JPH0214520A - Treatment by plasma - Google Patents

Treatment by plasma

Info

Publication number
JPH0214520A
JPH0214520A JP14076188A JP14076188A JPH0214520A JP H0214520 A JPH0214520 A JP H0214520A JP 14076188 A JP14076188 A JP 14076188A JP 14076188 A JP14076188 A JP 14076188A JP H0214520 A JPH0214520 A JP H0214520A
Authority
JP
Japan
Prior art keywords
reaction tube
plasma
reaction
electrodes
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14076188A
Other languages
Japanese (ja)
Other versions
JP2721846B2 (en
Inventor
Susumu Tanaka
進 田中
Hiroshi Iizuka
浩 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electron Sagami Ltd
Original Assignee
Toshiba Corp
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electron Sagami Ltd filed Critical Toshiba Corp
Priority to JP63140761A priority Critical patent/JP2721846B2/en
Publication of JPH0214520A publication Critical patent/JPH0214520A/en
Application granted granted Critical
Publication of JP2721846B2 publication Critical patent/JP2721846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To transform an etching gas introduced into a reaction tube in a plasma and to quickly remove a reaction product which has adhered to an inner wall face of the reaction tube without detaching the reaction tube by a method wherein electric power is applied between a plurality of electrodes which have been installed at an outer periphery of the reaction tube and have been made of a specific material. CONSTITUTION:A lid body 15 is brought into contact with the lower end part of a reaction tube 1; the inside of the reaction tube 1 is kept in a desired low-pressure state. During this process, electrodes 8 which have already been connected to an RF power supply 11 and have been made of a material not permeated by a heavy metal in order to restrain a drop in a yield of a substrate to be treated are slid and shifted so as to be closely contacted to an outer periphery of the reaction tube 1. In such a state, an etching gas is supplied into the reaction tube 1 for a prescribed time. During this process, the inside of the reaction tube 1 is evacuated and controlled. High-frequency electric power is applied to the individual electrodes 8 from the RF power supply 11. Then, an electric charge is generated inside the reaction tube 1; the etching gas supplied into the reaction tube 1 is excited; a plasma is generated; a reaction product which has adhered to at least an inner wall face of the reaction tube 1 is removed by the plasma.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、プラズマ処理方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a plasma processing method.

(従来の技術) 反応炉例えば半導体ウェハを熱処理反応させるCVD、
拡散炉等では、プロセス中にウェハ以外の反応容器等に
反応生成物が付着し、これをそのまま放置しておくとコ
ンタミネーションの発生をまねき、半導体製品の歩留ま
りが悪化するので、定期的に反応管等を洗浄する必要が
あった。
(Prior art) Reactor, for example, CVD for heat-treating semiconductor wafers;
In diffusion furnaces, etc., reaction products adhere to reaction vessels other than wafers during the process, and if left as is, it will cause contamination and reduce the yield of semiconductor products, so the reaction products should be periodically removed. It was necessary to clean the pipes, etc.

ここで、従来の反応管の洗浄方法としては、装置より反
応管を取り外し、専用の洗浄機により弗硝酸等によりウ
ェットエツチングを行ない、純水により洗浄し、乾燥機
にいれて乾燥を行ない、反応管を装置に取り付け、取り
付は後の調整を要していた。
Here, the conventional method for cleaning the reaction tube is to remove the reaction tube from the apparatus, perform wet etching with fluoronitric acid, etc. using a special cleaning machine, wash it with pure water, dry it in a dryer, and then perform the reaction. The tube was attached to the device, and the installation required subsequent adjustment.

上記の洗浄方法によれば、特に反応管の取り付け、取り
外しに多くの時間と労力とを要し、この間は装置の稼働
を停止せざるを得ないので稼働率が極めて低かった。
According to the above-mentioned cleaning method, a lot of time and labor is required especially for attaching and detaching the reaction tube, and the operation rate of the apparatus is extremely low since the operation of the apparatus has to be stopped during this time.

このような洗浄は、プロセスの種類、ガスの流量等によ
っても相違するが、洗浄時間として最短でも1日を要し
、かつ、洗浄の頻度としては通常1回/1週であり、特
にひどい場合として、シリコン窒化囚、チオX (TE
TRAET)IOXY 5ILANE ; 5i(QC
2t(s )4 )酸化膜形成の場合には、1回/2〜
3日の洗浄頻度となっていた。このような頻度で上記反
応管の取り外し、取り付けを行なうのは、作業者にとっ
て極めて負担が大きかった。
This type of cleaning varies depending on the type of process, gas flow rate, etc., but the minimum cleaning time is one day, and the frequency of cleaning is usually once per week, and in particularly severe cases. As silicon nitride, Thio-X (TE
TRAET)IOXY 5ILANE; 5i(QC
2t(s)4) In the case of oxide film formation, 1 time/2~
The cleaning frequency was 3 days. It was extremely burdensome for the operator to remove and attach the reaction tubes with such frequency.

そこで、上記問題点を解決するための提案が、特開昭6
1−476113号公報に開示されているにの提案によ
れば、反応管に洗浄用薬品の注入口および排出口を接続
し、注入口を介して弗硝酸を反応管内に導入して所定時
間放置することで、反応管のウェットエツチングを実行
する。この後、弗硝酸を排出し、純水を注入口より導入
して洗浄を行ない、その後乾燥を実行することで、反応
管を装置より取り外さずに洗浄を行なうというものであ
る。
Therefore, a proposal to solve the above problems was made in JP-A No. 6
According to the proposal disclosed in Publication No. 1-476113, an inlet and an outlet for a cleaning chemical are connected to a reaction tube, and fluoronitric acid is introduced into the reaction tube through the inlet and left for a predetermined period of time. By doing this, wet etching of the reaction tube is performed. Thereafter, the fluoronitric acid is discharged, pure water is introduced from the injection port for cleaning, and then drying is performed, thereby cleaning the reaction tube without removing it from the apparatus.

