JPH02144070A - Easily slidable medical material - Google Patents

Easily slidable medical material

Info

Publication number
JPH02144070A
JPH02144070A JP63299114A JP29911488A JPH02144070A JP H02144070 A JPH02144070 A JP H02144070A JP 63299114 A JP63299114 A JP 63299114A JP 29911488 A JP29911488 A JP 29911488A JP H02144070 A JPH02144070 A JP H02144070A
Authority
JP
Japan
Prior art keywords
group
hydrophilic copolymer
acidic polysaccharide
copolymer
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63299114A
Other languages
Japanese (ja)
Other versions
JP2829995B2 (en
Inventor
Riyoujirou Akashi
量磁郎 明石
Shoji Nagaoka
長岡 昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63299114A priority Critical patent/JP2829995B2/en
Publication of JPH02144070A publication Critical patent/JPH02144070A/en
Application granted granted Critical
Publication of JP2829995B2 publication Critical patent/JP2829995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a medical material having both of excellent easy slidability and anti-thrombogenecity by fixing acidic polysaccharide to the hydrophilic copolymer, which is applied and fixed to a base material by a covalent bond, by an ionic bond or the covalent bond. CONSTITUTION:In a method for fixing acidic polysaccharide to a hydrophilic copolymer, an ionic bond or a covalent bond is adapted. In the ionic bond method, it is pref. to bond the tertiary group or quaternary ammonium salt thereof of the hydrophilic copolymer to the acidic polysaccharide by the ionic bond. In the covalent bond method, the amino group, hydroxyl group and carboxyl group being the functional groups of the hydrophylic copolymer are bonded to the amino group, hydroxyl group and carboxyl group contained in the acidic polysaccharide or the epoxy group or formyl group introduced by reaction of said polysaccharide. The amount of the acidic polysaccharide fixed to the hydrophilic copolymer is different according to objective easy slidability or anti-thrombogenecity and there is no special limit but said amount is pref. 0.1wt.% or more by wt. of the hydrophilic copolymer and especially pref. selected within a range of 1-50wt.%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は湿潤時の優れた低摩擦性、つまり易滑性と抗血
栓性をあわせもつ医療材料に関するものて′あり、カテ
ーテル、ガイドワイヤー、カニユーレなどに広く応用可
能な有用なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to medical materials that have excellent low friction properties when wetted, that is, have both slipperiness and antithrombotic properties, such as catheters, guide wires, It is a useful product that can be widely applied to canyures, etc.

[従来の技術] 医療材料、特にカテーテルやガイドワイヤーにおいて、
その表面の低摩擦化(易滑性)は必須の要求項目となっ
ている。例えば易滑性を有さない場合、カテーテルを人
体に挿入する際に痛みを伴ったり、また組織粘膜を損傷
したり炎症を引起こす恐れがある。
[Prior art] In medical materials, especially catheters and guide wires,
Low friction (easiness of slipping) on the surface is an essential requirement. For example, if the catheter is not slippery, it may be painful to insert the catheter into the human body, and there is a risk of damaging tissue mucous membranes or causing inflammation.

従来の易滑性の付与技術の1つとしては基材に親水性ポ
リマーをコーティングする方法が知られている。
As one of the conventional techniques for imparting slipperiness, a method of coating a base material with a hydrophilic polymer is known.

親水性ポリマーをコーティングする具体的な方法として
は、インシアネートを用いたポリビニルピロリドンの固
定(特開昭59−19582号公報、米国特許4100
309号公報)、反応性官能基を共重合した親水性ポリ
マーとインシアネートを用いた方法(特開昭59−81
341号公報)、インシアネートを用いたポリエチレン
オキサイドの固定(特開昭58−193766号公報)
などが開示されいる。
As a specific method for coating a hydrophilic polymer, fixation of polyvinylpyrrolidone using incyanate (Japanese Patent Application Laid-open No. 59-19582, U.S. Pat. No. 4,100,
309), a method using a hydrophilic polymer copolymerized with reactive functional groups and incyanate (Japanese Unexamined Patent Publication No. 59-81
341), fixation of polyethylene oxide using incyanate (Japanese Unexamined Patent Publication No. 193766/1982)
etc. are disclosed.

また抗血栓性は医療材料において重要な要求である。つ
まり血栓の形成に伴う医療材料の機能低下や生体に対す
る合併症の発生は大きな問題である。
Antithrombotic properties are also an important requirement for medical materials. In other words, the decline in the functionality of medical materials and the occurrence of complications for living organisms due to the formation of blood clots are major problems.

抗血栓性材料としては親水性ヘパリン化材料(特公昭5
4−18518> 、セグメント化ポリウレタンなどが
知られている。
As an antithrombotic material, hydrophilic heparinized material (Special Publication
4-18518>, segmented polyurethane, etc. are known.

「発明が解決しようとする課題] しかしながら、従来の親水性ポリマーをコーティングし
た易滑性材料は抗血栓性を有しておらず、血栓の形成に
伴う医療材料の機能低下や生体に対する合併症の発生が
危惧され、適用範囲が限られた。逆に従来の抗血栓性材
料は易滑性が十分ではない。
“Problems to be Solved by the Invention” However, conventional slippery materials coated with hydrophilic polymers do not have antithrombotic properties, resulting in decreased functionality of medical materials and complications for living organisms due to thrombus formation. The scope of application has been limited due to concerns that this may occur.Conversely, conventional antithrombotic materials do not have sufficient slipperiness.

