JPH0214381B2 - - Google Patents

Info

Publication number
JPH0214381B2
JPH0214381B2 JP59127341A JP12734184A JPH0214381B2 JP H0214381 B2 JPH0214381 B2 JP H0214381B2 JP 59127341 A JP59127341 A JP 59127341A JP 12734184 A JP12734184 A JP 12734184A JP H0214381 B2 JPH0214381 B2 JP H0214381B2
Authority
JP
Japan
Prior art keywords
conductive
paint
elastomer
coating film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59127341A
Other languages
Japanese (ja)
Other versions
JPS617362A (en
Inventor
Kyoshi Yagi
Toshiaki Jinno
Yoshimi Yugawa
Masahiro Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP12734184A priority Critical patent/JPS617362A/en
Publication of JPS617362A publication Critical patent/JPS617362A/en
Publication of JPH0214381B2 publication Critical patent/JPH0214381B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は自動車等の点火ケーブルとして使用さ
れる雑音防止用高圧抵抗電線を構成する非金属抵
抗導体の形成に供される導電性塗料に関する。 〔従来の技術〕 一般に自動車等の点火ケーブルとして使用され
る雑音防止用高圧抵抗電線を構成する非金属抵抗
導体は第1図又は第2図に示されるような構成か
ら成る。 すなわち、非金属抵抗導体1はガラス繊維等か
らなる素線2を複数本集合して見掛上一本の補強
芯3を作り、補強芯3の周囲を導電性塗料又は導
電性エラストマー(エラストマーは常温附近でゴ
ム状弾性を有するものの総称)等よりなる導電性
材料4で被覆し、更にその上にガラス繊維5を捲
回(第1図)するか、又はガラス繊維7による編
組(第2図)を施こし、その周囲に導電性塗料に
よる導電性塗膜6を被覆して構成されるものであ
る。 しかして、この構成において導電性塗膜6を形
成する導電性塗料としては、合成樹脂系あるいは
エラストマー系のポリマーをバインダーとして、
これにカーボンブラツク、黒鉛又は炭素繊維等の
導電性粒子を添加して導電性を付与し、次いでト
ルエン、メチルエチルケトン等の有機溶剤に溶解
して塗料化したものが使用されている。 しかしながらバインダーとして合成樹脂系のポ
リマー、例えばアクリル樹脂、フエノール樹脂等
を使用した場合にはバインダーに弾性がないため
ガラス繊維5又は7と導電性塗膜6間に生ずる歪
を緩和する十分な可撓性が得られず、機械的応力
の付加によつてガラス繊維5又は7と導電性塗膜
6間の接着力が低下しやすい。又、比較的低い加
熱温度でバインダーとしてのポリマーが急激な軟
化を起し、そのため配合された導電性粒子の分散
状態にミクロ的な変動をきたし、抵抗導体の抵抗
値に変化を生じ易く、又、導電性塗膜6の機械的
特性の変化も大となる。 又、エラストマー系のポリマーをバインダーと
するものでは、例えばクロロプレン、クロロスル
ホン化ポリエチレン等の高分子ゴム状物質が一般
に使用されており、これらは弾性を有し、ガラス
繊維との接着性もある程度得られるものの、約
120℃以上の高温に加熱された場合、ポリマーの
弾性が急激に失なわれ、又、機械的特性も熱劣化
により急激に低下し、抵抗値も大幅に変化する。 又、120℃以上の高温においても耐熱性を有す
るエラストマー系ポリマーは、一般に引張強さ等
の機械的特性が低く、塗膜としての強度も非常に
弱い。中には弗素ゴムのように耐熱温度が200℃
以上にのぼり、塗膜強度もある程度満足すべきも
のもあるが、極性を有しないポリマーであるため
ガラス繊維に対し全く接着性を示さない。 〔発明が解決しようとする問題点〕 従つてかかる従来の導電性塗膜6により形成さ
れた雑音防止用高圧抵抗電線を使用した場合には
次のような種々の欠点あるいは問題点があつた。 すなわち、(イ)第3図に示すように非金属抵抗導
体1の外周に絶縁被覆層8を形成させ、その上に
編組9及びシース10からなる保護層を被覆して
形成された自動車用雑音防止高圧抵抗電線Aの使
用に際して、非金属抵抗導体1より絶縁被覆層
8、編組9及びシース10を皮剥きする場合、非
金属抵抗導体1のガラス繊維捲回部5又はガラス
繊維編組7から導電性塗膜6が絶縁被覆層8に付
着して剥れ落ち、高圧抵抗電線として使用し得な
いものとなる。(ロ)非金属抵抗導体1の抵抗値が雰
囲気温度約120℃以上の場所に置かれると急激に
変化する。(ハ)第4図に示すように高圧抵抗電線A
の端部を皮剥きし、非金属抵抗導体1を露出させ
て折り曲げ、金属端子11に加締め接続するに際
し、非金属抵抗導体1に加締めによる機械的応力
が急激に加わるため、導電性塗膜6が部分的に剥
れ落ち、高電圧が印加された場合剥れた部分にコ
ロナ放電が起り非金属抵抗導体1が焼損する場合
がある。(ニ)使用中においてもエンジンからの受熱
等により導電性塗膜6が熱劣化あるいは軟化を起
して部分的に剥れ落ち、前記(ハ)と同様にコロナ放
電が発生し抵抗導体1が焼損を来たす場合があ
る。 本発明は、自動車用雑音防止高圧抵抗電線を構
成する非金属抵抗導体形成に使用される従来の導
電性塗料の上記の問題点に着目してなされたもの
で、これらの問題点を解消する導電性塗料を提供
することを目的とする。 本発明者等はかかる従来の導電性塗料の問題点
を解消するためには、弾性及び柔軟性に富み、ガ
ラス繊維に対して接着性がすぐれ、又、抵抗値の
温度特性が良好で、しかも分解温度及び熱軟化温
度の高いポリマーを導電性粒子のバインダーとし
て使用することが必要な要件の一つであるとの観
点から鋭意検討を行なつた結果、エチレン−アク
リル系エラストマーがこれ等の要件を十分に満足
するポリマーであることを見出すと共に、このポ
リマーに導電性粒子を一定範囲の量で添加し、更
にシリカ系粉末を適量配合した組成物を有機溶剤
に溶解したものが本発明の目的に十分適合する導
電性塗膜形成用塗料となることを見出し本発明を
なすに至つたものである。 〔問題点を解決するための手段〕 すなわち、本発明はエチレン−アクリル共重合
体又はエチレン−アクリル−ビニルモノマー三元
共重合体からなるエラストマー100重量部に対し、
導電性粒子5〜50重量部およびシリカ系粉末から
成る無機質充填剤5〜20重量部を配合してなる組
成物を有機溶剤に溶解して得られる導電性エラス
トマー塗料である。 本発明において導電性粒子のバインダーポリマ
ーとして使用されるエチレン−アクリル共重合体
は(−CH2−CH2−)xで表わされるエチレンモ
ノマーがポリマーに対し5〜95モル%、好ましく
は30〜70モル%、