また、上記反応管外周に設けた金属製筒状電極と、上記
反応管内に挿入した金属製電極に電力を印加し、上記反
応管内に導入したエツチングガスを上記電力によりプラ
ズマ化し、このプラズマ化した上記エツチングガスによ
り上記反応管内に付着した反応生成物を除去する技術も
開示されている。また、反応管外周に複数の金属製電極
を設けて上記と同様にエツチング除去する技術が特開昭
62−196820号公報に開示されている。
Further, electric power is applied to a metal cylindrical electrode provided on the outer periphery of the reaction tube and a metal electrode inserted into the reaction tube, and the etching gas introduced into the reaction tube is turned into plasma by the electric power. A technique has also been disclosed in which reaction products adhering to the reaction tube are removed using the etching gas. Furthermore, Japanese Patent Laid-Open No. 196820/1983 discloses a technique in which a plurality of metal electrodes are provided around the outer periphery of a reaction tube and removed by etching in the same manner as described above.

(発明が解決しようとする課題) 上述した特開昭61−1761.13号公報による洗浄
方法は、実用化が極めて困難であった。
(Problems to be Solved by the Invention) The cleaning method disclosed in Japanese Unexamined Patent Publication No. 61-1761.13 mentioned above was extremely difficult to put into practical use.

すなわち、装置に取り付けた状態でのウェットエツチン
グを実行するために、従来構成にさらに追加して、劇薬
である洗浄用液体の供給系および排出系を要し、設備が
大掛りとなり、設置スペースの増大およびコストアップ
が避けられない。また、既存の反応炉にこのような改造
を行なうことは事実上不可能である。
In other words, in order to perform wet etching while attached to the device, a supply system and a discharge system for the powerful cleaning liquid are required in addition to the conventional configuration, which increases the size of the equipment and requires less installation space. Expansion and cost increases are unavoidable. Moreover, it is virtually impossible to carry out such modifications to existing reactors.

さらに、ウェットエツチングであるが故に乾燥時間に長
時間要し、真空乾燥によって短時間化を図ろうとすれば
そのための設備も要する。
Furthermore, since wet etching is used, it takes a long time to dry, and if vacuum drying is to be used to shorten the drying time, equipment for this purpose is also required.

また、上記反応管外周に設けた金属製筒状電極と、上記
反応管内に挿入した金属製電極に電力を印加することに
よりプラズマ化したエツチングガスにより除去する技術
では、上記反応管内に電極を挿入して使用するため、こ
の電極が上記プラズマによりスパッタリングされてしま
い、上記反応管内を汚染させてしまう、そのため、上記
反応管内に挿入する電極表面を、上記スパッタリングさ
れないような材質例えば石英等で覆う必要があり。
In addition, in the technique of removing etching gas using an etching gas that is turned into plasma by applying electric power to a metal cylindrical electrode provided on the outer periphery of the reaction tube and a metal electrode inserted into the reaction tube, the electrode is inserted into the reaction tube. Since this electrode is used as a cylindrical electrode, it is sputtered by the plasma and contaminates the inside of the reaction tube.Therefore, it is necessary to cover the surface of the electrode inserted into the reaction tube with a material that will not be sputtered, such as quartz. There is.

構造が複雑でコストが高くなってしまう問題があった。There was a problem that the structure was complicated and the cost was high.

また、上記反応管の熱及びこの反応管を可熱するヒータ
ーの熱により上記各電極が加熱され、この電極が金属製
であるため、上記各1!極に含まれている重金属例えば
Na、 Ke Mg* Fe、 Cu、 Ni等が析出
され、これら重金属が上記石英製反応管を透過してこの
反応管内に進入する。この反応管内に重金属が多少でも
存在することにより、上記反応管内で処理する上記ウェ
ハに付着し、熱処理により上記ウェハ内部に拡散してし
まう、そのため。
In addition, each of the above electrodes is heated by the heat of the reaction tube and the heat of the heater that heats the reaction tube, and since these electrodes are made of metal, each of the above 1! Heavy metals contained in the electrode, such as Na, Ke Mg*Fe, Cu, and Ni, are precipitated, and these heavy metals pass through the quartz reaction tube and enter the reaction tube. If any heavy metal is present in this reaction tube, it will adhere to the wafer being processed in the reaction tube and will be diffused into the wafer during heat treatment.

上記重金属が半導体デバイスのMO8特性の劣化等の悪
影響を及ぼし、上記ウェハの歩留まりを低下させてしま
う問題点があった。
There is a problem in that the heavy metals have an adverse effect such as deterioration of the MO8 characteristics of semiconductor devices, and reduce the yield of the wafers.

本発明は上記点に対処してなされたもので、反応管等を
取り外すことなく反応生成物を除去でき。
The present invention has been made to address the above-mentioned problems, and allows reaction products to be removed without removing the reaction tube or the like.

しかも短時間で反応生成物を除去することができるプラ
ズマ処理方法を提供しようとするものである。
Furthermore, the present invention aims to provide a plasma processing method that can remove reaction products in a short time.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、処理工程により少なくとも反応管内壁面に付
着した反応生成物を除去するプラズマ処理方法において
、上記反応管外周に設けられた重金属を透過しない材質
により形成された複数の電極間に電力を印加し、この電
力により上記反応管内に導入したエツチングガスをプラ
ズマ化し、このプラズマ化したエツチングガスにより上
記反応管内壁面に付着した反応生成物を除去することを
特徴とするプラズマ処理方法を得るものである。
(Means for Solving the Problems) The present invention provides a plasma processing method for removing reaction products adhering to at least the inner wall surface of a reaction tube during a treatment step, in which a plasma treatment method is provided that is formed of a material that does not permeate heavy metals and is provided on the outer periphery of the reaction tube. The method is characterized in that electric power is applied between the plurality of electrodes, the etching gas introduced into the reaction tube is turned into plasma by this electric power, and the reaction products adhering to the inner wall surface of the reaction tube are removed by the etching gas turned into plasma. The present invention provides a plasma processing method.