このように、易滑性と抗血栓性をあわせもつ医療材料は
従来存在しなかった。すなわち本発明の目的は従来技術
にない優れた易滑性と抗血栓性をあわせもつ医療材料を
提供することにある。
In this way, there has been no medical material that has both slipperiness and antithrombotic properties. That is, an object of the present invention is to provide a medical material that has both excellent slipperiness and antithrombotic properties not found in the prior art.

[課題を解決するための手段] 本発明は上記目的を達成しようとするものであり、以下
の構成を有する。すなわち本発明は、共有結合によって
基材に被覆固定された親水性共重合体にイオン結合また
は共有結合により酸性多糖類を固定してなる易滑性医療
材料である。
[Means for Solving the Problems] The present invention aims to achieve the above object and has the following configuration. That is, the present invention is a slippery medical material made by fixing an acidic polysaccharide by an ionic bond or a covalent bond to a hydrophilic copolymer coated and fixed to a base material by a covalent bond.

本発明における親水性共重合体の基材への共有結合によ
る被覆固定には従来公知の種々の方法が適用可能である
。例えば、インシアネート基などの反応性ポリマーより
なる基材に親水性ポリマーを被覆し反応させる方法、ま
たは基材表面にインシアネート基などを含む反応性ポリ
マーをあらかじめ被覆し、その上にアミン基、アミド基
、カルボキシル基、スルホン酸基や水酸基などの反応性
官能基を有した親水性共重合体を被覆、反応させる方法
などが好ましい。またこのインシアネート基を含むポリ
マーの1つとしては、ポリインシアネートが挙げられる
。その具体例としてはポリメチレンポリフェニルイソシ
アネートやトルエンジイソシアネート、4.4−−ジフ
ェニルメタンジイソシアネ−1〜および3.4−ジクロ
ロフエニルジイソシアネートとトリメチロールプロパン
やポリオールなどとの付加体が挙げられる。
Various conventionally known methods can be applied to fixing the hydrophilic copolymer to the base material by covalent bonding in the present invention. For example, a method of coating a hydrophilic polymer on a base material made of a reactive polymer such as an incyanate group and reacting the same, or a method in which a reactive polymer containing an incyanate group or the like is coated on the surface of the base material in advance, and then an amine group, Preferred is a method in which a hydrophilic copolymer having a reactive functional group such as an amide group, a carboxyl group, a sulfonic acid group, or a hydroxyl group is coated and reacted. Further, one example of the polymer containing this incyanate group is polyincyanate. Specific examples thereof include adducts of polymethylene polyphenylisocyanate, toluene diisocyanate, 4,4-diphenylmethane diisocyanate-1 to 3,4-dichlorophenyl diisocyanate, and trimethylolpropane, polyol, and the like.

次に、本発明で使用する親水性共重合体について詳細に
説明する。この共重合体の特徴としては、イソシアネー
ト基で代表される反応性基と反応し、しかも酸性多糖類
をイオン結合または共有結合しうる官能基を有する親水
性ポリマーである。親水性の定義としては、水に溶解も
しくは膨潤することである。このようなポリマーとして
は、(A)!水性成分: (メタ)アクリルアミド、メ
トキシポリエチレングリコールモノ(メタ)アクリレー
ト、N−ビニル−2−ピロリドン、無水マレイン酸、2
−ビニルピリジン、4−ビニルピリジン、N−1,2,
4−トリアゾリルエチレン、メチルビニルエーテル、2
−ヒドロキシエチル(メタ)アクリレート、3−ヒドロ
キシプロピル(メタ)アクリレート、グリセリル(メタ
)アクリレート、(メタ)アクリル酸およびその塩、ス
ルホン酸ビニルおよびその塩の中から選ば゛れる少なく
とも1種、 (B)インシアネートと反応する成分: (メタ)アク
リルアミド、2−アミノエチル−4−ビニルフェネチル
アミン、(メタ)アクリル酸、スルホン酸ビニル、スル
ホン化スチレン、2−ヒドロキシエチル(メタ)アクリ
レート、3−ヒドロキシプロピル(メタ)アクリレート
、グリセリル(メタ)アクリレートの中から選ばれる少
なくとも1種、 (C)酸性多糖類と反応する成分: (メタ)アクリル
酸、ヒドロキシエチル(メタ)アクリレート、ヒドロキ
シプロピル(メタ)アクリレート、グリセリル(メタ〉
アクリレート、2−ビニルピリジン、4−ビニルピリジ
ン、ジアルキルアミノアルキル(メタ)アクリレート、
ジアルキルアミノアルキルスチレン、2−アミノエチル
−4−ビニルフェネチルアミンの中から選ばれる少なく
とも1種、の3つの必須成分を組合わせて共重合するこ
とによって得ることができる(必須成分は重複しても構
わない)。またこれらの必須成分の他に、(D)疎水性
成分:エチレン、プロピレン、スチレン、(メタ)アク
リル酸アルキル、塩化ビニル、塩化ビニリデン、酢酸ビ
ニル、(メタ)アクリロニトリルの中から選ばれる少な
くとも1種が耐久性の向上を目的に共重合可能である。
Next, the hydrophilic copolymer used in the present invention will be explained in detail. This copolymer is characterized by being a hydrophilic polymer that reacts with reactive groups such as isocyanate groups and has functional groups capable of ionic or covalent bonding with acidic polysaccharides. The definition of hydrophilicity is to dissolve or swell in water. Such polymers include (A)! Aqueous components: (meth)acrylamide, methoxypolyethylene glycol mono(meth)acrylate, N-vinyl-2-pyrrolidone, maleic anhydride, 2
-vinylpyridine, 4-vinylpyridine, N-1,2,
4-triazolylethylene, methyl vinyl ether, 2
- at least one selected from hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, glyceryl (meth)acrylate, (meth)acrylic acid and its salts, vinyl sulfonate and its salts, (B ) Components that react with incyanate: (meth)acrylamide, 2-aminoethyl-4-vinylphenethylamine, (meth)acrylic acid, vinyl sulfonate, sulfonated styrene, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, at least one selected from glyceryl (meth)acrylate, (C) component that reacts with acidic polysaccharide: (meth)acrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, Glyceryl (meth)
Acrylate, 2-vinylpyridine, 4-vinylpyridine, dialkylaminoalkyl (meth)acrylate,
It can be obtained by copolymerizing a combination of three essential components: dialkylaminoalkylstyrene and at least one selected from 2-aminoethyl-4-vinylphenethylamine (the essential components may overlap). do not have). In addition to these essential components, (D) hydrophobic component: at least one selected from ethylene, propylene, styrene, alkyl (meth)acrylate, vinyl chloride, vinylidene chloride, vinyl acetate, and (meth)acrylonitrile. can be copolymerized to improve durability.