[Industrial Field of Application] The present invention relates to a conductive paint used for forming a nonmetallic resistance conductor constituting a noise-preventing high-voltage resistance wire used as an ignition cable for automobiles and the like. [Prior Art] A nonmetallic resistance conductor constituting a high-voltage resistance wire for noise prevention, which is generally used as an ignition cable for automobiles, etc., has a structure as shown in FIG. 1 or 2. That is, the nonmetallic resistance conductor 1 is made by assembling a plurality of wires 2 made of glass fiber or the like to form an apparently single reinforcing core 3, and surrounding the reinforcing core 3 with a conductive paint or a conductive elastomer (the elastomer is The conductive material 4 is coated with a conductive material (general term for materials that have rubber-like elasticity at around room temperature), and the glass fibers 5 are further wound thereon (Fig. 1), or the glass fibers 7 are braided (Fig. 2). ), and its surrounding area is coated with a conductive coating film 6 made of conductive paint. Therefore, in this configuration, the conductive paint forming the conductive coating film 6 is made of synthetic resin or elastomer polymer as a binder.
Conductive particles such as carbon black, graphite or carbon fibers are added to this to give it conductivity, and then it is dissolved in an organic solvent such as toluene or methyl ethyl ketone to form a paint. However, when a synthetic resin polymer such as acrylic resin or phenolic resin is used as the binder, the binder does not have elasticity, so that it has sufficient flexibility to alleviate the strain that occurs between the glass fibers 5 or 7 and the conductive coating film 6. The adhesion between the glass fibers 5 or 7 and the conductive coating film 6 tends to decrease due to the addition of mechanical stress. In addition, the polymer as a binder rapidly softens at a relatively low heating temperature, which causes microscopic fluctuations in the dispersion state of the conductive particles blended, which tends to cause changes in the resistance value of the resistance conductor. , the change in the mechanical properties of the conductive coating film 6 is also large. Furthermore, in the case of using an elastomer-based polymer as a binder, polymeric rubber-like substances such as chloroprene and chlorosulfonated polyethylene are generally used, and these have elasticity and have some degree of adhesion with glass fibers. Approximately
When heated to a high temperature of 120°C or higher, the elasticity of the polymer is rapidly lost, the mechanical properties are also rapidly reduced due to thermal deterioration, and the resistance value changes significantly. Furthermore, elastomeric polymers that are heat resistant even at high temperatures of 120° C. or higher generally have low mechanical properties such as tensile strength, and have very low strength as a coating film. Some materials, like fluoro rubber, have a heat resistance temperature of 200℃.
As mentioned above, some of the coating film strengths are satisfactory to some extent, but since they are non-polar polymers, they do not show any adhesiveness to glass fibers. [Problems to be Solved by the Invention] Therefore, when using the conventional high-voltage resistance wire for noise prevention formed with the conventional conductive coating 6, there have been various drawbacks or problems as described below. That is, (a) as shown in FIG. 3, an insulating coating layer 8 is formed on the outer periphery of the nonmetallic resistance conductor 1, and a protective layer consisting of a braid 9 and a sheath 10 is coated thereon. Prevention When using the high-voltage resistance wire A, when stripping the insulation coating layer 8, braid 9, and sheath 10 from the nonmetallic resistance conductor 1, the conductive material may be removed from the glass fiber winding portion 5 or the glass fiber braid 7 of the nonmetallic resistance conductor 1. The coating film 6 adheres to the insulating coating layer 8 and peels off, making it unusable as a high-voltage resistance wire. (b) The resistance value of the nonmetallic resistance conductor 1 changes rapidly when it is placed in a place where the ambient temperature is about 120° C. or higher. (c) As shown in Figure 4, high voltage resistance wire A
When the ends of the nonmetallic resistance conductor 1 are peeled off, the nonmetallic resistance conductor 1 is exposed and bent, and the nonmetallic resistance conductor 1 is crimped and connected to the metal terminal 11, mechanical stress is suddenly applied to the nonmetallic resistance conductor 1 due to crimping. When the film 6 partially peels off and a high voltage is applied, a corona discharge occurs in the peeled part and the nonmetallic resistance conductor 1 may be burnt out. (d) Even during use, the conductive coating 6 undergoes thermal deterioration or softening due to heat received from the engine, etc., and partially peels off, causing corona discharge as in (c) above and causing the resistive conductor 1 to deteriorate. It may cause burnout. The present invention has been made focusing on the above-mentioned problems of conventional conductive paints used to form nonmetallic resistance conductors constituting noise-preventing high-voltage resistance wires for automobiles. The purpose of this project is to provide a variety of paints. In order to solve the problems of conventional conductive paints, the present inventors have developed a material that is highly elastic and flexible, has excellent adhesion to glass fibers, has good temperature characteristics of resistance value, and As a result of intensive study from the viewpoint that one of the requirements is to use a polymer with a high decomposition temperature and high thermal softening temperature as a binder for conductive particles, we found that ethylene-acrylic elastomer meets these requirements. The object of the present invention is to obtain a composition obtained by adding conductive particles to this polymer in a certain amount in a certain range and further blending an appropriate amount of silica powder and dissolving the composition in an organic solvent. The inventors have discovered that a coating material for forming a conductive coating film that is fully compatible with the above has been developed, and the present invention has been completed. [Means for Solving the Problems] That is, the present invention provides the following methods:
This is a conductive elastomer paint obtained by dissolving in an organic solvent a composition containing 5 to 50 parts by weight of conductive particles and 5 to 20 parts by weight of an inorganic filler consisting of silica powder. In the ethylene-acrylic copolymer used as the binder polymer of the conductive particles in the present invention, the ethylene monomer represented by ( -CH2 - CH2- )x is 5 to 95 mol%, preferably 30 to 70 mol% of the polymer. mole%,

〔実施例〕〔Example〕

次に本発明を実施例により具体的に説明する。 実施例 1 導電性粒子のバインダー用ポリマーとしてエチ
レン−メチルメタアクリレート共重合体からなる
エチレン−アクリル系エラストマーVAMACG
(デユポン社商品名)を使用し、これに導電性粒
子としてカーボンブラツクを配合量を変えて添加
し、更に無機質充填剤としてシリカ粉末アエロジ
ル200(日本アエロジル社商品名)を配合量を変え
て添加し、又有機溶剤としてトルエン(試薬1
級)を使用して第1表の配合割合で上欄A〜Iに
示す本発明の導電性エラストマー塗料を調製し
た。この場合、カーボンブラツクとしてメーカー
を異にする2種類を別個に使用した。その一つは
ケツチンブラツクEC(ライオンアクゾ社商品名)、
他の一つはバルカンXC−72(キヤボツト社商品
名)で、前者は、DBP吸油量:350ml/100g、
表面積:950m2/g、PH:9.5、後者は、DBP吸油
量:230ml/100g、表面積:220m2/g、PH:7.5
で、共にコンダクテイブフアーネスブラツクであ
り、前者に比較して後者は、重金属含有量が少な
い。 次に得られたA〜Iの塗料を用いて塗膜を形成
し、以下の項目について電気的及び機械的諸特性
を測定した。 (1) 体積固有抵抗(Ω−cm) 塗料液をガラス板上にドクターナイフを使用
して均等な厚さに薄く塗布し、常温で30分間風
乾後、恒温槽に入れ140℃で30分間乾燥し、そ
の体積固有抵抗とその各温度における変化率を
測定した。 体積固有抵抗ρは、第5図に示したように塗
膜12上に幅W(cm)の2個の板状銀電極13
を長l(cm)を隔て立設し、銀電極13の上端
間をホイツトストーンブリツジ回路14に接続
した装置を用いて測定した。 塗膜の厚さt(cm)、電極13の幅W(cm)か
らt×Wにより塗膜12の断面積S(cm2)を算
出し、電極間の長さl(cm)、測定された抵抗R
(Ω)より次式により体積固有抵抗ρを算出し
た。 ρ=t・W・R/l 又、体積固有抵抗の各温度における変化率
(%)は初期抵抗をR1、一定時間後の抵抗をR2
とした場合、 ρ1=R1S/l、ρ2=R2S/lより、 ρ1−ρ2/ρ1×100を算出して求めた。 (2) ガラス繊維の抜け荷重(Kgf/2cm) 塗料液をポリエステルフイルム上に何層にも
塗り、その上にガラス繊維を真直に伸ばしてお
き、更にその上に何層にも塗料液を塗り、常温
で5時間風乾後、恒温機に入れ、140℃で1時
間乾燥し、引張り試験機を用いて速度200mm/
分でガラス繊維を引き抜き、その引き抜きにに
要した荷重を抜け荷重とした。 (3) 塗膜引張り強さ(Kgf/cm2) ガラス板上に薄く白色ワセリンを塗り、その
上に塗料液を乾燥後の厚さが約1mmになるよう
に何層にも塗り、室温で5時間風乾後、恒温槽
に入れ140℃で1時間乾燥し、JISK6301の方法
に準拠して引張り試験を行なつて求めた。 (4) 塗膜伸び率(%) 引張り強さと同様に作成した試料により
JISK6301に準拠して求めた。 以上の測定結果を第1表下欄に示した。又、体
積固有抵抗の変化率については第6図に示した。 なお、第1表の固形分(%)は塗料中の固形分
量を重量%で示したものである。
Next, the present invention will be specifically explained using examples. Example 1 Ethylene-acrylic elastomer VAMACG consisting of ethylene-methyl methacrylate copolymer as a binder polymer for conductive particles
(trade name of DuPont Co., Ltd.), carbon black was added in varying amounts as conductive particles, and silica powder Aerosil 200 (trade name of Nippon Aerosil Co., Ltd.) was added as an inorganic filler in varying amounts. Also, toluene (Reagent 1) was used as an organic solvent.
The conductive elastomer paints of the present invention shown in the upper column A to I were prepared using the above-mentioned conductive elastomer paints according to the blending ratios shown in Table 1. In this case, two types of carbon black made by different manufacturers were used separately. One of them is Ketsuchin Black EC (product name of Lion Akzo),
The other one is Vulcan XC-72 (product name of Kyabot Co., Ltd.), and the former has DBP oil absorption: 350ml/100g,
Surface area: 950m 2 /g, PH: 9.5, the latter has DBP oil absorption: 230ml/100g, surface area: 220m 2 /g, PH: 7.5