(作  用) 反応管外周に設けられた重金属を透過しない材質により
形成された複数の電極間に電力を印加し、この電力によ
り上記反応管内に導入したエツチングガスをプラズマ化
し、このプラズマ化したエツチングガスにより上記反応
管内壁面tこ付着した反応生成物を除去することにより
、上記反応管外周に設けた複数の電極間でプラズマを発
生させることができるため、上記反応管内に電極を挿入
する必要はなく、この電極の挿入によるスパッタリング
汚染は発生しない。また、上記反応管外周に設ける複数
の電極を、例えば従来使用している反応管周囲に設けた
均熱管を複数分割して流用することにより、他の電極を
新たに設置する必要はなく、低コストで実現することが
できる。更に、上記複数の電極を重金属を透過しない材
質で構成、或いは重金属を透過しない材質で構成されて
いる均熱管を流用することにより、上記電極から重金属
が発生成いは電極外周に存在する重金属を透過すること
はなく、この重金属による被処理基板の歩留まりの低下
を抑止することが可能となる。
(Operation) Electric power is applied between a plurality of electrodes made of a material that does not permeate heavy metals provided around the outer periphery of the reaction tube, and the etching gas introduced into the reaction tube is turned into plasma by this electric power, and the etching gas turned into plasma is By removing reaction products adhering to the inner wall surface of the reaction tube with gas, plasma can be generated between the plurality of electrodes provided on the outer periphery of the reaction tube, so there is no need to insert electrodes into the reaction tube. Therefore, no sputtering contamination occurs due to the insertion of this electrode. In addition, by reusing the plurality of electrodes provided on the outer periphery of the reaction tube, for example, by dividing the conventionally used soaking tube provided around the reaction tube into multiple parts, there is no need to newly install other electrodes, and the cost is reduced. This can be achieved at low cost. Furthermore, by making the plurality of electrodes made of a material that does not permeate heavy metals, or by using a soaking tube made of a material that does not permeate heavy metals, heavy metals generated from the electrodes or existing around the electrodes can be reduced. The heavy metals do not pass through, making it possible to prevent a decrease in the yield of substrates to be processed due to the heavy metals.

また、上記反応管を取り外さずに反応生成物を除去する
ことができるため、上記反応生成物の除去装置を他に設
ける必要はなく、スペースを有効に活用することが可能
となる。
Further, since the reaction product can be removed without removing the reaction tube, there is no need to provide any other device for removing the reaction product, and space can be used effectively.

(実 施 例) 以下、本発明方法を半導体ウェハを複数毎同時にバッチ
処理するCVD装置に適用した一実施例につき、図面を
参照して説明する。
(Example) Hereinafter, an example in which the method of the present invention is applied to a CVD apparatus that batch-processes a plurality of semiconductor wafers at the same time will be described with reference to the drawings.

まず、CVD装置の構成を説明する。First, the configuration of the CVD apparatus will be explained.

この装置は、第1図に示すように縦型反応炉で。This equipment is a vertical reactor as shown in Figure 1.

軸方向を垂直軸とする反応管■から成る処理部■と、こ
の処理部■に設定可能な被処理基板例えば半導体ウェハ
(3)を板厚方向に複数枚例えば100〜150枚程度
所定間隔を設けて載積されたボートに)と、このボート
(イ)を、上記反応管の下方の予め定められたボート(
至)受は渡し位置■から上記反応管中にロード・アンロ
ードする搬送機構■とから構成されている。
There is a processing section (2) consisting of a reaction tube (2) whose axial direction is a vertical axis, and a plurality of substrates to be processed, such as semiconductor wafers (3), which can be set in this processing section (2), at predetermined intervals in the thickness direction. The boat (a) is placed in a predetermined boat (a) below the reaction tube.
(to) The receiver is composed of a transport mechanism (2) that loads and unloads the reaction tube from the transfer position (1) into the reaction tube.

上記処理部■には、耐熱性で処理ガスに対して反応しに
くい材質例えば石英から成る上面が封止された筒状反応
管■が設けられ、この反応管ω内に上記ボート■を設置
可能な如く、ボートに)より大口径で縦長に形成されて
いる。このような反応管■の周囲には、この反応管■内
部を所望する温度例えば700〜]、000℃に加熱可
能な加熱機構例えばコイル状のヒータ■が反応管ωと所
定の間隔を設けて巻回されている。そして、上記反応管
(ト)とヒータ■との間には、上記反応管■の外周形状
に適応させた円筒形の導電体を、所定の角度間隔を設け
て縦方向に複数分割例えば対向する如く2分割させた電
極(8)が上記ヒータ■と常に非接触状態で設けられて
いる。この電極(へ)は、導電性で上記反応管■内部の
均熱効果を有し、さらに重金属例えばNa、 K、 M
g+ Fe、 Cu、 Ni等を透過しない材質例えば
シリコンカーバイト、導電性セラミック。
The processing section (■) is equipped with a cylindrical reaction tube (■) made of a material that is heat-resistant and does not easily react with the processing gas, such as quartz, and whose upper surface is sealed, and the boat (■) described above can be installed inside this reaction tube (ω). It has a larger diameter and is elongated (like a boat). Around such reaction tube (2), a heating mechanism (2), such as a coil-shaped heater (2) capable of heating the inside of this reaction tube (2) to a desired temperature of, for example, 700 to 000°C, is provided at a predetermined distance from the reaction tube (ω). It is wrapped. Between the reaction tube (G) and the heater (2), a cylindrical conductor adapted to the outer circumferential shape of the reaction tube (2) is divided into a plurality of pieces in the vertical direction at predetermined angular intervals, for example, facing each other. An electrode (8) divided into two parts as shown in FIG. This electrode is electrically conductive and has a heat-uniforming effect inside the reaction tube, and also contains heavy metals such as Na, K, M
g+ Material that does not transmit Fe, Cu, Ni, etc. For example, silicon carbide, conductive ceramic.

グラファイト等で形成されている。そして、上記、を極
(8)には、第2図(A)(B)に示すようにバランス
トランス(9)及びマツチングボックス(10)を有し
たRFfi源(11)により、電力が供給可能とされて
いる。この電力の供給により上記対向した電極(8)間
に放電が起こり、上記反応管■内部の処理ガスを励起し
てプラズマを発生可能としている。そして、このプラズ
マの発生効率を向上させるため、上記反応管■外周に、
上記各電極(へ)を近接あるいは密着させる如く、上記
各電極(8)を横方向にスライド移動可能とし、又、上
記反応管■の交換時等において、この反応管のを所定の
位置に挿入出するため、上記反応管■と各電極(8)の
密着を解除する如く各電極■をスライド移動可能とする
ように移動機構(12)が設けられている。ここで、こ
の移動機構(12)と上記電極■との結合する結合部は
、上記RF’を源(11)との接続端子を兼ねており、
例えば移動機構(12)に設けられた上記接続端子と電
極(ハ)がスプリングワッシャ等を介してSUS製のネ
ジにより止められている。この時、上記ヒータ■の熱に
より上記結合部が加熱されると、電極■及び上記ネジの
熱膨張係数の違いから、ゆるみ等が発生するため、上記
結合部を上記ゆるみ等が発生しない温度例えば200℃
以下に設定することが好ましい。
It is made of graphite, etc. The above pole (8) is supplied with power by an RFfi source (11) having a balance transformer (9) and a matching box (10) as shown in Fig. 2 (A) and (B). It is considered possible. By supplying this power, a discharge occurs between the opposed electrodes (8), which excites the processing gas inside the reaction tube (1), making it possible to generate plasma. In order to improve the efficiency of this plasma generation, on the outer periphery of the reaction tube
Each of the electrodes (8) can be slid laterally so that the electrodes (8) are brought close to each other or in close contact with each other, and when replacing the reaction tube (2), insert the reaction tube into a predetermined position. A moving mechanism (12) is provided so that each electrode (2) can be slid to release the reaction tube (2) and each electrode (8) from close contact. Here, the coupling portion where the moving mechanism (12) and the electrode (2) are coupled also serves as a connection terminal for connecting the RF' to the source (11),
For example, the connection terminal and electrode (c) provided on the moving mechanism (12) are fastened with SUS screws via spring washers or the like. At this time, when the joint is heated by the heat of the heater (2), loosening occurs due to the difference in thermal expansion coefficient between the electrode (2) and the screw, so the joint is held at a temperature that does not cause the loosening, etc. 200℃
It is preferable to set the following.

又、上記反応管■の上部には、反応管■内部に所定の処
理ガスを供給するためのガス供給管(13)が接続され
ていて、このガス供給管(13)は、図示しないマスフ
ローコントローラ等を介してガス供給源に接続されてい
る。そして、上記反応管(1)の下部には、排気管(1
4)が接続され、この排気管(14)には1反応管(υ
内を所望の圧力に減圧及び処理ガス等を排出可能な真空
ポンプ(図示せず)に接続されている。
Furthermore, a gas supply pipe (13) for supplying a predetermined processing gas into the reaction tube (2) is connected to the upper part of the reaction tube (2), and this gas supply pipe (13) is connected to a mass flow controller (not shown). connected to a gas supply source via etc. At the bottom of the reaction tube (1), an exhaust pipe (1
4) is connected to this exhaust pipe (14), and one reaction tube (υ
It is connected to a vacuum pump (not shown) that can reduce the internal pressure to a desired pressure and discharge processing gas and the like.

上記のように構成された処理部■の反応管ω内を気密に
設定する如く蓋体(15)が着脱自在に設けられている
。この蓋体(15)上方には、上記ウエノ1■を積載し
たボートに)が設けられている。このボート(至)は、
耐熱性で処理ガスに対して反応しにくい材質例えば石英
からなっており、このボートH,)を上記反応管山内の
予め定められた高さ位置に設定可能な保温筒(16)が
、上記ボートに)と蓋体(15)との間に設けられてい
る。
A lid (15) is detachably provided so as to make the interior of the reaction tube (ω) of the processing section (2) airtight as described above. Above the lid (15), a boat loaded with the above-mentioned Ueno 1) is provided. This boat (to) is
A heat-insulating cylinder (16) made of a material that is heat-resistant and does not easily react with the processing gas, such as quartz, and which can set the boat H,) at a predetermined height position within the reaction tube pile is attached to the boat. ) and the lid (15).

そして、上記蓋体(15)は、例えばボールネジとモー
タ等からなる搬送機i■に支持されており、縦軸方向に
上記ボートに)が移動可能となっている。
The lid body (15) is supported by a transport machine i, which includes, for example, a ball screw and a motor, and is movable in the vertical axis direction (toward the boat).

上述した構成のCVD装置は、図示しない制御部で動作
制御される。
The operation of the CVD apparatus having the above-described configuration is controlled by a control section (not shown).

次に、上述したCVD処理後による半導体ウェハ■への
膜形成処理及び反応管山内壁に付着した反応生成物を除
去する方法即ち洗浄方法を説明する。
Next, a method for forming a film on the semiconductor wafer (1) after the above-mentioned CVD process and a method for removing reaction products adhering to the inner wall of the reaction tube, ie, a cleaning method, will be described.

まず、図示しないウェハ移替え装置によりウェハ■が積
載されたボート(イ)を、受は渡し位rIl■に設定し
た保温筒(16)上に、ハンドラ(17)により把持搬
送し載置する。そして、上記ボートに)を、搬送機構0
により所定量上昇させ、上記反応管山内の予め定められ
た位置に設定する。この時、上記反応管■下端部と上記
蓋体(15)を当接させることにより、上記反応管山内
部を気密としている。これと同時に、上記反応管ω内を
所望の低圧状態例えば0.1〜3Torrに保つように
図示しない真空ポンプで排気制御し、ヒータ■により所
望の温度例えば500〜1000℃程度に設定する。
First, a boat (A) loaded with wafers (I) by a wafer transfer device (not shown) is gripped, conveyed, and placed by a handler (17) on a heat-insulating tube (16) set at the transfer position rIl■. Then, transfer the transport mechanism 0) to the above boat.
is raised by a predetermined amount and set at a predetermined position within the reaction tube pile. At this time, the lower end of the reaction tube 1 is brought into contact with the lid (15) to make the inside of the reaction tube airtight. At the same time, a vacuum pump (not shown) is used to perform exhaust control to maintain the inside of the reaction tube ω at a desired low pressure, for example, 0.1 to 3 Torr, and a desired temperature, for example, about 500 to 1000° C. is set by the heater .

そして、この改定後上記排気制御しながらガス供給源か
ら図示しないマスフローコントローラ等で流量を調節し
つつ、処理ガス例えばSiH*と02を反応管ω内にガ
ス供給管(13)から所定時間供給する。すると1反応
管(ト)内に設置されたウェハ(3)表面には、下式の
に示す5in2膜が堆積する。
After this revision, processing gases such as SiH* and 02 are supplied from the gas supply pipe (13) into the reaction tube ω for a predetermined period of time while adjusting the flow rate using a mass flow controller (not shown) from the gas supply source while controlling the exhaust gas as described above. . Then, a 5in2 film shown in the following formula is deposited on the surface of the wafer (3) placed in one reaction tube (G).

SiH,+ O,→Sin、l+ 2)+2   ↑ 
・・・・・・ ■このCVD処理後、処理ガスの供給を
停止し5反応管山内部を不活性ガス例えばN2ガスに置
換し、常圧復帰する。そして、上記処理後のウェハ■を
積載したボート(イ)を受は渡し位置■に搬送機構(へ
)により搬送し処理が終了する。
SiH, + O, → Sin, l+ 2) +2 ↑
(2) After this CVD treatment, the supply of the processing gas is stopped, and the inside of the reaction tube 5 is replaced with an inert gas, such as N2 gas, to restore normal pressure. Then, the boat (A) loaded with the processed wafers (2) is transported to the transfer position (2) by the transport mechanism (2), and the processing is completed.

このようなCVD処理をくり返し実行すると、上記反応
管ω内に反応生成物例えば上記処理の場合Sin、が付
着してしまう。このような反応生成物が付着したまま上
記CVD処理を実行すると、処理中に上記付着物が反応
管■から剥離し、!Iどなってウェハ■上に付着してし
まい汚染の原因となる。そのため上記付着した反応生成
物を定期的に除去する必要がある。
If such a CVD process is repeatedly performed, a reaction product such as Sin in the case of the above process will adhere to the inside of the reaction tube ω. If the above CVD treatment is performed with such reaction products still attached, the deposits will peel off from the reaction tube (2) during the treatment. I will become attached to the wafer and cause contamination. Therefore, it is necessary to periodically remove the attached reaction products.

次に、処理工程例えば上記CVD工程により反応管ω内
に付着した反応生成物の除去をプラズマエツチングにて
行なう方法について説明する。
Next, a method will be described in which the reaction products adhering to the inside of the reaction tube ω due to the treatment process, for example, the CVD process described above, are removed by plasma etching.

まず、蓋体(15)を搬送機構(Qにより上昇して、反
応管■下端部と当接させる。このことにより上記反応管
山内を気密とする。この状態で、反応管ω内を所望の低
圧状態例えばI X 1O−3Torrに保つように図
示しない真空ポンプで排気制御する。この特低に、RF
電源(11)に接続された電極■は、移動機構(12)
により反応管■の外周と密着する如くスライド移動しで
ある。このような状態で、ガス供給源から図示しないマ
スフローコントローラ等で流量を例えば110005C
C程度に調節しながらエツチングガス例えばNF3を反
応管山内にガス供給管(13)から所定時間供給する。
First, the lid body (15) is raised by the transport mechanism (Q) and brought into contact with the lower end of the reaction tube (2). This makes the inside of the reaction tube airtight. In this state, the inside of the reaction tube (ω) is adjusted to the desired Exhaust is controlled by a vacuum pump (not shown) to maintain a low pressure state, for example, I
The electrode ■ connected to the power source (11) is the moving mechanism (12)
It slides so that it comes into close contact with the outer periphery of the reaction tube (2). In this state, the flow rate is adjusted to 110005C from the gas supply source using a mass flow controller (not shown).
An etching gas such as NF3 is supplied from the gas supply pipe (13) into the reaction tube pile for a predetermined period of time while adjusting the etching temperature to approximately C.

この時は、反応管ω内を0.2〜1Torrになるよう
に排気制御しておく。
At this time, the inside of the reaction tube ω is controlled to have a pressure of 0.2 to 1 Torr.

そして、RF電源(11)から周波数例えば400kH
z、電力例えばIKwを各型tili+ (8)に印加
する。すると、各電極(8)間゛に放電が起こり、即ち
、反応管(1)内に放電が起こり9反応管山内に供給さ
れたエツチングガスが励起されプラズマが発生し、この
プラズマにより少なくとも反応管(1)内壁面に付着し
た反応管生成物をプラズマエツチング即ち除去する。
Then, from the RF power source (11), the frequency is, for example, 400kHz.
z, a power, for example IKw, is applied to each type tili+ (8). Then, a discharge occurs between each electrode (8), that is, a discharge occurs in the reaction tube (1), and the etching gas supplied into the reaction tube 9 is excited to generate plasma, and this plasma causes at least the reaction tube (1) Plasma etching, that is, removal of reaction tube products adhering to the inner wall surface.

このプラズマエツチングは、プラズマによって発生した
ラジカルによるケミカルエッチと、プラズマによって発
生したイオンシースで加速されたイオンのスパッタエッ
チとで行なわれる。
This plasma etching is performed by chemical etching using radicals generated by plasma and sputter etching using ions accelerated by an ion sheath generated by plasma.

上記したように反応管■内部にプラズマを発生するが、
この時、上記反応管■外周に上記各電極■を密着させた
状態で電力を印加することにより、上記電極(8)間に
上記反応管のが存在即ち反応管■材質の石英が存在する
こととなり、この石英の誘電率が空気より数倍高いこと
から上記電極(5)間の静電容量が十分に大きくするこ
とができ、上記プラズマが容易に発生し、更に強いプラ
ズマ強度が得られる。そのため、低いRF電源(11)
周波数例えば10MHz以下でのプラズマの発生が可能
となり、従来使用していた高い周波数例えば13.56
MHzを使用せずに上記プラズマを発生させることがで
きる。
As mentioned above, plasma is generated inside the reaction tube.
At this time, by applying electric power with each of the electrodes (2) in close contact with the outer periphery of the reaction tube (1), it is confirmed that the reaction tube (2) is present between the electrodes (8), that is, quartz, which is the material of the reaction tube (2), is present. Since the dielectric constant of this quartz is several times higher than that of air, the capacitance between the electrodes (5) can be made sufficiently large, the plasma can be easily generated, and even stronger plasma intensity can be obtained. Therefore, low RF power (11)
It is now possible to generate plasma at a frequency of, for example, 10 MHz or less, and the conventional high frequency, for example, 13.56 MHz, is now possible.
The above plasma can be generated without using MHz.