これら4成分の組成比は、A:B:C:D=50〜99
.8:0.1〜49.9:0.1〜49.9:O〜49
゜8の範囲が好ましい。
The composition ratio of these four components is A:B:C:D=50-99
.. 8:0.1~49.9:0.1~49.9:O~49
A range of 8° is preferred.

また、分子量としては1000〜500万のものが好ま
しく、特に10万以上のものが好ましく使用される。
Further, the molecular weight is preferably 10 to 5 million, and particularly preferably 100,000 or more.

本材料に用いる酸性多糖類としては、ヒアルロン酸、コ
ンドロイチン硫酸、デルマタン硫酸、ヘパリン、ヘパラ
ン硫酸のようなムコ多糖類の他に、デキストラン硫酸、
キトサン硫酸、セルロース硫酸、アミロペクチン硫酸、
ペクチン硫酸、アルギン酸、アルギン酸硫酸などの親水
性の高い多糖類が挙げられる。この中でも特にヘパリン
あるいはその誘導体(ヘパリノイド)は優れた抗血栓性
を有し好ましいものである。       ′これら酸
性多糖類の親水性共重合体への固定化方法としては、イ
オン結合あるいは共有結合を適用する。イオン結合法と
しては、親水性共重合体中の3級アミノ基やその4級ア
ンモニウム塩(4級化処理物)と酸性多糖類とをイオン
結合させることが好ましい。一方共有結合法としては、
親水性共重合体中の官能基であるアミノ基、ヒドロキシ
基、カルボキシル基と酸性多糖類中に含まれるアミン基
、水酸基、カルボキシル基などや反応によって導入した
エポキシ基やポルミル基などとを結合させる。これらの
反応に際しては縮合剤などの種々触媒が使用可能である
。また、結合に際してはスペーサーを導入することも好
ましい。スペーサーとしてはアルキレンジ力ルホ゛ン酸
、アミノアルキルカルボン酸、アルキレンジアミン、ア
ルキレンジオール、ポリエチレングリコール、ジアミノ
ポリエチレンオキシドやビスエポキシポリエチレングリ
コールなどが挙げられる。
Acidic polysaccharides used in this material include mucopolysaccharides such as hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparin, and heparan sulfate, as well as dextran sulfate,
chitosan sulfate, cellulose sulfate, amylopectin sulfate,
Examples include highly hydrophilic polysaccharides such as pectin sulfate, alginic acid, and alginic acid sulfate. Among these, heparin or its derivatives (heparinoids) are particularly preferred as they have excellent antithrombotic properties. 'Ionic bonding or covalent bonding is used to immobilize these acidic polysaccharides onto the hydrophilic copolymer. As for the ionic bonding method, it is preferable to ionicly bond the tertiary amino group or its quaternary ammonium salt (quaternized product) in the hydrophilic copolymer to the acidic polysaccharide. On the other hand, as a covalent bond method,
The functional groups such as amino groups, hydroxyl groups, and carboxyl groups in the hydrophilic copolymer are combined with the amine groups, hydroxyl groups, and carboxyl groups contained in the acidic polysaccharide, as well as the epoxy groups and polmyl groups introduced by reaction. . Various catalysts such as condensing agents can be used in these reactions. Furthermore, it is also preferable to introduce a spacer upon bonding. Examples of the spacer include alkylene dihydric sulfonic acid, aminoalkyl carboxylic acid, alkylene diamine, alkylene diol, polyethylene glycol, diamino polyethylene oxide, and bisepoxy polyethylene glycol.

酸性多糖類を親水性共重合体に固定することによって易
滑性は大幅に向上するが、特にイオン結合によるものは
その効果が大きい。
The slipperiness can be greatly improved by fixing acidic polysaccharides to hydrophilic copolymers, and the effect is particularly great when the acidic polysaccharides are based on ionic bonds.

また、親水性共重合体に固定する酸性多糖類の1は目的
とする易滑性および抗血栓性によって異なり特に限定は
しないが、親水性共重合体に対して0.1wt%以上が
好ましく、特に1〜50wt%の範囲で好ましく選択さ
れる。
Further, the amount of acidic polysaccharide fixed to the hydrophilic copolymer is not particularly limited depending on the desired slipperiness and antithrombotic properties, but is preferably 0.1 wt% or more based on the hydrophilic copolymer. In particular, it is preferably selected within the range of 1 to 50 wt%.

次に、本発明の易滑性医療材料の製造方法について説明
する。
Next, a method for manufacturing the slippery medical material of the present invention will be explained.

医療材料に用いる基材は使用目的によって種々選択され
るが、種々プラスチック、種々無機材料や金属材料など
が好ましく用いられる。具体的には、ポリ塩化ビニル、
ポリエチレン、ポリプロピレン、ポリスチレン、ポリウ
レタン、ポリウレア、ポリメタクリル酸メチル、ナイロ
ン、ポリエステル、ポリアクリロニトリルやそれらが被
覆された金属線、ステンレス、弾性金属、セラミックス
や木材などが挙げられる。
Various base materials for medical materials are selected depending on the purpose of use, and various plastics, various inorganic materials, metal materials, etc. are preferably used. Specifically, polyvinyl chloride,
Examples include polyethylene, polypropylene, polystyrene, polyurethane, polyurea, polymethyl methacrylate, nylon, polyester, polyacrylonitrile, metal wire coated with these, stainless steel, elastic metals, ceramics, and wood.

各コーティング層の形成方法としては種々適用可能であ
るが、好ましい方法としては、先ず基材表面へポリイソ
シアネートを適当な良溶媒に所定量溶解させた溶液とし
てデイツプやスピンコーティング法によりコーティング
する。つぎに親水性共重合体を同様な方法でコーティン
グし、加熱等により反応、固定化することである。
Various methods can be used to form each coating layer, but a preferred method is to first coat the surface of the substrate with a solution prepared by dissolving a predetermined amount of polyisocyanate in a suitable good solvent by dip coating or spin coating. Next, a hydrophilic copolymer is coated in a similar manner, and reacted and immobilized by heating or the like.

酸性多糖類の固定に際してはイオン結合と共有結合では
方法が異なる。、 イオン結合は固定された親水性共重合体中に存在する3
級アミン基をそのまま、あるいはハロゲン化アルキル等
で処理し、4級アンモニウム塩とした後、酸性多糖類と
反応させることにより達成される。
When fixing acidic polysaccharides, there are different methods for ionic bonding and covalent bonding. , ionic bonds are present in the immobilized hydrophilic copolymer3
This can be achieved by using a quaternary amine group as it is or by treating it with an alkyl halide or the like to form a quaternary ammonium salt, and then reacting it with an acidic polysaccharide.

共有結合は種々の方法が適用可能で特に限定はしないが
、例えば親水性共重合体中に存在する1級アミン基(ま
たはカルボキシル基)と酸性多糖類中に存在するカルボ
キシル基(または1級アミノ基)とを反応させる場合は
カルボジイミドやウッドワード試薬などの縮合剤を用い
ることにより、達成される。またスペーサーを導入する
場合は、あらかじめ親水性共重合体中あるいは酸性多糖
類中にスペーサーを導入し、そのスペーサーの反応性末
端に一方を結合させる方法や一度にスペーサー介して反
応、結合させる方法により達成される。
Various methods can be applied to the covalent bond, and there are no particular limitations. For example, a primary amine group (or carboxyl group) present in a hydrophilic copolymer and a carboxyl group (or primary amino When reacting with (group), this can be achieved by using a condensing agent such as carbodiimide or Woodward's reagent. In addition, when introducing a spacer, the spacer is introduced into a hydrophilic copolymer or acidic polysaccharide in advance, and one of the spacers is bonded to the reactive end of the spacer, or the spacer is reacted and bonded all at once via the spacer. achieved.

本発明の易滑性医療材料は優れた易滑性と抗血栓性を合
せ持つことから、種々カテーテル、ガイドワイヤー、カ
ニユーレ、内視鏡などの医療材料に広く適用可能である
Since the slippery medical material of the present invention has both excellent slipperiness and antithrombotic properties, it can be widely applied to medical materials such as various catheters, guide wires, cannulae, and endoscopes.

[実施例] 実施例を挙げて更に詳細に説明するが、本発明はこれら
に限定されるものではない。
[Example] The present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 N−ビニル−2−ピロリドン16.0gとN。Example 1 16.0 g of N-vinyl-2-pyrrolidone and N.

N−ジメチルアミンエチルアクリレート2.0gおよび
2−ヒドロキシエチルアクリレート2.0gをエチルア
ルコール中、アゾビスジメチルバレロニトリル(V−6
5>を開始剤として重合することにより分子量的50万
の親水性共重合体を得た。
2.0 g of N-dimethylamine ethyl acrylate and 2.0 g of 2-hydroxyethyl acrylate were dissolved in azobisdimethylvaleronitrile (V-6) in ethyl alcohol.
A hydrophilic copolymer having a molecular weight of 500,000 was obtained by polymerization using 5> as an initiator.

ステンレス線にポリウレタンを被覆した長さ70cm、
直径2mmのガイドワイヤーををポリイソシアネート(
日本ポリウレタン工業社製、商品名:C−L、TDI 
(トルエンジイソシアネート)/TMP(トリメチロー
ルプロパン)付加物)の3%メチルエチルケトン(ME
K)溶液に1分間浸漬後、50℃で1時間乾燥した。
Stainless steel wire coated with polyurethane, length 70cm,
A guide wire with a diameter of 2 mm was made of polyisocyanate (
Manufactured by Nippon Polyurethane Industries, product name: CL, TDI
3% methyl ethyl ketone (ME
K) After being immersed in the solution for 1 minute, it was dried at 50°C for 1 hour.

つぎにこのガイドワイヤーを先に合成した親水性共重合
体の4%クロロホルム溶液に5秒間浸漬後引上げ、乾燥
f&80℃で5時間反応させた。反応後、ガイドワイヤ
ーを熱水でよく洗浄して未結合の親水性共重合体を除去
した。
Next, this guide wire was immersed in a 4% chloroform solution of the previously synthesized hydrophilic copolymer for 5 seconds, then pulled out, and allowed to react at dry temperature and 80° C. for 5 hours. After the reaction, the guide wire was thoroughly washed with hot water to remove unbound hydrophilic copolymer.

さらにこのガイドワイヤーを臭化エチル5%を含むメチ
ルアルコール中に35°Cで2時間浸漬し、ビニルピロ
リドン系ポリマー中の3級アミン基を4級化した後、2
%ヘパリン水溶液中に50℃で24時間浸漬して、イオ
ン結合による固定化を行なった。次いでイオン交換水で
洗浄して未結合ヘパリンおよび残留塩を除去し、當温で
2昼夜真空乾燥した。
Furthermore, this guide wire was immersed in methyl alcohol containing 5% ethyl bromide at 35°C for 2 hours to quaternize the tertiary amine groups in the vinylpyrrolidone polymer.
% heparin aqueous solution at 50° C. for 24 hours to perform immobilization by ionic bonding. Next, unbound heparin and residual salts were removed by washing with ion-exchanged water, and the product was vacuum-dried at room temperature for two days and nights.

コーティングポリマー層中のヘパリン含有景をX線マイ
クロアナライザーによるイオウ原子の定量により測定し
たところ、20.5wt%であった。また、血漿中にお
けるヘパリン溶出速度は0゜01U/Ci・石i口であ
った。
The content of heparin in the coating polymer layer was determined by quantifying sulfur atoms using an X-ray microanalyzer, and found to be 20.5 wt%. Furthermore, the heparin elution rate in plasma was 0.01 U/Ci/stone.

易滑性の定量は以下の手順と方法で行なった。The slipperiness was quantified using the following procedure and method.

(1)スライドガラス上にガイドワイヤーを敷き詰める
(1) Lay the guide wire over the glass slide.

(2)ガイドワイヤーを生理食塩水に浸す。(2) Immerse the guide wire in physiological saline.

(3)ガイドワイヤー上に底面をポリウレタンで被覆し
た100gの分銅を置く。
(3) Place a 100 g weight whose bottom surface is coated with polyurethane on the guide wire.

(4)スライドガラスの長軸方向の一端を固定し、もう
一端を徐々に持上げ、分銅の滑り始める時の傾斜角度(
θ)を測定する。
(4) Fix one end of the slide glass in the long axis direction and gradually lift the other end, and the inclination angle when the weight starts to slide (
θ).

(5)求めた傾斜角度(θ)がら、式 μ−tanθ 
を用い摩擦係数μを算出する。
(5) From the obtained inclination angle (θ), the formula μ-tanθ
Calculate the friction coefficient μ using

以上の方法により評価したところ、静摩擦係数μ−〇、
026であり、優れな易滑性を示した。
As a result of evaluation using the above method, the static friction coefficient μ−〇,
026, and showed excellent slipperiness.

また、コーティング前のガイドワイヤーはμ=0゜36
であり、易滑性を示さなかった。
In addition, the guide wire before coating is μ = 0°36
It did not show any slipperiness.

抗血栓性の評価は、成因(約15kg)を用いて、工大
静脈中にガイドワイヤーを2週間留置した後、ガイドワ
イヤー表面の血栓付着状況を観察することによって行な
った。
The antithrombotic properties were evaluated by using a guide wire (approximately 15 kg) and indwelling the guide wire in the vena cava for two weeks, and then observing the state of thrombus adhesion on the surface of the guide wire.

その結果、本実施例の易滑性ガイドワイヤー表面には肉
眼的にも電子顕微鏡的にも全く血栓の付着が見られず、
優れた高血栓性を示した。一方、コーティング前のガイ
ドワイヤーでは著しい血栓の付着が認められた。
As a result, no thrombus was observed on the surface of the slippery guide wire of this example, both macroscopically and by electron microscopy.
It showed excellent hyperthrombotic properties. On the other hand, significant thrombus adhesion was observed on the guidewire before coating.

以上のように本易滑性ガイドワイヤーは、優れた易滑性
と抗血栓性をあわせもつことが明らかになった。
As described above, it has been revealed that the present slippery guidewire has both excellent slipperiness and antithrombotic properties.

実施例2 メタクリルアミド18.0gとN、N−ジメチルアミノ
エチルメタクリレート2.0gとをテトラヒドロフラン
中でAIBN(アゾビスイソブチロニトリル)を開始剤
として重合し、分子量約30万の親水性共重合体を得た
Example 2 18.0 g of methacrylamide and 2.0 g of N,N-dimethylaminoethyl methacrylate were polymerized in tetrahydrofuran using AIBN (azobisisobutyronitrile) as an initiator, resulting in a hydrophilic copolymer with a molecular weight of approximately 300,000. Obtained union.

実施例1と同様にポリイソシアネートをコーティングし
たガイドワイヤーをこの親水性共重合体の5%アセトン
に5秒間浸漬後引上げ、乾燥後80℃で5時間反応させ
た。反応後、ガイドワイヤーを熱水でよく洗浄して未結
合の親水性共重合体を除去した。4級化およびヘパリン
化は実施例1゜と同様に行なった。また、コーティング
ポリマー層中のヘベリン含有量は11.7wt%であっ
た。
A guide wire coated with polyisocyanate in the same manner as in Example 1 was immersed in 5% acetone of this hydrophilic copolymer for 5 seconds, pulled up, dried, and reacted at 80° C. for 5 hours. After the reaction, the guide wire was thoroughly washed with hot water to remove unbound hydrophilic copolymer. Quaternization and heparinization were carried out in the same manner as in Example 1°. Moreover, the hevelin content in the coating polymer layer was 11.7 wt%.

易滑性および抗血栓性の評価を実施例1と同様にして行
なったところ、静摩擦係数μ=0.035と優れており
、また血栓の付着も全く確認されなかった。
When the slipperiness and antithrombotic properties were evaluated in the same manner as in Example 1, the coefficient of static friction μ was excellent, 0.035, and no thrombus adhesion was observed.

実施例3 重合度23のポリエチレンオキサイド単位を有するメト
キシポリエチレングリコールモノメタクリレート(新中
村化学製、M−23G>18.0gとアクリル酸2.0
gとをアゾビスジメチルバレロニトリル(V−65>を
開始剤として重合し、分子量約60万の親水性共重合体
を得た。
Example 3 Methoxypolyethylene glycol monomethacrylate having polyethylene oxide units with a degree of polymerization of 23 (manufactured by Shin Nakamura Chemical Co., Ltd., M-23G>18.0 g and acrylic acid 2.0 g)
g was polymerized using azobisdimethylvaleronitrile (V-65> as an initiator) to obtain a hydrophilic copolymer with a molecular weight of about 600,000.

実施例1と同様にポリイソシアネートをコーティングし
たガイドワイヤーをこの親水性共重合体の4%テトラヒ
ドロフラン溶液に5秒間浸漬後引上げ、乾燥後80℃で
5時間反応させた。反応後、ガイドワイヤーを熱水でよ
く洗浄して未結合の親水性共重合体を除去した。
A guide wire coated with polyisocyanate in the same manner as in Example 1 was immersed in a 4% tetrahydrofuran solution of this hydrophilic copolymer for 5 seconds, then pulled out, dried, and reacted at 80° C. for 5 hours. After the reaction, the guide wire was thoroughly washed with hot water to remove unbound hydrophilic copolymer.

1−エチル−3−(3−ジメチルアミノプロピル)−カ
ルボジイミド塩酸塩の1%水溶液中に力′イドワイヤー
を4℃、24時間浸漬した。これとは別にヘパリン5g
と1−エチル−3−(3−ジメチルアミンプロピル)−
カルボジイミド塩酸塩0.05gをイオン交換水100
gに溶解し4℃、24時間反応させておいた。
The wire was immersed in a 1% aqueous solution of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride at 4°C for 24 hours. In addition to this, 5g of heparin
and 1-ethyl-3-(3-dimethylaminepropyl)-
Add 0.05 g of carbodiimide hydrochloride to 100 g of ion-exchanged water.
g and allowed to react at 4°C for 24 hours.

ヘキサメチレンジアミンの5%水溶液にカルボジイミド
活性化ガイドワイヤーを25℃、2時間浸漬、反応させ
た後、イオン交換水でよく洗浄した。
A carbodiimide-activated guide wire was immersed in a 5% aqueous solution of hexamethylene diamine at 25° C. for 2 hours to react, and then thoroughly washed with ion-exchanged water.

さきに調製した活性化ヘパリン溶液中に、このガイドワ
イヤーを25℃、2時間浸漬、反応させて、ヘパリンを
共有結合により固定した。コーティングポリマー層中の
ヘパリン含有量は8.3wt%であった。
This guidewire was immersed in the previously prepared activated heparin solution at 25° C. for 2 hours to react, thereby fixing heparin by covalent bonding. The heparin content in the coating polymer layer was 8.3 wt%.

易滑性および抗血栓性の評価を実施例1と同様にして行
なったところ、静摩擦係数μ=0.026と優れており
、また血栓の付着も全く確認されなかった。
When the slipperiness and antithrombotic properties were evaluated in the same manner as in Example 1, they were excellent with a static friction coefficient μ of 0.026, and no thrombus adhesion was observed.

比較例I N−ビニル−2−ピロリドン18.0gと2−ヒドロキ
シエチルメタクリレート2.0gとをエチルアルコール
中、AIBNを開始剤として重合することのより分子量
約30万の親水性共重合体を得た。
Comparative Example I A hydrophilic copolymer with a molecular weight of approximately 300,000 was obtained by polymerizing 18.0 g of N-vinyl-2-pyrrolidone and 2.0 g of 2-hydroxyethyl methacrylate in ethyl alcohol using AIBN as an initiator. Ta.

実施例1と同様にポリイソシアネートをコーティングし
たガイドワイヤーをこの親水性共重合体の4%クロロホ
ルム溶液に5秒間浸漬後引上げ、乾燥後80℃で5時間
反応させた。反応後、ガイドワイヤーを熱水でよく洗浄
して未結合の親水性共重合体を除去した。
A guide wire coated with polyisocyanate in the same manner as in Example 1 was immersed in a 4% chloroform solution of this hydrophilic copolymer for 5 seconds, then pulled out, dried, and reacted at 80° C. for 5 hours. After the reaction, the guide wire was thoroughly washed with hot water to remove unbound hydrophilic copolymer.

易滑性および抗血栓性の評価は実施例1と同様に行なっ
た。静摩擦係数はμ=0.043で、易滑性は比較的優
れているが実施例には及ばない。
Evaluation of slipperiness and antithrombotic property was performed in the same manner as in Example 1. The coefficient of static friction was μ=0.043, and the slipperiness was relatively excellent, but it was not as good as the examples.

また、抗血栓性の評価ではかなりの血栓の付着が認めら
れた。
Furthermore, in the evaluation of antithrombotic properties, considerable adhesion of blood clots was observed.

比較例2 光官能基としてジエチルチオカルバマート基を0.03
2モル%含有する重合度1100のポリ塩化ビニル20
gと重合度23のポリエチレンオキシド単位を有するメ
トキシポリエチレングリコールモノメタクリレート(新
中村化学製、M−23G>20gおよびN、N−ジメチ
ルアミンエチルメタクリレート10gを200gのテト
ラヒドロフランに溶解し、光源内部浸漬型光重合装置(
ウシオ電機製ULO−6QR>中で高圧水銀灯を用いて
、30℃、7時間、アルゴン気流下に紫外線を照射し、
ポリ塩化ビニルに上記2種の単量体がグラフトしたグラ
フト共重合体を得た。元素分析により求めた共重合体の
化学組成は、ポリ塩化ビニル63 w t%、メトキシ
ポリエチレングリコールモノメタクリレート26 w 
t%、N、Nジメチルアミノエチルメタクリレート11
wt%であった。
Comparative Example 2 0.03 diethylthiocarbamate group as photofunctional group
Polyvinyl chloride 20 with a degree of polymerization of 1100 containing 2 mol%
Methoxypolyethylene glycol monomethacrylate (manufactured by Shin Nakamura Chemical, M-23G>20 g) having polyethylene oxide units with a polymerization degree of 23 and 10 g of N,N-dimethylamine ethyl methacrylate were dissolved in 200 g of tetrahydrofuran, and an immersion type light inside the light source was prepared. Polymerization equipment (
Using a high-pressure mercury lamp in Ushio Inc.'s ULO-6QR, UV rays were irradiated at 30°C for 7 hours under an argon flow.
A graft copolymer in which the above two types of monomers were grafted onto polyvinyl chloride was obtained. The chemical composition of the copolymer determined by elemental analysis is 63 wt% polyvinyl chloride, 26 wt% methoxypolyethylene glycol monomethacrylate.
t%, N, N dimethylaminoethyl methacrylate 11
It was wt%.

実施例1と同じポリウレタン被覆ガイドワイヤーをこの
共重合体の5%ジメチルホルムアミド溶液に1分間浸漬
後、引上げて50℃、1時間乾燥した。つづいて、実施
例1と同様の方法で4級化およびヘパリン化を行なった
。また、コーティングポリマー層中のヘパリン含有量は
12.3wt%であった。
The same polyurethane-coated guide wire as in Example 1 was immersed in a 5% dimethylformamide solution of this copolymer for 1 minute, then pulled out and dried at 50° C. for 1 hour. Subsequently, quaternization and heparinization were performed in the same manner as in Example 1. Moreover, the heparin content in the coating polymer layer was 12.3 wt%.

易滑性および抗血栓性の評価は実施例1と同様に行なっ
た。静摩擦係数はμ=0.27であり、易滑性を示さな
かった。しかしながら、抗血栓性の評価においては、血
栓の付着が全く認められず優れていた。
Evaluation of slipperiness and antithrombotic property was performed in the same manner as in Example 1. The coefficient of static friction was μ=0.27, indicating no slipperiness. However, in the evaluation of antithrombotic properties, no adhesion of thrombus was observed and the product was excellent.

実施例1〜3および比較例1.2の易滑性および抗血栓
性の評価結果を表1に示す。
Table 1 shows the evaluation results of slipperiness and antithrombotic properties of Examples 1 to 3 and Comparative Example 1.2.

有していた。had.

1)従来の易滑性材料に比べてより優れた低摩表1 擦性(易滑性) を有している。1) Better low friction than conventional slippery materials Table 1 Friction (easy slipping) have.

2)抗血栓性に優れている。2) Excellent antithrombotic properties.

3)安全性が高い。3) High safety.

Claims (1)

【特許請求の範囲】[Claims] (1)共有結合によって基材に被覆固定された親水性共
重合体にイオン結合または共有結合により酸性多糖類を
固定してなる易滑性医療材料。
(1) A slippery medical material made by fixing an acidic polysaccharide by ionic or covalent bonds to a hydrophilic copolymer coated and fixed to a base material by covalent bonds.
JP63299114A 1988-11-25 1988-11-25 Slippery medical material Expired - Fee Related JP2829995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299114A JP2829995B2 (en) 1988-11-25 1988-11-25 Slippery medical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299114A JP2829995B2 (en) 1988-11-25 1988-11-25 Slippery medical material

Publications (2)

Publication Number Publication Date
JPH02144070A true JPH02144070A (en) 1990-06-01
JP2829995B2 JP2829995B2 (en) 1998-12-02

Family

ID=17868305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299114A Expired - Fee Related JP2829995B2 (en) 1988-11-25 1988-11-25 Slippery medical material

Country Status (1)

Country Link
JP (1) JP2829995B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479565A2 (en) * 1990-10-03 1992-04-08 Cook Incorporated Medical apparatus for endoscopic surgery
JPH05115541A (en) * 1991-10-28 1993-05-14 Kurinikaru Supply:Kk Anti-thrombotic medical tool having lubricating property at the time of lubrication and its manufacture
WO1998057679A1 (en) * 1997-06-18 1998-12-23 Toray Industries, Inc. Antithrombotic medical material
JP2001129074A (en) * 1999-11-08 2001-05-15 Asahi Intecc Co Ltd Lubricated guiding catheter and spring guide wire
JP2009068192A (en) * 2007-09-11 2009-04-02 Techno Tec:Kk Adaptor
WO2015080177A1 (en) * 2013-11-28 2015-06-04 東レ株式会社 Antithrombotic material
JP2018033846A (en) * 2016-09-02 2018-03-08 国立大学法人山形大学 Polymer for medical supply, material for medical supply, and medical supply using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106778A (en) * 1977-02-28 1978-09-18 Unitika Ltd Method of giving figrinolytic activity to the surface of polyurethane resin
JPS58193766A (en) * 1982-04-22 1983-11-11 アストラ・メデイテツク・アクチエボラ−グ Preparation of hydrophilic coating
JPS6173667A (en) * 1984-09-20 1986-04-15 住友ベークライト株式会社 Antithrombotic material
JPS62284652A (en) * 1986-06-04 1987-12-10 日本原子力研究所 Anti-thrombogenic medical molded body and its production
JPS63238170A (en) * 1985-12-30 1988-10-04 タインデイル・プレインズ−ハンタ−・リミテツド Article coated with hydrophilic film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106778A (en) * 1977-02-28 1978-09-18 Unitika Ltd Method of giving figrinolytic activity to the surface of polyurethane resin
JPS58193766A (en) * 1982-04-22 1983-11-11 アストラ・メデイテツク・アクチエボラ−グ Preparation of hydrophilic coating
JPS6173667A (en) * 1984-09-20 1986-04-15 住友ベークライト株式会社 Antithrombotic material
JPS63238170A (en) * 1985-12-30 1988-10-04 タインデイル・プレインズ−ハンタ−・リミテツド Article coated with hydrophilic film
JPS62284652A (en) * 1986-06-04 1987-12-10 日本原子力研究所 Anti-thrombogenic medical molded body and its production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479565A2 (en) * 1990-10-03 1992-04-08 Cook Incorporated Medical apparatus for endoscopic surgery
JPH05115541A (en) * 1991-10-28 1993-05-14 Kurinikaru Supply:Kk Anti-thrombotic medical tool having lubricating property at the time of lubrication and its manufacture
WO1998057679A1 (en) * 1997-06-18 1998-12-23 Toray Industries, Inc. Antithrombotic medical material
JP2001129074A (en) * 1999-11-08 2001-05-15 Asahi Intecc Co Ltd Lubricated guiding catheter and spring guide wire
JP2009068192A (en) * 2007-09-11 2009-04-02 Techno Tec:Kk Adaptor
WO2015080177A1 (en) * 2013-11-28 2015-06-04 東レ株式会社 Antithrombotic material
CN105744967A (en) * 2013-11-28 2016-07-06 东丽株式会社 Antithrombotic material
JPWO2015080177A1 (en) * 2013-11-28 2017-03-16 東レ株式会社 Antithrombotic material
US9795721B2 (en) 2013-11-28 2017-10-24 Toray Industries, Inc. Antithrombotic material
JP2018033846A (en) * 2016-09-02 2018-03-08 国立大学法人山形大学 Polymer for medical supply, material for medical supply, and medical supply using the same

Also Published As

Publication number Publication date
JP2829995B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP6495241B2 (en) Method for manufacturing medical device and medical device
US6340465B1 (en) Lubricious coatings for medical devices
EP1615677B1 (en) Coating for biomedical devices
Ikada Surface modification of polymers for medical applications
EP0517890B1 (en) Biocompatible abrasion resistant coated substrates
US5855618A (en) Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin
CA2017954C (en) Amine rich fluorinated polyurethaneureas and their use in a method to immobilize an antithrombogenic agent on a device surface
Nagaoka et al. Low-friction hydrophilic surface for medical devices
US5077372A (en) Amine rich fluorinated polyurethaneureas and their use in a method to immobilize an antithrombogenic agent on a device surface
JP4339413B2 (en) Surface modification method using reaction mixture of water-insoluble polymer and polyalkylenimine
WO1998058988A1 (en) A hydrophilic coating and a method for the preparation thereof
WO1991008790A1 (en) Lubricious antithrombogenic catheters, guidewires and coatings
US20130323291A1 (en) Hydrophilic and non-thrombogenic polymer for coating of medical devices
JP2537580B2 (en) Method for producing fluorinated polyurethane with improved blood compatibility
US20110200828A1 (en) Hydrophilic coatings for medical devices
JPH04202441A (en) Medical tool having surface lubricity when wet and preparation thereof
JPH02144070A (en) Easily slidable medical material
JP2745558B2 (en) Lubricious medical materials
CN114845746B (en) UV curable coatings for medical devices
JP3776194B2 (en) Medical device and method for manufacturing the same
JP2000516827A (en) Biocompatible medical products and methods
JP2004024418A (en) Antibacterial composition
JP2003144541A (en) Easily-slidable medical tool
JP2001120657A (en) Medical tool whose surface has wetting property at a time of wetting and method for manufacturing thereof
IE20030294U1 (en) Coating for biomedical devices

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees