JPH02144041A - Method for collecting nmr data - Google Patents

Method for collecting nmr data

Info

Publication number
JPH02144041A
JPH02144041A JP63300140A JP30014088A JPH02144041A JP H02144041 A JPH02144041 A JP H02144041A JP 63300140 A JP63300140 A JP 63300140A JP 30014088 A JP30014088 A JP 30014088A JP H02144041 A JPH02144041 A JP H02144041A
Authority
JP
Japan
Prior art keywords
phase
frequency signal
high frequency
carrier wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63300140A
Other languages
Japanese (ja)
Other versions
JPH0638791B2 (en
Inventor
Kazumori Yamazaki
山崎 一盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63300140A priority Critical patent/JPH0638791B2/en
Publication of JPH02144041A publication Critical patent/JPH02144041A/en
Publication of JPH0638791B2 publication Critical patent/JPH0638791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the steady state of residual transverse magnetization by differentiating spin flipping directions by changing the phase of the carrier wave of an exciting high frequency signal at every repeating time substantially at random and changing the phase of a reference high frequency signal corresponding to the above mentioned change. CONSTITUTION:In a pulse sequence employing a field echo method due to flip angle operation, a high frequency signal modulated in its amplitude to such a waveform that a flip angle becomes alpha deg. is transmitted at first to excite an objective spin. At the same time, an inclined magnetic field Gs for selecting a slice surface is applied. Succeedingly, a phase encoding inclined magnetic field Gp is applied and, thereafter, a frequency encoding inclined magnetic field Gf is further applied to generate an echo signal. A series of these pulse sequencies are repeated according to a short repeating time TR. At this time, the phase of the carrier wave of an exciting high frequency signal is changed at random at every TR. That is, the phase of the carrier wave of a transmission high frequency signal is set to XTM-thetan at the n-th TR and set to XTM-thetan+1 at the (n+1)-th TR. Generated echo signals (n), (n+1) are synchronously detected fundamentally by setting the same signal as the carrier wave of the transmitted high frequency signal as a reference signal.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、核磁気共鳴(NMR)を利用したイメージ
ング法やスペクトロスコピ法などのNMRデータ採取法
に関する。
The present invention relates to NMR data acquisition methods such as imaging methods and spectroscopy using nuclear magnetic resonance (NMR).

【従来の技術】[Conventional technology]

フリップ角操作によるフィールドエコー法(たとえばF
LASH法)に代表される高速撮像法において、繰り返
し時間TRを数十m5ecにまで短くしていくと、撮像
対象の横緩和時間T2よりも短くなって(TR<<T2
)、残留横磁化が定常状態となり、未制御な位相コヒー
レンスによりアーティファクトが発生する。 そこで従来では、variable spoiling
 gradientと呼ばれるランダムなスポイラ−パ
ルスを用いて残留横磁化を防ぐことにより、このアーテ
ィファクトを除去することなどが提案されている( J
ensFrahm他rTransverse Cohe
rence in RapidFl、AS)I NMR
imageing 」、 Journal of Ma
gneticResonance、 72.307−3
14,1987)。
Field echo method by flip angle manipulation (for example, F
In high-speed imaging methods such as the LASH method, when the repetition time TR is shortened to several tens of m5ec, it becomes shorter than the transverse relaxation time T2 of the imaging target (TR<<T2
), residual transverse magnetization becomes steady-state and artifacts occur due to uncontrolled phase coherence. Therefore, conventionally, variable spoiling
It has been proposed to remove this artifact by preventing residual transverse magnetization using random spoiler pulses called gradients (J
ensFrahmet alTransverse Cohe
Rence in Rapid Fl, AS)I NMR
imaging”, Journal of Ma
gnetic Resonance, 72.307-3
14, 1987).