この13.56MHzの周波数は、電波となって周囲に
存在する他の装置を誤動作させてしまうトラブルが頻雑
に発生しており、上記周波数の電波シールドは田辺とな
っていた。しかし、上記各電極■を反応管■外周に接触
させることにより、上記10MHz以下でのプラズマの
発生が可能であるため、上記のように他の装置を誤動作
させる問題は解決することができる。また、上記各電極
■は移動機構(12)により上記反応管(ト)外周と接
触或いは非接触に設定可能であるため、少なくとも上記
プラズマを発生させる場合に上記接触状態とし、上記反
応管■の交換等の場合に上記非接触状態とすることによ
り、上記反応管のを容易に取り外すことができる。また
、この反応管■の取り外し時も、上記各電極■とその周
囲に設けられているヒータ■とは常に非接触状態を保っ
ておき、接触による上記ヒータ■の破損及び上記電極(
へ)の破損を防止する。
This frequency of 13.56 MHz frequently causes troubles where it becomes a radio wave and causes other equipment in the vicinity to malfunction, and the radio wave shield for the above frequency has become Tanabe. However, by bringing each of the electrodes (1) into contact with the outer periphery of the reaction tube (2), plasma can be generated at a frequency of 10 MHz or less, so the problem of malfunctioning other devices as described above can be solved. Furthermore, each of the electrodes (1) can be set in contact or non-contact with the outer periphery of the reaction tube (G) by the moving mechanism (12), so at least when generating the plasma, the electrodes (2) are brought into contact with the outer periphery of the reaction tube (3). In the case of replacement, etc., the reaction tube can be easily removed by setting it in the non-contact state. Also, when removing the reaction tube (■), the above-mentioned electrodes (■) and the heater (■) provided around them should always be kept in a non-contact state, so that the above-mentioned heaters (■) may be damaged due to contact, and the above-mentioned electrodes (
) to prevent damage.

このようなエツチングガスにより剥離された反応生成物
は、排気管(14)から排気され、反応管の内に反応生
成物は残留しない。そして、所定時間エツチング後、エ
ツチングガスを停止し、反応管■内部を不活性ガス例え
ばN2ガスに置換し、常圧復帰する。この後、蓋体(1
5)を移動機構(12)により受は渡し位置■に設置し
てエツチング処理が終了する。
The reaction products removed by the etching gas are exhausted from the exhaust pipe (14), and no reaction products remain in the reaction tube. After etching for a predetermined period of time, the etching gas is stopped, and the inside of the reaction tube (1) is replaced with an inert gas, such as N2 gas, to return to normal pressure. After this, cover (1
5) is placed at the transfer position (2) by the moving mechanism (12), and the etching process is completed.

上記実施例では電極を複数分割する構造として、2分割
する例について説明したが、これに限定するものではな
く、例えば第3図に示すように8分割に構成しても同様
な効果が得られる。このように複数分割した電極■と夫
々隣接する電極■に、各々異なる極性の電力を印加して
もよく、この場合、上記隣接する電極(へ)間、即ち反
応管■内壁の表面付近に強い電界(18)が発生するた
め、上記反応管■内壁に付着した反応生成物を効率良く
、高速にエツチングすることができる。この時、上記各
電極■に電力を印加するRF電源(II)は、複数系統
使用してもよいし、1系統のRF電源(11)から上記
各電極(ハ)に複数分配してもよい。
In the above embodiment, an example in which the electrode is divided into two parts is explained as a structure in which the electrode is divided into a plurality of parts, but the structure is not limited to this. For example, the same effect can be obtained even if the electrode is divided into eight parts as shown in FIG. . Electric power of different polarity may be applied to the plurality of divided electrodes (■) and the adjacent electrodes (■). In this case, a strong electric power may be applied between the adjacent electrodes (to), that is, near the surface of the inner wall of the reaction tube (■). Since an electric field (18) is generated, the reaction products adhering to the inner wall of the reaction tube can be etched efficiently and at high speed. At this time, the RF power source (II) that applies power to each of the electrodes (2) may be used in multiple systems, or may be distributed from one system of the RF power source (11) to each of the electrodes (C). .

また、この発明は上記実施例に限定されるものではなく
、例えば石英製の反応管は単管でなくとも1石英製の二
重管例えば上面が封止された筒状の外管と、この外管と
非接触状態で筒状の内管とから反応管を構成したもので
も良い。この場合、二重管構造の反応管の内管にエツチ
ングガスを供給し、内管と外管との間にエツチングガス
が流れるように排気制御すると、エツチングガスは、外
部電極に沿って流れる。すると、電極の近くは電界が強
く、プラズマが強く発生するため、供給されたエツチン
グガスのプラズマへの変換効率が向上する1例えばNF
3ガス流量1100OSCC、RF周波数400kt(
z、電力1k11時ではプラズマへの変換効率が95%
と高効率が得られた。又、上記実施例ではRF電源(1
1)からの接続端子と電極■との結合をネジ等により行
ない、ネジのゆるみ対策として、結合部を200℃以下
に設定していたが、200℃以北の場所で結合する場合
は、RF電源からはRF倍信号伝えるので結合部で直流
の導通がなくとも交流の導通が得られれば良ことになる
。即ち、 SiC等の電極(8)とRF電源(11)の
金属性端子との結合表面積を大きくシ、複数箇所でネジ
止めする。すると大気中におかれたSiCは高温となる
と表面に酸化膜が発生し直流の導通が得られなくなるが
、結合表面積が大きいため静電容量を大きくとることが
出来るので、RFffi流を十分に流すことが出来る。
Furthermore, the present invention is not limited to the above-mentioned embodiments, and for example, the reaction tube made of quartz may not be a single tube, but may be a double tube made of quartz, such as a cylindrical outer tube whose top surface is sealed, and The reaction tube may be composed of an outer tube and a cylindrical inner tube in a non-contact state. In this case, when the etching gas is supplied to the inner tube of the reaction tube having a double tube structure and the exhaust is controlled so that the etching gas flows between the inner tube and the outer tube, the etching gas flows along the outer electrode. Then, the electric field is strong near the electrode and a strong plasma is generated, which improves the conversion efficiency of the supplied etching gas into plasma.
3 gas flow rate 1100OSCC, RF frequency 400kt (
z, the conversion efficiency to plasma is 95% at 1k11 hours of electric power.
and high efficiency was obtained. Further, in the above embodiment, the RF power supply (1
The connecting terminal from 1) and the electrode ■ were connected using screws, etc., and the temperature of the joint was set at 200°C or lower to prevent the screws from loosening. However, when connecting at a location north of 200°C, Since the RF multiplied signal is transmitted from the power supply, it is sufficient if AC continuity can be obtained even if there is no DC continuity at the coupling part. That is, the bonding surface area between the electrode (8) made of SiC or the like and the metal terminal of the RF power source (11) is increased, and screws are secured at multiple locations. When SiC placed in the atmosphere becomes hot, an oxide film forms on its surface, making it impossible to conduct direct current, but since the bonding surface area is large, a large capacitance can be achieved, so a sufficient RFffi current can flow through the SiC. I can do it.

この時、金属性接続端子と引き出しリードの接続は、接
続端子の温度が200℃以下の所で接続することが望ま
しい。
At this time, it is desirable to connect the metal connection terminal and the lead lead at a location where the temperature of the connection terminal is 200° C. or lower.

さらに、上記実施例では電極は均熱管を兼ねて設けられ
ていたが、夫々別系統で設けても良く、電極の分割は2
分割でなくともプラズマが有効に発生するものなら何分
割でも良く、又、電極材質として耐熱性金属表面に重金
属を透過しない材質例えばセラミックで被覆したもので
も良く、電極に印加する周波数は周縁装置に悪影響を与
えない例えば10MHz以下であれば何れでも良い。
Furthermore, in the above embodiment, the electrodes were provided also as heat soaking tubes, but they may be provided in separate systems, and the electrodes can be divided into two.
Any number of divisions may be used as long as the plasma is effectively generated, and the electrode material may be a heat-resistant metal whose surface is coated with a material that does not transmit heavy metals, such as ceramic, and the frequency applied to the electrode may vary depending on the peripheral device. Any frequency may be used as long as it does not cause any adverse effects, for example, 10 MHz or less.

さらに又、上記実施例では石英製の反応管内部に付着し
た反応生成物をプラズマエツチングしていたが、ウェハ
を載置していない石英製のボートや保温筒を反応管内に
設置した状態でプラズマエツチングを行なっても良く、
このようにするとボートや保温筒に付着した反応生成物
を除去することが可能となり汎用性が高いものとなる。
Furthermore, in the above example, the reaction products adhering to the inside of the quartz reaction tube were plasma etched, but the plasma etching was carried out with the quartz boat or heat insulating tube without any wafer placed inside the reaction tube. You may also perform etching.
In this way, it becomes possible to remove the reaction products adhering to the boat or the heat insulating tube, resulting in high versatility.

さらに又、上記実施例ではウェハをバッチ処理する縦型
反応炉からなるCVD装置として説明したが、CVD装
置でなくとも気相エピタキシャル成長装置や拡散装置等
の反応炉から成る装置であれば何れでも良く、反応炉も
横型に適応して良いことは言うまでもない、又、上記実
施例を応用してウェハをバッチ処理するプラズマCVD
装置等として使用しても良い。
Furthermore, although the above embodiment has been described as a CVD apparatus consisting of a vertical reactor for batch processing wafers, it is not necessary to use a CVD apparatus, but any apparatus consisting of a reaction furnace such as a vapor phase epitaxial growth apparatus or a diffusion apparatus may be used. It goes without saying that the reactor can also be adapted to a horizontal type.Also, plasma CVD for batch processing wafers can be applied by applying the above embodiment.
It may also be used as a device.

以上述べたようにこの実施例しこよれば、反応管外周に
設けられた重金属を透過しない材質により形成された複
数の電極間に電力を印加し、この電力により上記反応管
内に導入したエツチングガスをプラズマ化し、このプラ
ズマ化したエツチングガスにより上記反応管内壁面に付
着した反応生成物を除去することにより、上記反応管外
周に設けた複数の電極間でプラズマを発生させることが
できるため、上記反応管内に電極を挿入する必要はなく
、この電極の挿入によるスパッタリング汚染は発生しな
い。また、上記反応管外周に設ける複数の電極を、例え
ば従来使用している反応管周囲に設けた均熱管を複数分
割して流用することにより他の電極を新たに設置する必
要はなく、低コストで実現することができる。更に、上
記複数の電極を重金属を透過しない材質で構成、或いは
重金属を透過しない材質で構成されている均熱管を流用
することにより、上記電極から重金属が発生成いは電極
外周に存在する重金属を透過することはなく、この重金
属による被処理基板の歩留まりの低下を抑止することが
可能となる。
As described above, according to this embodiment, electric power is applied between a plurality of electrodes made of a material that does not permeate heavy metals provided around the outer periphery of the reaction tube, and this electric power is used to control the etching gas introduced into the reaction tube. By converting the etching gas into plasma and removing the reaction products adhering to the inner wall surface of the reaction tube with this plasma-turned etching gas, plasma can be generated between the plurality of electrodes provided on the outer periphery of the reaction tube. There is no need to insert an electrode into the tube, and no sputtering contamination occurs due to the insertion of the electrode. In addition, by reusing the plurality of electrodes provided on the outer periphery of the reaction tube, for example by dividing the conventionally used soaking tube provided around the reaction tube into multiple parts, there is no need to newly install other electrodes, and the cost is reduced. It can be realized with. Furthermore, by making the plurality of electrodes made of a material that does not permeate heavy metals, or by using a soaking tube made of a material that does not permeate heavy metals, heavy metals generated from the electrodes or existing around the electrodes can be reduced. The heavy metals do not pass through, making it possible to prevent a decrease in the yield of substrates to be processed due to the heavy metals.

また、上記反応管を取り外さずに反応生成物を除去する
ことができるため、上記反応生成物の除去装置を他に設
ける必要はなく、スペースを有史に活用することが可能
となる。
Furthermore, since the reaction product can be removed without removing the reaction tube, there is no need to provide any other device for removing the reaction product, and space can be utilized in a historic manner.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、反応管外周に設け
られた重金属を透過しない材質により形成された複数の
電極間に電力を印加し、この電力により上記反応管内に
導入したエツチングガスをプラズマ化し、このプラズマ
化したエツチングカスにより丘記反応管内壁面に付着し
た反応生成物を除去することにより、上記反応管外周に
設けた複数のfflli間でプラズマを発生させること
ができるため、上記反応管内に電極を挿入する必要はな
く、この電極の挿入によるスパッタリング汚染は発生し
ない。また、上記反応管を取り外さずに反応生成物を除
去することができるため、上記反語生成物の除去作業を
短時間で行なえ、装置の稼動効率を向上することができ
る。更に1重金属が上記反応管内に進入することを防止
できるため、被処理基板の処理時における重金属の付着
はなく、歩留まりの低下を抑止することができる。
As explained above, according to the present invention, electric power is applied between a plurality of electrodes formed of a material that does not permeate heavy metals provided around the outer periphery of the reaction tube, and this electric power converts the etching gas introduced into the reaction tube into plasma. By removing the reaction products adhering to the inner wall surface of the reaction tube with the etching residue turned into plasma, plasma can be generated between the plurality of fflli provided on the outer periphery of the reaction tube. There is no need to insert an electrode into the device, and no sputtering contamination occurs due to the insertion of the electrode. Furthermore, since the reaction products can be removed without removing the reaction tube, the work of removing the reaction products can be carried out in a short time, and the operating efficiency of the apparatus can be improved. Furthermore, since it is possible to prevent heavy metals from entering the reaction tube, there is no adhesion of heavy metals during processing of the substrate to be processed, and a decrease in yield can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を説明するためのCVD
装置の構成図、第2図は第1図の電極説明図、第3図は
第1図電極の他の実施例説明図である。 1・・・反応管      7・・・ヒータ8・・電極
       11・・・RF電源12・・・移動機構
     18・・・電界特許出願人   チル相模株
式会社 第 第 図(A)
FIG. 1 shows a CVD process for explaining one embodiment of the method of the present invention.
FIG. 2 is an explanatory diagram of the electrode in FIG. 1, and FIG. 3 is an explanatory diagram of another embodiment of the electrode in FIG. 1. 1... Reaction tube 7... Heater 8... Electrode 11... RF power source 12... Moving mechanism 18... Electric field patent applicant Chill Sagami Co., Ltd. Figure (A)

Claims (1)

【特許請求の範囲】[Claims] 処理工程により少なくとも反応管内壁面に付着した反応
生成物を除去するプラズマ処理方法において、上記反応
管外周に設けられた重金属を透過しない材質により形成
された複数の電極間に電力を印加し、この電力により上
記反応管内に導入したエッチングガスをプラズマ化し、
このプラズマ化したエッチングガスにより上記反応管内
壁面に付着した反応生成物を除去することを特徴とする
プラズマ処理方法。
In a plasma processing method for removing reaction products attached to at least the inner wall surface of a reaction tube during a treatment process, electric power is applied between a plurality of electrodes formed of a material that does not permeate heavy metals and is provided around the outer periphery of the reaction tube. The etching gas introduced into the reaction tube is turned into plasma by
A plasma processing method characterized in that reaction products adhering to the inner wall surface of the reaction tube are removed by the etching gas turned into plasma.
JP63140761A 1988-06-08 1988-06-08 Vertical heat treatment apparatus and treatment method by vertical heat treatment apparatus Expired - Fee Related JP2721846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140761A JP2721846B2 (en) 1988-06-08 1988-06-08 Vertical heat treatment apparatus and treatment method by vertical heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140761A JP2721846B2 (en) 1988-06-08 1988-06-08 Vertical heat treatment apparatus and treatment method by vertical heat treatment apparatus

Publications (2)

Publication Number Publication Date
JPH0214520A true JPH0214520A (en) 1990-01-18
JP2721846B2 JP2721846B2 (en) 1998-03-04

Family

ID=15276124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140761A Expired - Fee Related JP2721846B2 (en) 1988-06-08 1988-06-08 Vertical heat treatment apparatus and treatment method by vertical heat treatment apparatus

Country Status (1)

Country Link
JP (1) JP2721846B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147236A (en) * 1981-03-09 1982-09-11 Kokusai Electric Co Ltd Removing method for extraneous matter on reaction pipe for vapor growth device
JPS61111524A (en) * 1984-11-06 1986-05-29 Denkoo:Kk Vertical heat-treatment furnace for semiconductor
JPS62203330A (en) * 1986-03-04 1987-09-08 Denkoo:Kk Semiconductor heat treatment apparatus with reaction tube washing means
JPS6394635A (en) * 1986-10-09 1988-04-25 Furendotetsuku Kenkyusho:Kk Device for manufacturing semiconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147236A (en) * 1981-03-09 1982-09-11 Kokusai Electric Co Ltd Removing method for extraneous matter on reaction pipe for vapor growth device
JPS61111524A (en) * 1984-11-06 1986-05-29 Denkoo:Kk Vertical heat-treatment furnace for semiconductor
JPS62203330A (en) * 1986-03-04 1987-09-08 Denkoo:Kk Semiconductor heat treatment apparatus with reaction tube washing means
JPS6394635A (en) * 1986-10-09 1988-04-25 Furendotetsuku Kenkyusho:Kk Device for manufacturing semiconductor

Also Published As

Publication number Publication date
JP2721846B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JP4121269B2 (en) Plasma CVD apparatus and method for performing self-cleaning
US4576698A (en) Plasma etch cleaning in low pressure chemical vapor deposition systems
JP2654996B2 (en) Vertical heat treatment equipment
US5753891A (en) Treatment apparatus
KR100399542B1 (en) Plasma processing method and apparatus
JPH10330944A (en) Substrate treating device
EP0020746B1 (en) Process and apparatus for cleaning wall deposits from a film deposition furnace tube
WO2018026509A1 (en) Aluminum fluoride mitigation by plasma treatment
JPH08124866A (en) Vacuum treating apparatus and method thereof
KR100628607B1 (en) Method for cleaning a film forming device
JPH0377655B2 (en)
JPH0214523A (en) Treatment by plasma
JPH0214522A (en) Treatment by plasma
JPH0214520A (en) Treatment by plasma
JP3470557B2 (en) Plasma processing equipment
JP2721847B2 (en) Plasma processing method and vertical heat treatment apparatus
JPH0214521A (en) Treatment by plasma
JP2001020076A (en) Method and device for cleaning reaction chamber
KR100700762B1 (en) Method for cleaning film-forming unit
JPH01309315A (en) Heat treatment equipment
JP2714580B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus
JPH0331479A (en) Heat treatment
JPH08321492A (en) Method and equipment for plasma treatment
JP3301152B2 (en) Plasma processing equipment
JP3576828B2 (en) Etching method and substrate processing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees