputter loss is approximately 4
% to 11%.

これらの溶接不安定の防止対策を検討した結果の事例を
、あわせ第2図に示すとおり溶接ワイヤ中のTiをと(
に0.03wt%以上として必要な脱酸効果を生じさせ
ると同時に、過剰Tiはグロビュラー移行域においても
アーク不安定をもたらすので0.20wt%に抑える(
ム、)ことによりスパッタロスが著しく低減される。な
お(ム)はシールドガス中の不活性ガス混合量を2QV
O1% 以上とした場合、また(◎)はこれらを併用し
た結果も参考に示した。
Examples of the results of examining measures to prevent these welding instability are shown in Figure 2, which shows how Ti in the welding wire (
At the same time, excessive Ti causes arc instability even in the globular transition region, so it is suppressed to 0.20 wt% (
) Sputter loss is significantly reduced. Note that (mu) is the amount of inert gas mixed in the shielding gas by 2QV.
When the O content was 1% or more, (◎) also shows the results of using these in combination for reference.

以下具体的実施例を記す。Specific examples will be described below.

実施例 表1の溶接材料を用いて表2の条件で溶接を行いアーク
安定性を調べた。
EXAMPLE Welding was performed using the welding materials shown in Table 1 under the conditions shown in Table 2, and the arc stability was investigated.

表  2 グロビニラー移行領域のI =340Aにおいてスパッ
タロスの発生状況を調べたが、ここにスパッタロス(%
)は、スパッタ(g)÷ワイヤ消費量(g)xlOOで
算出した。
Table 2 We investigated the occurrence of sputter loss at I = 340A in the globiniller transition region, and here the sputter loss (%
) was calculated by sputter (g) ÷ wire consumption (g) x lOO.

表2において従来のガスシールドアーク溶接法に従う比
較例■、■では、鋼板W(パラメータ(A):Q、09
)  に対し、CO2100VO1%でTi <O1Q
3wt%またTi>0.20wt%の各溶接ワイヤ八、
Dで溶接を行った結果を示し、前者では(A) <0.
1のためスパッタロスは問題とならないが、後者でワイ
ヤの過剰Tiのために(A) <0.1でもグロビ二う
−移行域でのアークが不安定となりスパッタが著増して
いる。
In Table 2, in comparative examples ■ and ■ according to the conventional gas shielded arc welding method, steel plate W (parameter (A): Q, 09
), Ti <O1Q at CO2100VO1%
3wt% and Ti>0.20wt% of each welding wire8,
D shows the results of welding, and in the former case (A) <0.
1, so sputter loss is not a problem, but in the latter case, due to excess Ti in the wire, even if (A) < 0.1, the arc in the globin-to-globin transition region becomes unstable and spatter increases significantly.

次に鋼板X(パラメータ(A) :Q、14) に対し
、同一シールドガス、同一ワイヤでは、比較例■、■の
何れでも著しいスパッタロスが発生した。
Next, with respect to steel plate X (parameter (A): Q, 14), significant sputter loss occurred in both Comparative Examples (■) and (■) using the same shielding gas and the same wire.

これに反しこの発明に従う適合例■、■は、CO210
0vo1%のシールドガスを用い、溶接ワイヤとしてT
1含有量を0. Q3wt%と0.20wt%としたの
で(A)<0.1の鋼板WにCO2100VO1%のシ
ールドガスを適用した場合と同程度にスパッタロスは改
善される結果が得られている。なおグロビュラー移行域
での短絡回数は、全体に低値であるが、溶接目的の上か
らは何ら問題ではない。
On the contrary, conforming examples ■ and ■ according to this invention are CO210
Using 0vo1% shielding gas, T as welding wire
1 content to 0. Since Q3wt% and 0.20wt% were used, the sputter loss was improved to the same extent as when a shielding gas of CO2100VO1% was applied to the steel plate W with (A) <0.1. Although the number of short circuits in the globular transition region is generally low, it is not a problem from the viewpoint of welding purposes.

以上のべたところのほか溶接電流が60OAをこえると
グロビュラー移行は困難となる。
In addition to the points mentioned above, when the welding current exceeds 60OA, globular transition becomes difficult.

この発明は、今後益々その用途を拡大すると思われるR
E、 Cai加の耐量C銅板において、従来はアーク不
安定に基因して不可能とされていたガスシールドアーク
溶接法を可能にするものであり、鋼管の自動円周溶接、
海洋構造物などへの水沢な適用が期待される。
This invention is expected to further expand its applications in the future.
It enables gas-shielded arc welding, which was previously considered impossible due to arc instability, on C copper plates with E and Cai additions, and is capable of automatic circumferential welding of steel pipes.
It is expected that it will be widely applied to offshore structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、パラメータい)とスパッタロスとの関係を示
したグラフである。 特許出願人  川崎製鉄株式会社
FIG. 1 is a graph showing the relationship between the parameter (i) and sputter loss. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1、水素誘起われ抑止成分として希土類元素及び/又は
カルシウムを、それら成分量に応じる下記式に従うパラ
メータ(A)の値が0.10以上となる量で含有する耐
水素誘起われ鋼を溶接母材として、溶接電流230Aを
こえ600Aまでの直流逆極性で炭酸ガスを用いシール
ドガス溶接する際、溶接ワイヤとして、そのチタン含有
量が0.03〜0.20wt%のものを選択するグロビ
ュラー移行領域アーク安定化手段を適用することを特徴
とする耐水素誘起われ鋼のガスシールドアーク溶接法。 記 (A)=(〔RE〕/0.14)+(〔Ca〕/0.0
4) 式中〔 〕は表示成分含有量(wt%)
[Scope of Claims] 1. Hydrogen-resistant induction containing rare earth elements and/or calcium as hydrogen-induced inhibiting components in an amount such that the value of parameter (A) according to the following formula according to the amount of these components is 0.10 or more When shield gas welding is performed using carbon dioxide gas at a direct current reverse polarity at a welding current of more than 230 A up to 600 A using steel as the welding base material, use a welding wire with a titanium content of 0.03 to 0.20 wt%. Gas-shielded arc welding process for hydrogen-resistant induced steels, characterized by the application of selected globular transition zone arc stabilization means. (A)=([RE]/0.14)+([Ca]/0.0
4) In the formula, [ ] is the indicated component content (wt%)
JP12209188A 1988-05-20 1988-05-20 Gas shielded arc welding method for hydrogen-induced cracking resistant steel Granted JPH02147170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12209188A JPH02147170A (en) 1988-05-20 1988-05-20 Gas shielded arc welding method for hydrogen-induced cracking resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12209188A JPH02147170A (en) 1988-05-20 1988-05-20 Gas shielded arc welding method for hydrogen-induced cracking resistant steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18675887A Division JPS6349375A (en) 1987-07-28 1987-07-28 Gas shielding arc welding method for hydrogen induced cracking resisting steel

Publications (2)

Publication Number Publication Date
JPH02147170A true JPH02147170A (en) 1990-06-06
JPH0355231B2 JPH0355231B2 (en) 1991-08-22

Family

ID=14827430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12209188A Granted JPH02147170A (en) 1988-05-20 1988-05-20 Gas shielded arc welding method for hydrogen-induced cracking resistant steel

Country Status (1)

Country Link
JP (1) JPH02147170A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178750A (en) * 1974-12-28 1976-07-08 Kobe Steel Ltd AAKUYO SETSUYOWAIYA
JPS5425215A (en) * 1977-07-28 1979-02-26 Sumitomo Metal Ind Ltd Method of producing steel plate excellent in anti-hydrogen sulfide cracking property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178750A (en) * 1974-12-28 1976-07-08 Kobe Steel Ltd AAKUYO SETSUYOWAIYA
JPS5425215A (en) * 1977-07-28 1979-02-26 Sumitomo Metal Ind Ltd Method of producing steel plate excellent in anti-hydrogen sulfide cracking property

Also Published As

Publication number Publication date
JPH0355231B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
EP1108495B1 (en) Welding material and a method of producing welded joint
WO2018203513A1 (en) Arc welding method and welding wire
KR20150101469A (en) Coated electrode
JP2011056539A (en) Welding solid wire and weld metal
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
JP3433891B2 (en) Gas shielded arc welding wire for P-added sheet steel and MAG welding method
GB2259040A (en) Pipe welding process and electrode therefor
JPS62183994A (en) Wire for gas shielded arc welding of stainless steel
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JP2711130B2 (en) Gas shielded arc welding wire
JP2002079395A (en) Wire for gas shielded arc welding
JPH02147170A (en) Gas shielded arc welding method for hydrogen-induced cracking resistant steel
JPH08132238A (en) Welding method of high cr steel
JP2711071B2 (en) Bond flux for submerged arc welding
JPH0146231B2 (en)
JPH07100688A (en) Tig welding wire for high-strength cr-mo steel
JP2004230392A (en) Welding material for martensitic stainless steel pipe and welding method therefor
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JP3208556B2 (en) Flux-cored wire for arc welding
JP3718323B2 (en) Flux-cored wire for multi-electrode vertical electrogas arc welding for extra heavy steel
JP2004181527A (en) Wire for mig welding of martensitic stainless steel pipe and welding method for the same pipe
JPS6349375A (en) Gas shielding arc welding method for hydrogen induced cracking resisting steel
JPS62197294A (en) Mig arc welding wire for austenitic stainless steel
JPH06690A (en) Austenitic stainless steel wire for mig welding