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記の従来の提案のように各繰り返し毎
に毎回ランダムに変化する強い勾配磁場のスポイラ−パ
ルスをかけることによりたしかに上記のアーティファク
トは消失するが、繰り返し時間TRi′)<短い場合、
急激な勾配磁場の変化は大きなエデイ−カレントを発生
させ、これによりNMR信号に歪を生じさせる。そのた
め、MRイメージング法においては画像歪という別の問
題を発生させることになる。 この発明は、画像歪などの別の問題を発生させることな
く、繰り返し時間を短くした場合の残留横磁化の問題を
解消した、NMRデータ採取法を提供することを目的と
する。
However, although the above artifacts do disappear by applying a spoiler pulse of a strong gradient magnetic field that changes randomly for each repetition as in the conventional proposal, if the repetition time TRi') < short,
Rapid changes in the gradient magnetic field generate large eddy currents, thereby distorting the NMR signal. Therefore, another problem of image distortion occurs in the MR imaging method. An object of the present invention is to provide an NMR data acquisition method that eliminates the problem of residual transverse magnetization when the repetition time is shortened, without causing other problems such as image distortion.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明によるNMRデータ
採取法においては、励起用高周波信号の搬送波の位相を
繰り返し時間毎に実質的にランダムに変化させるととも
に、受信したNMR信号の検波のために用いる上記搬送
波と同じ周波数の参照用高周波信号の位相を上記の変化
に対応させて変化させることを特徴とする。
In order to achieve the above object, in the NMR data acquisition method according to the present invention, the phase of the carrier wave of the excitation high frequency signal is changed substantially randomly at each repetition time, and the above The present invention is characterized in that the phase of a reference high frequency signal having the same frequency as the carrier wave is changed in accordance with the above change.

【作  用】[For production]

励起用高周波信号の搬送波の位相が、繰り返し時間毎に
、実質的にランダムに変化させられる。 そのため、各繰り返し時間毎に、スピンのフリップされ
る方向が異なることとなり、残留横磁化の定常状態化を
防止でき、残留横磁化が定常状態となることに起因する
未制御な位相コヒーレンスにより発生する問題が解消さ
れる。 そして、このような励起用高周波信号によって励起され
た対象からのNMR信号を受信し、この受信信号を上記
高周波信号の搬送波を参照用高周波信号として同期検波
して低周波信号に変換する際の、その参照用高周波信号
の位相も、上記の励起用高周波信号の搬送波位相に対応
させて変化させているので、この低周波信号では位相の
揃ったスピン情報が得られる。そのため、こうして得ら
れる情報は従来のNMRデータと同様に処理することが
でき、データ処理についてはなんらの変更も不要となる
。 また、ランダムなスポイラ−パルスを与えることがない
ため、大きなエデイ−カレントも発生せず、画像の歪等
の問題も避けることができる。さらにスポイラ・−パル
スに要する時間も不要となるため、より短いTRとする
こと、すなわちより高速に撮像することが可能となる。
The phase of the carrier wave of the excitation high-frequency signal is changed substantially randomly at each repetition time. Therefore, the direction in which the spins are flipped differs for each repetition time, which prevents the residual transverse magnetization from reaching a steady state, which occurs due to uncontrolled phase coherence caused by the residual transverse magnetization reaching a steady state. The problem is resolved. Then, when receiving an NMR signal from a target excited by such an excitation high-frequency signal, and converting this received signal into a low-frequency signal by synchronously detecting the received signal using the carrier wave of the high-frequency signal as a reference high-frequency signal, Since the phase of the reference high-frequency signal is also changed in accordance with the carrier phase of the excitation high-frequency signal, spin information with a uniform phase can be obtained with this low-frequency signal. Therefore, the information obtained in this way can be processed in the same way as conventional NMR data, and no changes are required in data processing. Furthermore, since random spoiler pulses are not applied, large eddy currents do not occur, and problems such as image distortion can be avoided. Furthermore, since the time required for the spoiler pulse is not required, it is possible to obtain a shorter TR, that is, to perform imaging at a higher speed.