Both are conductive furnace blacks, and the latter contains less heavy metals than the former. Next, coating films were formed using the obtained paints A to I, and the electrical and mechanical properties were measured for the following items. (1) Volume resistivity (Ω-cm) Apply a thin layer of paint liquid onto a glass plate using a doctor knife to an even thickness, air dry at room temperature for 30 minutes, then place in a constant temperature bath and dry at 140℃ for 30 minutes. Then, the volume resistivity and its rate of change at each temperature were measured. The volume resistivity ρ is calculated by forming two plate-shaped silver electrodes 13 with a width W (cm) on the coating film 12 as shown in FIG.
The measurement was carried out using an apparatus in which the silver electrodes 13 were set upright at a distance of 1 (cm) and the upper ends of the silver electrodes 13 were connected to the Whitstone bridge circuit 14. Calculate the cross-sectional area S (cm 2 ) of the coating film 12 by t × W from the thickness t (cm) of the coating film and the width W (cm) of the electrode 13, and calculate the length l (cm) between the electrodes and the measured resistance R
(Ω), the volume resistivity ρ was calculated using the following formula. ρ=t・W・R/l Also, the rate of change (%) of volume resistivity at each temperature is as follows: R 1 is the initial resistance, and R 2 is the resistance after a certain period of time.
In this case, ρ 1 −ρ 2 /ρ 1 ×100 was calculated from ρ 1 =R 1 S/l and ρ 2 = R 2 S /l. (2) Glass fiber shedding load (Kgf/2cm) Apply several layers of paint liquid on a polyester film, stretch the glass fibers straight on top of that, and then apply several layers of paint liquid on top of that. After air drying at room temperature for 5 hours, put it in a constant temperature machine, dry it at 140℃ for 1 hour, and test it at a speed of 200mm/
The glass fiber was pulled out in minutes, and the load required to pull it out was defined as the pullout load. (3) Coating film tensile strength (Kgf/cm 2 ) Apply a thin layer of white Vaseline on a glass plate, then apply the paint liquid on top of it in several layers to a dry thickness of about 1 mm, and then leave it at room temperature. After air drying for 5 hours, it was placed in a constant temperature bath and dried at 140°C for 1 hour, and a tensile test was performed in accordance with the method of JISK6301. (4) Coating film elongation rate (%) Based on a sample prepared in the same way as the tensile strength.
Obtained in accordance with JISK6301. The above measurement results are shown in the lower column of Table 1. Further, the rate of change in volume resistivity is shown in FIG. Note that the solid content (%) in Table 1 indicates the amount of solid content in the paint in % by weight.

【表】 又、本発明の塗料とその特性値を比較するた
め、従来の導電性塗料の特性値を第2表に示し
た。
[Table] Furthermore, in order to compare the characteristic values of the coating material of the present invention and its characteristic values, the characteristic values of the conventional conductive coating material are shown in Table 2.

【表】 第1表と第2表とを対比してみると、本発明の
塗料においては、特にガラス繊維抜け荷重が従来
の塗料に比し、いずれも2Kgf/2cm以上の向上
が認められ、ガラス繊維との接着性が著しく向上
し、又、塗膜の引張り強さ、伸び率についてもク
ロロスルホン化ポリエチレン系の従来塗料(J)を大
幅に上廻る。この場合導電性粒子の配合量はエラ
ストマー100重量部に対し20重量部以上、無機質
充填剤は無添加でもよいが、好ましくは10重量部
以上ですぐれた特性値が得られることが判る。
又、塗膜の引張り強さは導電性粒子の添加量及び
無機質充填剤の添加量が多い程大となる傾向がみ
られ、伸び率はこれとは逆に低下する傾向がみら
れる。 更に第6図より体積固有抵抗値各温度における
変化率は従来塗料(J)が温度の上昇と共に著しく増
大するのに対し、本発明の塗料はいずれも特に
160〜180℃以下において非常に小さいことが判
る。 実施例 2 導電性粒子のバインダー用ポリマーとしてエチ
レン−メチルアクリレート−酢酸ビニル三元共重
合体からなるエチレン−アクリレート系エラスト
マー、デンカER(電気化学工業社商品名)を使用
し、これに導電性粒子としてカーボンブラツクに
ケツチンブラツクEC(ライオンアクゾ社商品名)、
黒鉛粉末にGP60SKAI(日立粉末治金社商品名)、
炭素繊維にトレカMLD−300(東レ社商品名)を
夫々別個に、又黒鉛、炭素繊維については配合量
を変えて添加し、さらに無機質充填剤としてアエ
ロジル200(日本アエロジル社商品名)を添加し、
有機溶剤としてトルエン(試薬1級)を使用して
第3表の配合割合で第3表上欄L〜Rに示す本発
明の導電性エラストマー塗料を調製した。 又、得られた塗料についての前記の特性値を第
3表下欄に示した。又、体積固有抵抗の各温度に
おける変化率(%)を第7図に示した。
[Table] Comparing Tables 1 and 2, it can be seen that in the paint of the present invention, in particular, the glass fiber shedding load was improved by more than 2 kgf/2 cm compared to the conventional paint. The adhesion to glass fibers is significantly improved, and the tensile strength and elongation of the coating film are also significantly higher than that of the conventional paint (J) based on chlorosulfonated polyethylene. In this case, it has been found that excellent characteristic values can be obtained when the amount of conductive particles blended is 20 parts by weight or more based on 100 parts by weight of the elastomer, and the inorganic filler may not be added, but is preferably 10 parts by weight or more.
Furthermore, the tensile strength of the coating film tends to increase as the amount of conductive particles and inorganic filler added increases, and on the contrary, the elongation rate tends to decrease. Furthermore, as shown in Figure 6, the rate of change in volume resistivity at each temperature increases significantly with the increase in temperature for the conventional paint (J), whereas the rate of change in volume resistivity at each temperature increases significantly for the paints of the present invention.
It can be seen that it is very small at temperatures below 160-180°C. Example 2 Denka ER (trade name, Denka Kagaku Kogyo Co., Ltd.), an ethylene-acrylate elastomer made of an ethylene-methyl acrylate-vinyl acetate terpolymer, was used as a binder polymer for conductive particles, and conductive particles were added to this. As carbon black, buttchin black EC (product name of Lion Akzo Co., Ltd.),
GP60SKAI (Hitachi Powder Metallurgy Co., Ltd. product name) for graphite powder,
Torayca MLD-300 (trade name of Toray Industries, Inc.) was added to the carbon fibers separately, and graphite and carbon fiber were added in different amounts, and Aerosil 200 (trade name of Nippon Aerosil Corporation) was added as an inorganic filler. ,
Conductive elastomer paints of the present invention shown in L to R in the upper column of Table 3 were prepared using toluene (first grade reagent) as an organic solvent and at the compounding ratios shown in Table 3. Further, the above-mentioned characteristic values of the obtained paint are shown in the lower column of Table 3. Further, the rate of change (%) of the volume resistivity at each temperature is shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上詳細に示したように本発明の導電性エラス
トマー塗料はエチレン−アクリレート系エラスト
マーを導電性粒子のバインダーとして使用し、こ
れに導電性粒子および無機質充填剤を一定範囲の
量で配合し有機溶剤に溶解した塗料であるため、
弾性及び柔軟性に富み、ガラス繊維との接着性が
良好で、抵抗値の温度による変化が極めて少な
く、しかも耐久性のある導電性塗膜を形成し得る
塗料が得られる利点がある。
As shown in detail above, the conductive elastomer paint of the present invention uses an ethylene-acrylate elastomer as a binder for conductive particles, mixes conductive particles and an inorganic filler in a certain range of amounts, and mixes it with an organic solvent. Since it is a dissolved paint,
It has the advantage of being highly elastic and flexible, has good adhesion to glass fibers, has very little change in resistance due to temperature, and can form a durable conductive coating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来使用されている自動車
用雑音防止高圧抵抗電線の非金属抵抗導体の構成
を示す斜視図、第3図は自動車用雑音防止高圧抵
抗電線の構成の一例を示す斜視図、第4図は自動
車用雑音防止高圧抵抗電線と金属端子との接続状
態を示す正面図、第5図は体積固有抵抗の測定装
置の説明図、第6図及び第7図は体積固有抵抗の
各温度における変化率を示すグラフである。 1……非金属抵抗導体、2……素線、3……補
強芯、4……導電性材料、6……導電性塗膜、8
……絶縁被覆層、9……編組、10……シース。
Figures 1 and 2 are perspective views showing the structure of a non-metallic resistance conductor of a conventionally used noise-preventing high-voltage resistance wire for automobiles, and Fig. 3 is a perspective view showing an example of the structure of a noise-preventing high-voltage resistance wire for automobiles. Figure 4 is a front view showing the connection state between the automotive noise prevention high-voltage resistance wire and the metal terminal, Figure 5 is an explanatory diagram of the volume resistivity measurement device, and Figures 6 and 7 are volume resistivity. 2 is a graph showing the rate of change at each temperature. DESCRIPTION OF SYMBOLS 1... Nonmetal resistance conductor, 2... Element wire, 3... Reinforcement core, 4... Conductive material, 6... Conductive coating film, 8
...Insulating coating layer, 9... Braid, 10... Sheath.

Claims (1)

【特許請求の範囲】 1 エチレン−アクリル共重合体又はエチレン−
アクリル−ビニルモノマー三元重合体から成るエ
ラストマー100重量部に対し、導電性粒子5〜50
重量部およびシリカ系粉末から成る無機質充填剤
5〜20重量部を配合した組成物を有機溶剤に溶解
して成ることを特徴とする導電性エラストマー塗
料。 2 導電性粒子がカーボンブラツク、黒鉛又は炭
素繊維から選ばれる少なくとも一種である特許請
求の範囲第1項記載の導電性エラストマー塗料。
[Claims] 1. Ethylene-acrylic copolymer or ethylene-
5 to 50 parts by weight of conductive particles per 100 parts by weight of an elastomer made of an acrylic-vinyl monomer terpolymer.
1. A conductive elastomer paint characterized by dissolving in an organic solvent a composition containing 5 to 20 parts by weight of an inorganic filler made of silica-based powder. 2. The conductive elastomer paint according to claim 1, wherein the conductive particles are at least one selected from carbon black, graphite, and carbon fiber.
JP12734184A 1984-06-22 1984-06-22 Conductive elastomer coating Granted JPS617362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12734184A JPS617362A (en) 1984-06-22 1984-06-22 Conductive elastomer coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12734184A JPS617362A (en) 1984-06-22 1984-06-22 Conductive elastomer coating

Publications (2)

Publication Number Publication Date
JPS617362A JPS617362A (en) 1986-01-14
JPH0214381B2 true JPH0214381B2 (en) 1990-04-06

Family

ID=14957522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12734184A Granted JPS617362A (en) 1984-06-22 1984-06-22 Conductive elastomer coating

Country Status (1)

Country Link
JP (1) JPS617362A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692547B2 (en) * 1987-05-22 1994-11-16 松下電器産業株式会社 Conductive paint
WO1989009704A1 (en) * 1988-04-14 1989-10-19 Robert Bosch Gmbh Height regulating system for a vehicle with air suspension

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837061A (en) * 1981-08-31 1983-03-04 Toyo Ink Mfg Co Ltd Coating composition
JPS5853932A (en) * 1981-09-28 1983-03-30 Tokyo Ink Kk Electrically conductive and heat-weldable resin composition for plastic and metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837061A (en) * 1981-08-31 1983-03-04 Toyo Ink Mfg Co Ltd Coating composition
JPS5853932A (en) * 1981-09-28 1983-03-30 Tokyo Ink Kk Electrically conductive and heat-weldable resin composition for plastic and metal

Also Published As

Publication number Publication date
JPS617362A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
US3870987A (en) Ignition cable
US3096210A (en) Insulated conductors and method of making same
US3349164A (en) Insulative stress relief film
EP0329188A2 (en) Noise-suppressing high voltage cable and method of manufacturing thereof
GB2095024A (en) Insulated high voltage cables
CA2425491A1 (en) Low adhesion semi-conductive electrical shields
EP0690459B1 (en) Coil type high-tension resistive cable for preventing noise
US4800359A (en) Winding of noise suppressing high tension resistive electrical wire
JP2013113736A (en) Conductive composition and sensor cable
JPH0214381B2 (en)
JPH11260150A (en) Electric wire for high tension circuit of stationary equipment
JPS63279503A (en) Semiconductive composition material
US6210607B1 (en) Electrically conductive materials
CA2276967A1 (en) Electrical cable adapted for high-voltage applications
JP3444941B2 (en) Heat-resistant and radiation-resistant cable and furnace internal structure inspection device for fast breeder reactor using the same
JP4174165B2 (en) Flame retardant wire
JPS58106787A (en) Self-temperature controllable heater
JP2002245866A (en) Cable for x-ray
JP2772307B2 (en) High-voltage resistance wire for noise prevention
JPS603809A (en) Noise preventing high voltage resistance wire
JPH11209627A (en) Semiconductive resin composition and power cable covered therewith
JP2013134191A (en) Pressure sensor cable
JPS6280908A (en) Vulcanized ep rubber insulated power cable
JPS622403B2 (en)
JPS58186187A (en) Self-temperature controllable heater