JPH02145490A - Production of high-strength heat-insulation material - Google Patents

Production of high-strength heat-insulation material

Info

Publication number
JPH02145490A
JPH02145490A JP29597588A JP29597588A JPH02145490A JP H02145490 A JPH02145490 A JP H02145490A JP 29597588 A JP29597588 A JP 29597588A JP 29597588 A JP29597588 A JP 29597588A JP H02145490 A JPH02145490 A JP H02145490A
Authority
JP
Japan
Prior art keywords
fibers
cement
strength
water
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29597588A
Other languages
Japanese (ja)
Other versions
JPH0633186B2 (en
Inventor
Yuzo Sugawara
菅原 佑三
Toshishige Araki
敏成 荒木
Shiro Kikuchi
菊池 四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Tokyo Gas Co Ltd
Original Assignee
Nichias Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp, Tokyo Gas Co Ltd filed Critical Nichias Corp
Priority to JP29597588A priority Critical patent/JPH0633186B2/en
Publication of JPH02145490A publication Critical patent/JPH02145490A/en
Publication of JPH0633186B2 publication Critical patent/JPH0633186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Abstract

PURPOSE:To attain satisfactory workability as well as strength in the production of a high-strength heat-insulation material using a prepacked process by selecting the dimension of fibers in such a manner as to give a specific water/cement ratio. CONSTITUTION:A high-strength heat-insulation material is produced by preparatorily mixing a light-weight aggregate (e.g., obsidian particles having diameter of 0.6-1.2mm) with fibers such as glass fiber, filling the mixture into a mold and pouring a mixture of cement, water and a cement admixture or cement, water and a polymer emulsion into the mold, thereby impregnating the mixture between the light-weight aggregate and the fiber. The water/cement ratio is adjusted to <=0.7 in the case of a cement-water-cement admixture system or <=0.8 in the case of cement-water-polymer emulsion system by properly selecting the dimensions of the fibers.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプレペクト法による高強度断熱材の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a high-strength heat insulating material by the pre-pect method.

(従来技術) 従来、軽量コンクリートを製造する方法として、軽量骨
材を水、セメントとともに混練した後型枠内に打込んで
製造する混練法か知られている。この製法では軽量骨材
か混練中に破損したり、打込み後分離したりして所望の
強度や断熱性能が得られないという欠点かあるため、プ
レバクト法と呼ばれる製法が開発された。
(Prior Art) Conventionally, as a method for manufacturing lightweight concrete, a kneading method has been known in which lightweight aggregate is mixed with water and cement, and then poured into formwork. This manufacturing method has the drawback that the lightweight aggregate may break during kneading or separate after placement, making it impossible to obtain the desired strength and insulation performance, so a manufacturing method called the prevact method was developed.

プレバクト法とは、型枠や施行箇所に予め軽量骨材を充
填しておき、その間隙にモルタルを注入し硬化させて軽
量コンクリートを製造する方法である(たとえば昭和4
0年lO月株式会社朝倉書店発行「コンクリート工業ハ
ンドブック」第940頁以後)。このプレペクト法によ
れば混練法よりも強度ならびに断熱性能の大きい軽量コ
ンクリートが得られるが、モルタル注入に時間がかかっ
て作業性を低下させることかないようにするために、注
入するモルタルの水/セメント比(W/C)を大きくす
る必要かある。しかしその結果として比重か小さくなり
それにともなって圧縮強度や曲げ強度が小さくなるとい
う問題がある。
The prevact method is a method of manufacturing lightweight concrete by filling the formwork or construction site with lightweight aggregate in advance, and injecting mortar into the gap and hardening it (for example,
"Concrete Industry Handbook" published by Asakura Shoten Co., Ltd., page 940 onwards). According to this pre-pect method, lightweight concrete with greater strength and insulation performance than the kneading method can be obtained, but in order to avoid reducing workability due to the time required for pouring mortar, the water/cement of the mortar to be injected is Is it necessary to increase the ratio (W/C)? However, as a result, there is a problem in that the specific gravity decreases and the compressive strength and bending strength decrease accordingly.

一方、材料の強度を改善するために、鋼やガラスの短繊
維を添加した繊維強化コンクリートまたはセメントが知
られている。これらの短繊維のうち鋼繊維は長さか20
〜60ts、直径が0.2〜0.61■のものが、また
ガラス繊維は長さが10〜40+I1m、直径が5〜2
0Bmのものが用いられている。繊維と結合材との混合
にはミキサーによる機械的混合のほかに、繊維と結合材
を型枠に直接吹き付けるスプレー成形などが用いらる。
On the other hand, fiber-reinforced concrete or cement is known in which short fibers of steel or glass are added to improve the strength of the material. Among these short fibers, steel fibers have a length of about 20
~60ts, diameter 0.2~0.61cm, and glass fiber length 10~40+I1m, diameter 5~2
0Bm is used. In addition to mechanical mixing using a mixer, methods such as spray molding, in which the fibers and binder are directly sprayed onto a mold, are used to mix the fibers and binder.

そこでブレパット法と繊維強化の双方の利点を活かそう
としてセメントペースト中に繊維強化のためのガラス繊
維を予め分散混合すると注入剤の粘度が高くなって注入
の作業性か著しく低下し、注入の作業性を向上するため
に水(W)とセメント(C)とのW/C比を大きくとる
と複合材の強度か低下してしまうといった問題か生ずる
Therefore, in an attempt to take advantage of both the Brepat method and fiber reinforcement, when glass fibers for fiber reinforcement are mixed and dispersed in the cement paste in advance, the viscosity of the injection agent becomes high and the workability of injection decreases significantly. If the W/C ratio of water (W) and cement (C) is increased in order to improve the properties, a problem arises in that the strength of the composite material decreases.

(発明の目的および構成) 本発明は上記の点にかんがみてなされたもので、作業性
と強度のいずれをも犠牲にせずに高強度の断熱材を製造
することを目的とし、そのためにセメント系注入剤を用
いる場合はW/C比が0.7以下となるように、またポ
リマーエマルジョン系注入剤を用いる場合はW/C比か
0.8以下となるように繊維寸法を選ぶようにしたもの
で、このようにして選んだ寸法の繊維を計量骨材と予め
均一に混合しくトライブレンド)て型枠に充填しておき
、その後注入剤を型枠内に注入する。トライブレンド法
の可否を決めるのは繊維の分散状態や骨材充填層の注入
抵抗に影響を及ぼす繊維寸法である。ポリマーコンクリ
ート系注入剤を使用する場合は、W/Cか0.8以下に
なるようなトライブレンドまたはウェットブレンドのい
ずれも可能である。これは繊維の混入による粘度の増大
がセメント系の場合はど顕著てないからである。
(Object and Structure of the Invention) The present invention has been made in view of the above points, and aims to manufacture a high-strength heat insulating material without sacrificing either workability or strength. When using an injection agent, the fiber dimensions were selected so that the W/C ratio was 0.7 or less, and when using a polymer emulsion type injection agent, the W/C ratio was 0.8 or less. The fibers having the dimensions thus selected are uniformly mixed with the weighed aggregate in advance (tri-blend) and filled into the mold, and then the injection agent is injected into the mold. The feasibility of the tri-blend method is determined by the fiber size, which affects the dispersion state of the fibers and the injection resistance of the aggregate packed bed. When using a polymer concrete type pouring agent, either a tri-blend or a wet blend with a W/C of 0.8 or less is possible. This is because the increase in viscosity due to the inclusion of fibers is not as noticeable in cement-based materials.

(実施例) 以下本発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.

第1図は本発明方法により高強度断熱材を製造する装置
の概略線図である。
FIG. 1 is a schematic diagram of an apparatus for manufacturing a high-strength heat insulating material by the method of the present invention.

図において、lは軽量材および繊維を予め充填しておく
型枠であり、この型枠lの上部には開口2aを設けた蓋
2が設けられ、内部には上下に金網3.4が設けられ、
この間に軽量材と繊維の混合層5が充填される。
In the figure, l is a formwork filled with lightweight materials and fibers in advance, and a lid 2 with an opening 2a is provided at the top of this formwork l, and wire meshes 3.4 are provided above and below inside the formwork l. is,
During this time, a mixed layer 5 of lightweight material and fibers is filled.

型枠2の底部中央には注入管6の一端が結合され、その
他端にピストン7を有する円筒型容器8が結合され、容
器8の内部にはセメント系またはポリマーエマルジョン
系の注入剤9を入れておく。本発明で製造される軽量コ
ンクリートに用いられる軽量骨材としては人工軽量骨材
(膨張パーライト、膨張けつ岩、フライアッシュなど)
や天然軽量骨材(火山れきおよびその加工品)などが用
いられ、繊維としてはガラス繊維、多結晶繊維、金属繊
維、ウィスカー、化学繊維などが用いられる。
One end of an injection pipe 6 is connected to the center of the bottom of the formwork 2, and a cylindrical container 8 having a piston 7 is connected to the other end, and a cement-based or polymer emulsion-based injection agent 9 is placed inside the container 8. I'll keep it. Artificial lightweight aggregates (expanded perlite, expanded shale rock, fly ash, etc.) are examples of lightweight aggregates used in the lightweight concrete produced by the present invention.
and natural lightweight aggregates (volcanic rubble and its processed products) are used, and the fibers used include glass fibers, polycrystalline fibers, metal fibers, whiskers, and chemical fibers.

次に本発明による製造方法を説明する。Next, the manufacturing method according to the present invention will be explained.

上に例示したような軽量骨材と繊維とを予め均一に混合
しておき(ウェットブレンドの場合は軽量骨材のみ)、
型枠1の上部の蓋2を外して型枠l内の金網3.4の間
に充填する。軽量材としてたとえば粒径が0.6〜1.
2m鵬の黒耀石粒子を用い、単位容積当りの重量がたと
えば0.2kg/lとなるような密度でガラス繊維と混
合して型枠l内に充填する。
Lightweight aggregates and fibers such as those exemplified above are mixed uniformly in advance (in the case of wet blending, only lightweight aggregates are used),
The lid 2 at the top of the formwork 1 is removed and the space between the wire meshes 3 and 4 in the formwork l is filled. As a lightweight material, for example, a particle size of 0.6 to 1.
Using 2 m of helium particles, they are mixed with glass fibers at a density such that the weight per unit volume is, for example, 0.2 kg/l, and filled into a mold.

注入剤は予めセメント、水、混和剤(ウェットブレンド
の場合はさらに繊維)を正確に計量し、攪拌して生成し
、円筒型容器8に移しておき、ピストン7を矢印方向に
押してたとえば0.6kg/c112の圧力で注入剤9
を注入管6を通して注入口6aから型枠l内に圧入する
。この場合、水とセメントとの混合比(W/C比)が作
業性を決定する重要なファクタであり、W/C比が小さ
いと圧入に大きな力を必要とし時間がかかって作業性が
悪くなり、大きいと作業性はよくなるが後の強度低下や
コンクリート腐蝕の原因となる。そこでこのW/C比は
実用上セメント系の注入剤の場合は0.7以下、ポリマ
ーエマルジョン系の注入剤の場合は0.8以下であるこ
とが好ましい。
The injection agent is prepared in advance by accurately measuring and stirring cement, water, and admixture (and fibers in the case of a wet blend), and then transferred to a cylindrical container 8. The piston 7 is pushed in the direction of the arrow to, for example, 0. Injection agent 9 at a pressure of 6 kg/c112
is press-fitted into the mold l through the injection pipe 6 and from the injection port 6a. In this case, the mixing ratio of water and cement (W/C ratio) is an important factor that determines workability; if the W/C ratio is small, press-fitting requires a large force and takes time, resulting in poor workability. If the diameter is large, workability will be improved, but it will cause a decrease in strength later and corrosion of the concrete. Therefore, in practice, this W/C ratio is preferably 0.7 or less in the case of a cement-based injection agent, and 0.8 or less in the case of a polymer emulsion-based injection agent.

注入剤は型枠l内で下部より均一に上昇していき、混合
層5の内部の空気は蓋2の開口2aから外に逃げる。注
入剤が混合層5に十分に浸透した後注入口6aを閉じて
注入をやめ25℃で硬化させる。2日後に離型し、25
°Cの雰囲気中で養生すると断熱材ができ上る。
The injection agent rises uniformly from the bottom inside the mold 1, and the air inside the mixed layer 5 escapes to the outside through the opening 2a of the lid 2. After the injection agent has sufficiently penetrated into the mixed layer 5, the injection port 6a is closed to stop injection and the mixture is cured at 25°C. Released after 2 days, 25
When cured in an atmosphere of °C, a heat insulating material is completed.

次に本発明者らは本発明による製造方法により不燃性お
よび難燃性の高強度断熱材の製造実験大行った。
Next, the present inventors conducted a large-scale experiment to produce a non-combustible and flame-retardant high-strength heat insulating material using the production method according to the present invention.

実験には、軽量材をして平均粒径1mmの黒耀石粒子を
、また補強材としての繊維には各橋長さおよび径のガラ
ス繊維などを用い、これらを予め均一に混合して(ウェ
ットブレンドの場合、軽量材のみを)第1図の型枠内に
充填しておく。
For the experiment, we used heliumite particles with an average particle size of 1 mm as a lightweight material, and glass fibers of various bridge lengths and diameters as reinforcing materials, and these were mixed uniformly in advance ( In the case of wet blending, fill only the lightweight material into the formwork shown in Figure 1.

実−1(不燃性高強度断熱材) 注入剤として、セメント(C)と水(W)とを混合し混
和剤(ナフタレンスルホン酸系またはりグニンズルホン
酸系)を添加したものを用い、補強材としての繊維を8
体積%の割合で黒耀石粒子に混合した。繊維としては長
さ文と直径dと変えた3種類を用い、繊維を用いない場
合と比較してW/C比、比重(数値は気乾値で、絶乾値
は()を付して示しである)、圧縮強度、曲げ強度、引
張強度を測定した。実験の結果を別掲の表−1に示す。
Example-1 (Non-combustible high-strength insulation material) As an injection agent, cement (C) and water (W) are mixed and an admixture (naphthalene sulfonic acid type or arginine sulfonic acid type) is added, and a reinforcing material is used. fiber as 8
It was mixed into the heliumite particles at a volume percent ratio. Three types of fibers were used with different lengths and diameters d, and the W/C ratio and specific gravity were compared to when no fibers were used.The values are air-dried values, and bone-dry values are shown in parentheses. ), compressive strength, bending strength, and tensile strength were measured. The results of the experiment are shown in Table 1 below.

実験結果かられかるように、作業性の観点からW/C比
を0.7以下で考えると、実験番号崩。
As can be seen from the experimental results, if the W/C ratio is set to 0.7 or less from the viewpoint of workability, the experimental number collapses.

4において圧縮強度と特に曲げ強度、引張強度のすぐれ
た軽量コンクリートが得られた。
In Example 4, a lightweight concrete with excellent compressive strength, particularly flexural strength, and tensile strength was obtained.

トライブレンド法とプレペクト法とを組合せる場合、ト
ライブレンドの可否を決める重要な因子は軽量骨材の寸
法に対する繊維の長さおよび径であり、繊維の寸法か適
正な範囲より著しく小さいと繊維か凝集して分散せず、
逆に大きいとトライブレンドは−・応可能であるが均−
且つ高密度な分散か困難で補強の用をなさない。また、
混入繊維が微細である場合、充填層の注入抵抗が大きく
なり注入剤のW/C比を上げ注入剤の粘度を低下させる
必要が生じ、製造されるコンクリートの強度を著しく低
下させることになる。
When combining the tri-blend method and the prepect method, the important factors that determine whether or not tri-blend can be used are the length and diameter of the fibers relative to the dimensions of the lightweight aggregate.If the fiber dimensions are significantly smaller than the appropriate range, the fibers may be Does not aggregate and disperse,
On the other hand, if it is large, tri-blend can be applied, but it is not uniform.
In addition, it is difficult to disperse the material in a high density, making it useless for reinforcement. Also,
If the mixed fibers are fine, the injection resistance of the packed bed will increase, making it necessary to increase the W/C ratio of the injection agent and lowering the viscosity of the injection agent, which will significantly reduce the strength of the manufactured concrete.

表−1はトライブレンドが可能となる補強繊維の適正な
寸法範囲を見いだすために行った実験の代表例を示すも
のである。実験番号陽、2は繊維長が大きいために繊維
の分散状態が好ましくなく補強効果があまり現われない
例、実験番号陥、3は逆に繊維が短くて注入剤のW/C
比を上げざるを得す、その結果、強度が逆に低下した例
である。実験番号陽、4は崩、2と崩、3の中間の繊維
長を選んだもので、上述したようにすぐれた圧縮強度と
曲げ強度が得られている。これらの性能の比較基準であ
るflkl、 1は補強材である繊維を混入しない軽量
骨材と結合剤のみから成るプレペクト法による軽量コン
クリートてあり、W/C比が低いことにより高い強度が
得られている。これに繊維を混入することで、軽量性、
断熱性を極力損なわずに強度の向上が得られればトライ
ブレンド法の目的は達せられるわけであるか、崩、4を
Nb、 1と比較すると圧縮強度に若干の低下こそみと
められるものの、曲げ、引張り強度ともに著しく向上し
ているのかわかる。同様の製法において繊維を増量した
り繊維長を大にしても強度の向上はみとめられなかった
Table 1 shows a representative example of experiments conducted to find the appropriate size range of reinforcing fibers that would enable tri-blending. Experiment No. 2 is an example where the fiber length is long and the dispersion state of the fibers is unfavorable and the reinforcing effect does not appear much. Experiment No. 3 is an example where the fibers are short and the injection agent W/C.
This is an example where the ratio had to be increased, but as a result, the strength actually decreased. Experiment No. 4 had a fiber length intermediate between F.2 and F.3, and as mentioned above, excellent compressive strength and bending strength were obtained. Flkl 1, which is a standard for comparing these performances, is lightweight concrete made by the prepect method, which is made only of lightweight aggregate and binder without mixing reinforcing fibers, and has high strength due to the low W/C ratio. ing. By mixing fibers into this, lightweight,
The purpose of the triblend method can be achieved if strength can be improved without compromising thermal insulation as much as possible.Although a slight decrease in compressive strength is observed when comparing 4 with Nb and 1, bending and It can be seen that both tensile strength has significantly improved. In a similar manufacturing method, no improvement in strength was observed even when the amount of fibers was increased or the fiber length was increased.

実 験 2(難燃性高強度断熱材) 注入剤として、混和剤は用いずにアクリル系エマルジョ
ンおよびエポキシ系エマルジョンをそれぞれ別個に用い
て、セメント(C)と水(W)とを混合したものを用い
、補強材としての繊維は注入の作業性を損なわない程度
の充分細かいウィスカー(平均径0.4μm、平均長1
5ILm)を用い、実験1と同様に繊維を用いない場合
と比較して同様の性能測定をした。実験結果を別掲の表
−2に示す。
Experiment 2 (Flame retardant high strength insulation material) Cement (C) and water (W) were mixed using acrylic emulsion and epoxy emulsion separately as fillers without using any admixtures. The fibers used as reinforcing materials were sufficiently fine whiskers (average diameter 0.4 μm, average length 1
5ILm), and the same performance measurements as in Experiment 1 were made in comparison with the case where no fiber was used. The experimental results are shown in Table 2 below.

実験結果かられかるように、エポキシ系エマルジョンを
用いた注入剤で製造した軽量コンクリ−トはアクリル系
エマルジョンを用いた注入剤で製造した軽量コンクリー
トより強度の点では劣るが、いずれの場合でも作業性を
何ら低下させない0.8以下のW/C比で補強材を用い
ないものに比べて、高い圧縮強度の軽量コンクリートか
得られた。
As can be seen from the experimental results, lightweight concrete made with an epoxy emulsion injection agent is inferior to lightweight concrete made with an acrylic emulsion injection agent in terms of strength, but in either case, it is easy to work. With a W/C ratio of 0.8 or less, which does not cause any decrease in strength, lightweight concrete with a higher compressive strength was obtained than that without using any reinforcing material.

以上、セメント系注入剤とポリマーエマルジョン系注入
剤を用いて軽量コンクリートを製造した実験結果を例示
したが、本発明により製造したセメント系軽量コンクリ
ートは軽量性に優れるとともに従来の単に気泡を強制的
に導入した軽量材に比べて遥かに強度が大きく、且つウ
レタン等一般に断熱性に優れる高分子材料の持つ耐燃焼
性、コスト、耐候性などの問題点がない。
Above, we have illustrated the experimental results of producing lightweight concrete using a cement-based injection agent and a polymer emulsion-based injection agent.The cement-based lightweight concrete manufactured according to the present invention has excellent lightness and does not require the conventional simple method of forcibly removing air bubbles. It has much greater strength than the lightweight materials introduced, and does not have the problems of flame resistance, cost, weather resistance, etc. of polymeric materials that generally have excellent heat insulation properties, such as urethane.

次に、プレペクト法の特徴である型枠により複雑な形状
物を成型し得る点を活かして本発明により配管用の断熱
枕を製造する実験例を説明する。
Next, an experimental example will be described in which a heat insulating pillow for piping is manufactured according to the present invention by taking advantage of the feature of the prepect method, which is that complex shapes can be molded using a mold.

実−」1−1 この実験では、第2図に示すような架工lOの上に配置
される配管11のための断熱枕12を本発明により製造
した。13は配管11を包む断熱材である。
Actual Example 1-1 In this experiment, a heat insulating pillow 12 for a pipe 11 placed on a construction lO as shown in FIG. 2 was manufactured according to the present invention. 13 is a heat insulating material surrounding the pipe 11.

第3図に示すような金属製箱形型枠14の上部に空気孔
15aを有する蓋型枠15を止めねし16などで固定し
、底面は型枠を兼ねたスライドベース17で構成する。
A lid form 15 having air holes 15a is fixed to the upper part of a metal box form 14 as shown in FIG. 3 with set screws 16, and the bottom surface is constituted by a slide base 17 which also serves as the form.

スライドベース17の底板には多数の孔17aがあけて
あり、周囲の垂直壁には内側に向けて固定用ピン18が
水平に植込まれている。この型枠の下部に充填室19を
配置し型枠14と固定具20て固定する。充填室19の
側壁には何本かの注入管21が設けられている。
A number of holes 17a are bored in the bottom plate of the slide base 17, and fixing pins 18 are horizontally implanted inward in the surrounding vertical wall. A filling chamber 19 is arranged in the lower part of this formwork, and is fixed to the formwork 14 with a fixture 20. Several injection pipes 21 are provided on the side wall of the filling chamber 19.

さて、型枠内に軽量骨材と補強材としてのガラス繊維(
長さか31、直径かlo ILm)とを予め混合して(
トライブレンド)充填しておき、W/C比が0.7のセ
メント系注入剤を注入圧力0.6kg/am”の条件で
注入ポンプを用いて注入管20から充填室19内に圧入
する。注入剤はスライドベース17の孔17aから型枠
内に侵入し、軽量骨材とガラス繊維との間に浸透してい
く。この間型枠内の空気は蓋型枠15に設けられて空気
孔15aから逃げていく。
Now, inside the formwork there is a lightweight aggregate and glass fiber as a reinforcing material (
(length: 31, diameter: lo ILm) and (
A cement-based injection agent having a W/C ratio of 0.7 is injected into the filling chamber 19 from the injection pipe 20 using an injection pump at an injection pressure of 0.6 kg/am''. The injection agent enters the formwork through the holes 17a of the slide base 17 and permeates between the lightweight aggregate and the glass fibers.During this time, the air in the formwork is released through the air holes 15a provided in the lid formwork 15. running away from

2日後に充填室19と型枠14および15を離型し、空
気中で養生した。その結果、スライドベース17がピン
18を介して繊維補強骨材と一体化されて第4図に示す
ような断熱枕12ができた。
After two days, the filling chamber 19 and the molds 14 and 15 were released and cured in the air. As a result, the slide base 17 was integrated with the fiber-reinforced aggregate via the pins 18, and a heat insulating pillow 12 as shown in FIG. 4 was completed.

こうして製造された断熱枕を従来多く用いられているポ
リウレタンなどの断熱性のすぐれた高分子材を機械的に
補強した断熱枕と比較すると、別掲の表−3に示すよう
に、比重、圧縮強度、熱伝導率のすべてにおいてすぐれ
ていることがわかり、その上コストも1/2以下と有利
になる。さらに耐火性の点でも有利である。配管用の断
熱枕は断熱性能以上に高い強度が要求されることを考え
ると、実用上の価値か大きい。
Comparing the insulating pillow manufactured in this way with the insulating pillow mechanically reinforced with a conventionally widely used polymeric material with excellent heat insulating properties such as polyurethane, the specific gravity and compressive strength are as shown in Table 3. It has been found that the thermal conductivity is excellent in all respects, and the cost is also less than 1/2, which is advantageous. Furthermore, it is advantageous in terms of fire resistance. Considering that insulation pillows for piping are required to have higher strength than insulation performance, they have great practical value.

本発明による製造方法において、軽量骨材とともに適正
な寸法範囲の繊維をトライブレンドした後結合剤の注入
を行うこと、または注入剤に予め繊維を混入するトライ
ブレンド法により注入を行うことで、−層の強度向上が
可能であることを見いだした。作業性、発現強度の面か
らもトライブレンド法の導入はブレバクト材を補強する
上で非常に有効な方法である。本実験により曲げ、引張
強度の向上が確認されたことからトライブレンド繊維補
強によるセメント系プレパクト複合材の用途は広範に亘
る。
In the manufacturing method according to the present invention, the binder is injected after tri-blending fibers in an appropriate size range with lightweight aggregate, or the injecting is carried out by a tri-blend method in which fibers are mixed in the injecting agent in advance. It has been found that it is possible to improve the strength of the layer. In terms of workability and developed strength, the introduction of the triblend method is a very effective method for reinforcing Brevact materials. This experiment confirmed improvements in bending and tensile strength, so the use of cement-based prepact composites reinforced with triblend fibers is wide-ranging.

(発明の効果) 以上説明したように、本発明においては、セメント系注
入剤を用いる場合はW/C比が0.7以下となるように
、また、ポリマーコンクリート系注入剤を用いる場合は
W/C比が0.8以下となるように寸法を選んだ繊維と
軽量骨材とを予めトライブレンドして型枠に充填してお
き、その後その型枠内にセメント系注入剤またはポリマ
ーコンクリート系注入剤を注入して軽量コンクリートを
製造するか、または、軽量骨材を予め型枠内に充填して
おき、ポリマーエマルジョン系注入剤のW/C比が0.
8以下となるように寸法を選んだ繊維をセメントと水と
注入剤とに混合して(ウェットブレンド)型枠内に注入
して軽量コンクリートを製造するようにしたので、骨材
を結合剤と分離することなく最密充填できて強度および
断熱性能のすぐれた軽量コンクリートが得られるという
プレバクト法の利点はそのまま享受でき、しかも作業性
を低下させることなくそれ以上に大きな圧縮強度や曲げ
強度か得られるという効果がある。
(Effect of the invention) As explained above, in the present invention, when using a cement-based injection agent, the W/C ratio is set to 0.7 or less, and when using a polymer concrete-based injection agent, the W/C ratio is set to 0.7 or less. A tri-blend of fibers and lightweight aggregate whose dimensions are selected so that the /C ratio is 0.8 or less is filled in a formwork, and then a cement-based injection agent or a polymer concrete-based material is poured into the formwork. Lightweight concrete can be manufactured by injecting a pouring agent, or lightweight aggregate can be filled in the formwork in advance, and the W/C ratio of the polymer emulsion type pouring agent can be set to 0.
Lightweight concrete was manufactured by mixing fibers with dimensions of 8 or less with cement, water, and an injecting agent (wet blend) and injecting them into the formwork, so that the aggregate could be used as a binder and as a binder. The advantages of the pre-vacuum method, which allows for close packing without separation and provides lightweight concrete with excellent strength and heat insulation performance, can be enjoyed as is, and in addition, greater compressive strength and bending strength can be obtained without reducing workability. It has the effect of being

本発明ては軽量骨材と繊維とを分散混合するに際して注
入剤を注入する前に予め混合するいわゆるトライブレン
ド法を採用するため、繊維長や繊維径などの寸法を適正
に選択することにより高密充填された軽量骨材間に繊維
の高密度分散が可能となる。また、トライブレンド法の
採用により注入剤に予め繊維を混入して軽量骨材の充填
層に注入するいわゆるウェットブレンド法に特有な繊維
が充填層中に侵入、分散しにくいとか、注入剤の粘度が
増して注入の作業性が低下し、その結果W/C比を大き
くしなければならないという問題をすべて解消し、繊維
補強効果による圧縮強度および曲げ強度の向上が期待て
きる。
In the present invention, when dispersing and mixing lightweight aggregate and fibers, we adopt the so-called tri-blend method in which they are mixed in advance before injecting the injection agent. Therefore, by appropriately selecting dimensions such as fiber length and fiber diameter, high density A high density distribution of fibers is possible between the filled lightweight aggregates. In addition, by adopting the tri-blend method, fibers are mixed in the filler in advance and injected into the packed layer of lightweight aggregate, which is unique to the so-called wet blend method. This solves the problem that the W/C ratio has to be increased due to an increase in injection workability, and is expected to improve compressive strength and bending strength due to the fiber reinforcement effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高強度断熱材の製造に用いる装置
の基本構成を示す概略線図、第2図は本発明の製造方法
で製造される配管用断熱枕の使用状態を示す斜視図、第
3図は第2図に示した断熱枕の製造設備を示す斜視図、
第4図は本発明の製造方法で製造された断熱枕の斜視図
である。
FIG. 1 is a schematic diagram showing the basic configuration of an apparatus used for manufacturing a high-strength heat insulating material according to the present invention, and FIG. 2 is a perspective view showing a state in which a heat insulating pillow for piping manufactured by the manufacturing method of the present invention is used. FIG. 3 is a perspective view showing the manufacturing equipment for the heat insulating pillow shown in FIG. 2;
FIG. 4 is a perspective view of a heat insulating pillow manufactured by the manufacturing method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)軽量骨材と繊維とを予め混合して型枠内に充填し
、セメント(C)と水(W)と混和剤とから成る注入剤
のW/C比が0.7以下となるように前記繊維の寸法を
定め、前記注入剤を前記型枠内に注入して軽量骨材と繊
維との間に浸透させることを特徴とする高強度断熱材の
製造方法。
(1) Lightweight aggregate and fiber are mixed in advance and filled into the formwork, so that the W/C ratio of the injection agent consisting of cement (C), water (W), and admixture is 0.7 or less. A method for manufacturing a high-strength heat insulating material, characterized in that the dimensions of the fibers are determined as follows, and the injection agent is injected into the mold to infiltrate between the lightweight aggregate and the fibers.
(2)軽量骨材と繊維とを予め混合して型枠内に充填し
、セメント(C)と水(W)とポリマーエマルジョンと
から成る注入剤のW/C比が0.8以下となるように前
記繊維の寸法を定め、前記注入剤を前記型枠内に注入し
て軽量骨材と繊維との間に浸透させることを特徴とする
高強度断熱材の製造方法。
(2) The lightweight aggregate and fibers are mixed in advance and filled into the formwork, so that the W/C ratio of the injection agent consisting of cement (C), water (W), and polymer emulsion is 0.8 or less. A method for manufacturing a high-strength heat insulating material, characterized in that the dimensions of the fibers are determined as follows, and the injection agent is injected into the mold to infiltrate between the lightweight aggregate and the fibers.
(3)計量骨材を予め型枠内に充填し、セメント(C)
と水(W)とポリマーエマルジョンと繊維とから成る注
入剤のW/C比が0.8以下となるように繊維寸法を定
め、前記注入剤を前記型枠内に注入し、計量骨材粒子間
に浸透させることを特徴とする高強度断熱材の製造方法
(3) Fill the weighed aggregate into the formwork in advance and cement (C)
The fiber dimensions are determined so that the W/C ratio of the injecting agent consisting of water (W), polymer emulsion, and fibers is 0.8 or less, and the injecting agent is injected into the mold, and the aggregate particles are measured. A method for producing a high-strength insulation material, which is characterized by infiltrating the material between the layers.
JP29597588A 1988-11-25 1988-11-25 High-strength insulation manufacturing method Expired - Lifetime JPH0633186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29597588A JPH0633186B2 (en) 1988-11-25 1988-11-25 High-strength insulation manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29597588A JPH0633186B2 (en) 1988-11-25 1988-11-25 High-strength insulation manufacturing method

Publications (2)

Publication Number Publication Date
JPH02145490A true JPH02145490A (en) 1990-06-04
JPH0633186B2 JPH0633186B2 (en) 1994-05-02

Family

ID=17827518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29597588A Expired - Lifetime JPH0633186B2 (en) 1988-11-25 1988-11-25 High-strength insulation manufacturing method

Country Status (1)

Country Link
JP (1) JPH0633186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20120115A1 (en) * 2012-03-23 2013-09-24 Eg 07 Di Greco Ercole PROCESS AND APPARATUS FOR INTERSTIAL INFILTRATION.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20120115A1 (en) * 2012-03-23 2013-09-24 Eg 07 Di Greco Ercole PROCESS AND APPARATUS FOR INTERSTIAL INFILTRATION.

Also Published As

Publication number Publication date
JPH0633186B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
EP0042935B2 (en) Shaped article and composite material and method for producing same
EP0010777B2 (en) Shaped article and composite material and method for producing same
US5234754A (en) Shaped article and composite material and method for producing same
US3979217A (en) Lightweight cellular cement compositions and methods of casting the same
US20040094863A1 (en) Composite material and shaped article with thermal conductivity and specific gravity on demand
NZ540902A (en) Cementitious products with desired porosity profile
EP0990628B1 (en) Lightweight masonry mortar
Sonebi et al. Mechanical behavior of 3D printed cement materials
WO2006123632A1 (en) Lightweight cement based hardened article reinforced with fiber
JPH0345544A (en) Concrete blend composition
US6797370B1 (en) Thin-walled component made from hydraulically hardened cement paste material and method for the production thereof
JPH02145490A (en) Production of high-strength heat-insulation material
DE2822356A1 (en) METHOD FOR MANUFACTURING A MOLDED BODY
CN104291760A (en) High-expansion cement-based composite material and preparation method thereof
CN106193431A (en) Wall board and preparation method thereof, building construction and method of construction thereof
CN115340334B (en) Fiber-reinforced foam ultra-high performance concrete material and preparation method thereof
AU2014101579A4 (en) Lightweight Building Member
CN111908861B (en) ASA plate production method
JPH063040B2 (en) Concrete structure
JPS62212275A (en) High strength lightweight concrete heat insulator and manufacture
Maulana Compressive Behavior of Jacketed Specimens and Flexural Behavior of Concrete Beam Strengthened using Sodium Silicate Mortar
FI72307B (en) FORMAT FOEREMAOL SAMT FOERFARANDE FOER FRAMSTAELLNING AV DETSAMMA
CN114753270A (en) Bridge bent cap reinforcing process
JPH08208347A (en) Building fire resistive material and fireproof construction
CN113105178A (en) Core-drawing-free and sand-free ceramsite concrete, light partition board and preparation method thereof