【実 施 例】【Example】

つぎにこの発明をMRイメージング法に適用した一実施
例について図面を参照しながら説明する。 第1図は、この発明を、フリップ角操作によるフィール
ドエコー法を採用した高速撮像法に適用した一実施例に
かかるパルスシーケンスを示す。この高速撮像法では、
第1図に示すように、まずフリップ角がα となるよう
な波形に振幅変調された高周波信号を送信して対象のス
ピンの励起を行なうとともに、これと同時にスライス面
選択用の傾斜磁場Gsを印加する。続いて位相エンコー
ド用傾斜磁場Gpを印加し、さらにその後周波数エンコ
ード用傾斜磁場Gfを加えてエコー信号を発生させる。 このような一連のパルスシーケンスを短い繰り返し時間
TRで繰り返す。このパルスシーケンスは通常の高速撮
像法と同じであるが、この発明によると、上記の励起用
高周波信号の搬送波の位相を各TR毎にランダムに変え
るようにしている。すなわちn回目のTRにおいて送信
高周波信号の搬送波位相をXTM−θnとし、(n+1
)回目のTRではXTM−θn+1とする。そして発生
したエコー信号n及びn+1は、基本的に送信高周波信
号の搬送波と同じ信号を参照信号として同期検波する。 つまり参照信号は周波数及び位相が送信高周波信号の搬
送波と同じにされる。位相についてはXTM−θn、X
TM−θn+1と同じRef−θn、Ref−θn44
となる。nを0からN−1まで繰り返してデータ採取す
る場合、つぎの式 %式% で示される関係を満たすようにランダム性をもなせる。 Ref−θnについても同様とする。 このように励起用高周波信号であるα°パルスの搬送波
位相XT)11−θを各TR毎にランダムに変化させて
いるので、スピンの倒れる方向を各TR毎にランダムに
変化させることができる。すなわち、励起用高周波信号
であるα°パルスの搬送波の位相角によりスピンの倒れ
る方向(フリップ方向)が第2図のように制御できるか
らである。スピンの倒れる方向がランダムになると、第
1図のパルスシーケンスにおいてT R(<T 2とし
たときのスピンの残留横磁化の定常状態が防止できる。 一方、検波時に用いる参照信号の位相Ref−θもXT
)、+−θに対応させているため、検波後のエコー信号
は上記のようなランダム性が除かれた通常の信号と同じ
となる。そのため、こうして収集されたデータを2次元
フーリエ変換することによって、位相コヒーレンスによ
るアーティファクトが除去された画像を再構成できる。 通常ではXTM−θ−Ref−θとすればよいが、位相
コヒーレンスによるアーティファクトの除去に加えて、
カールパーセル列の180°パルス補正やDCノイズ除
去等のために、さらにXTM−θについてのみ各TR毎
に0°、180°、0°、180°、・・・というよう
な位相オフセットを加えることもできる6第3図は上記
のパルスシーケンスを実現するMRイメージングシステ
ムを示す。この第3図において、波形発生回路11はス
ピンの磁化を角度α°だけ倒すような振幅変調波形を発
生し、これがD/A変換回路12に送られ、アナログ信
号とされた後、振幅変調回路13に送られる。これによ
り搬送波が振幅変調され、α°パルスとなってパワーア
ンプ14を経て送信コイル15に送られ、この送信コイ
ル15から人体等の被検体(図示しない)に照射され、
これを励起する。人体等の被検体で生じたNMR信号(
エコー信号)は受信コイル21によって受信され、プリ
アンプ22を経て検波回路23に送られて検波され、そ
の後ローパスフィルタ24を経てA/D変換回路25に
よりデジタル信号に変換される。この信号はホストコン
ピュータ26に取り込まれ、高速フーリエ変換(FFT
)等の処理を受ける。 励起用の送信高周波信号の搬送波及び検波回路23で用
いられる参照信号は、基準タロツク発生器31から発生
された高周波信号が用いられるが、それぞれ位相シフタ
32.33を経て位相制御される。これらの信号の位相
は、乱数角度発生器35の出力によって、基本的には同
じ位相であるXTM−θ、Ref−θに制御される。送
信搬送波位相制御回路34は、上記の変形カールパーセ
ル制御やDCノイズ除去のための位相オフセットを発生
し、これを加算回路36において乱数角度信号に加え、
XTM−θのみTR毎にO” + 180°、0°、1
8O°、・・・というような位相オフセットを加える。 なお、上記の実施例では搬送波及び参照信号の位相をラ
ンダノ、に変化させたが、上記の式の関係が成立すれば
、必ずしも厳密な意味での乱数制御である必要はなく、
各TR毎に異なる位相角で且つその位相変化量が違って
いれば、残留横磁化の定常状態化は防止可能である。さ
らに、位相コヒーレンスによるアーティファクト除去効
果を高めるためにスポイラ−グラジエンl−パルスと併
用することもできる。また、上記の2次元フーリエ変換
法のみならず、3次元フーリエ変換法にも拡張したり、
あるいはCT法やエコープレーナ法への適用も容易にで
きる。
Next, an embodiment in which the present invention is applied to an MR imaging method will be described with reference to the drawings. FIG. 1 shows a pulse sequence according to an embodiment in which the present invention is applied to a high-speed imaging method employing a field echo method using flip angle manipulation. This high-speed imaging method
As shown in Figure 1, first, a high frequency signal whose amplitude is modulated to a waveform with a flip angle of α is transmitted to excite the target spins, and at the same time, a gradient magnetic field Gs for slice plane selection is applied. Apply. Subsequently, a phase encoding gradient magnetic field Gp is applied, and then a frequency encoding gradient magnetic field Gf is further applied to generate an echo signal. Such a series of pulse sequences is repeated with a short repetition time TR. Although this pulse sequence is the same as the normal high-speed imaging method, according to the present invention, the phase of the carrier wave of the excitation high-frequency signal is randomly changed for each TR. That is, in the n-th TR, the carrier phase of the transmitted high-frequency signal is XTM-θn, and (n+1
)-th TR is set to XTM-θn+1. The generated echo signals n and n+1 are basically synchronously detected using the same signal as the carrier wave of the transmission high-frequency signal as a reference signal. In other words, the reference signal has the same frequency and phase as the carrier wave of the transmitted high-frequency signal. For the phase, XTM-θn,
Ref-θn same as TM-θn+1, Ref-θn44
becomes. When data is collected by repeating n from 0 to N-1, randomness can be achieved so that the relationship expressed by the following formula % is satisfied. The same applies to Ref-θn. In this way, since the carrier phase XT)11-θ of the α° pulse, which is the excitation high-frequency signal, is changed randomly for each TR, the direction in which the spins fall can be changed randomly for each TR. That is, the direction in which the spins fall (flip direction) can be controlled as shown in FIG. 2 by the phase angle of the carrier wave of the α° pulse, which is the excitation high-frequency signal. If the directions in which the spins fall are random, it is possible to prevent the steady state of the residual transverse magnetization of the spins when T R (< T 2) in the pulse sequence shown in Figure 1. Also XT
), +-θ, the echo signal after detection is the same as a normal signal from which the randomness described above has been removed. Therefore, by performing two-dimensional Fourier transform on the data thus collected, it is possible to reconstruct an image from which artifacts due to phase coherence have been removed. Normally, it is sufficient to use XTM-θ-Ref-θ, but in addition to removing artifacts by phase coherence,
For 180° pulse correction of the curl Purcell train, DC noise removal, etc., phase offsets such as 0°, 180°, 0°, 180°, etc. are added to each TR only for XTM-θ. FIG. 3 shows an MR imaging system that implements the above pulse sequence. In FIG. 3, a waveform generation circuit 11 generates an amplitude modulation waveform that tilts the magnetization of spins by an angle α°, and this is sent to a D/A conversion circuit 12, where it is converted into an analog signal and then sent to an amplitude modulation circuit. Sent to 13th. As a result, the carrier wave is amplitude-modulated, becomes an α° pulse, and is sent to the transmitting coil 15 via the power amplifier 14, and is irradiated from the transmitting coil 15 to a subject (not shown) such as a human body.
Excite this. NMR signal generated in a subject such as a human body (
The echo signal) is received by a receiving coil 21, sent to a detection circuit 23 via a preamplifier 22 for detection, and then passed through a low-pass filter 24 and converted into a digital signal by an A/D conversion circuit 25. This signal is taken into the host computer 26 and subjected to fast Fourier transform (FFT).
) etc. As the carrier wave of the transmission high-frequency signal for excitation and the reference signal used in the detection circuit 23, the high-frequency signal generated from the reference tarlock generator 31 is used, and the phase is controlled through phase shifters 32 and 33, respectively. The phases of these signals are controlled by the output of the random number angle generator 35 to XTM-θ and Ref-θ, which are basically the same phase. The transmission carrier phase control circuit 34 generates a phase offset for the above-described modified curl parcel control and DC noise removal, and adds this to the random angle signal in the addition circuit 36.
XTM-θ only O” + 180°, 0°, 1 for each TR
A phase offset of 80°, etc. is added. In addition, in the above embodiment, the phases of the carrier wave and the reference signal were changed randomly, but as long as the relationship of the above equation holds, it is not necessarily necessary to use random number control in the strict sense.
If each TR has a different phase angle and a different amount of phase change, it is possible to prevent the residual transverse magnetization from reaching a steady state. Furthermore, it can also be used in combination with a spoiler gradient l-pulse to enhance the artifact removal effect due to phase coherence. In addition, not only the two-dimensional Fourier transform method mentioned above, but also the three-dimensional Fourier transform method,
Alternatively, it can be easily applied to CT method or echo planar method.

【発明の効果】【Effect of the invention】

この発明のNMRデータ採取法によれば、繰り返し時間
TRを短くした場合の残留横磁化が定常状態になって未
制御な位相コヒーレンスにより生じる問題が、エデイ−
カレントの発生などの別の問題を生じることなしに、除
去される。そのため、とくにMRイメージング法に適用
した場合、TR〈〈T2の関係が成立する高速撮像法に
おいて被写体の緩和時間に依存した特有のアーティファ
ク1〜の発生を抑え、データの信頼性を高めることがで
きる。
According to the NMR data acquisition method of the present invention, the problem caused by uncontrolled phase coherence due to the residual transverse magnetization reaching a steady state when the repetition time TR is shortened can be solved.
removed without creating other problems such as current generation. Therefore, especially when applied to MR imaging, it is possible to suppress the occurrence of specific artifacts 1~ that depend on the relaxation time of the subject in high-speed imaging methods where the relationship TR<<T2 holds true, and improve the reliability of data. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例にかかる高速撮像シーケン
スを示すタイムチャート、第2図は同実施例における励
起用高周波信号の搬送波位相とフリップ方向との関係を
示す模式図、第3図は同実施例にかかるMRイメージン
グシステムを示すフロック図である。 11・・・波形発生回路、12・・−D/A変換回路、
13・・・振幅変調回路、14・・・パワーアンプ、1
5・・・送信コイル、21・・・受信コイル、22・・
・プリアンプ、23・・・検波回路、24・・・ローパ
スフィルタ、25・・・A/D変換回路、26・・・ホ
ストコンピュータ、31・・・基準クロック発生器、3
2.33・・・位相シフタ、34・・・送信搬送波位相
制御回路、35・・・乱数角度発生器、36・・・加算
回路。
FIG. 1 is a time chart showing a high-speed imaging sequence according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing the relationship between the carrier phase of the excitation high-frequency signal and the flip direction in the same embodiment, and FIG. FIG. 2 is a block diagram showing an MR imaging system according to the same embodiment. 11...Waveform generation circuit, 12...-D/A conversion circuit,
13... Amplitude modulation circuit, 14... Power amplifier, 1
5... Transmitting coil, 21... Receiving coil, 22...
- Preamplifier, 23... Detection circuit, 24... Low pass filter, 25... A/D conversion circuit, 26... Host computer, 31... Reference clock generator, 3
2.33...Phase shifter, 34...Transmission carrier phase control circuit, 35...Random number angle generator, 36...Addition circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)励起用高周波信号の搬送波の位相を繰り返し時間
毎に実質的にランダムに変化させるとともに、受信した
NMR信号の検波のために用いる上記搬送波と同じ周波
数の参照用高周波信号の位相を上記の変化に対応させて
変化させることを特徴とするNMRデータ採取法。
(1) While changing the phase of the carrier wave of the excitation high-frequency signal substantially randomly at each repetition time, the phase of the reference high-frequency signal having the same frequency as the carrier wave used for detection of the received NMR signal is changed as described above. An NMR data collection method characterized by changing in response to changes.
JP63300140A 1988-11-28 1988-11-28 NMR data collection method Expired - Fee Related JPH0638791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300140A JPH0638791B2 (en) 1988-11-28 1988-11-28 NMR data collection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300140A JPH0638791B2 (en) 1988-11-28 1988-11-28 NMR data collection method

Publications (2)

Publication Number Publication Date
JPH02144041A true JPH02144041A (en) 1990-06-01
JPH0638791B2 JPH0638791B2 (en) 1994-05-25

Family

ID=17881221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300140A Expired - Fee Related JPH0638791B2 (en) 1988-11-28 1988-11-28 NMR data collection method

Country Status (1)

Country Link
JP (1) JPH0638791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030085264A (en) * 2002-04-30 2003-11-05 황문삼 soil sheathing method of rahmaen frame using prestress support and bracket and bracket thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOOK OF ABSTRACTS=1987 *
MAGNETIC RESONANCE IN MEDICINE=1988 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030085264A (en) * 2002-04-30 2003-11-05 황문삼 soil sheathing method of rahmaen frame using prestress support and bracket and bracket thereof

Also Published As

Publication number Publication date
JPH0638791B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
JP3348572B2 (en) MR imaging device
JPH0763455B2 (en) Magnetic resonance imager
JPS6095339A (en) Method of generating nmr image data
JP2755125B2 (en) MR imaging device
JP2713160B2 (en) MR imaging device
JPH0921853A (en) Method for removing base-line error artifact in nmr picture
JPH0399632A (en) Magnetic resonance imaging apparatus
JPH02144041A (en) Method for collecting nmr data
JP3111419B2 (en) Nuclear magnetic resonance inspection system
JPS62103555A (en) Nmr imaging apparatus
JP3104709B2 (en) MR imaging device
JPH0295346A (en) Mr device
JPH04294504A (en) Magnetic resonance imaging device
JP3361837B2 (en) Magnetic resonance imaging
JP2650371B2 (en) MR imaging device
JPH10243934A (en) Magnetic resonance diagnostic device
JPH0795971A (en) Mr imaging apparatus
JP4678926B2 (en) MRI equipment
JPH0531096A (en) Mr imaging device
JP2591405B2 (en) Adjustment method of bipolar gradient of MR imaging system
JP2836499B2 (en) Nuclear magnetic resonance imaging equipment
JPH1099291A (en) Nuclear magnetic resonance spectrometer imaging device
JPH09294734A (en) Magnetic resonance tomographic apparatus
JPH06197886A (en) Mr imaging device
JPH1199136A (en) Magnetic resonance tomograph

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees