JPH02142802A - Manufacture of methacrylimide-containing polymer excellent in transparency and heat resistance - Google Patents

Manufacture of methacrylimide-containing polymer excellent in transparency and heat resistance

Info

Publication number
JPH02142802A
JPH02142802A JP29468588A JP29468588A JPH02142802A JP H02142802 A JPH02142802 A JP H02142802A JP 29468588 A JP29468588 A JP 29468588A JP 29468588 A JP29468588 A JP 29468588A JP H02142802 A JPH02142802 A JP H02142802A
Authority
JP
Japan
Prior art keywords
polymer
solvent
reaction
methacrylimide
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29468588A
Other languages
Japanese (ja)
Inventor
Isao Sasaki
笹木 勲
Hisao Anzai
安西 久雄
Koji Nishida
西田 耕二
Hideaki Makino
牧野 英顕
Masaru Morimoto
勝 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP29468588A priority Critical patent/JPH02142802A/en
Publication of JPH02142802A publication Critical patent/JPH02142802A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To produce a polymer excellent in optical properties, moldability, etc., and having high transparency and heat resistance by reacting a methacrylate resin with an imidated compound in the presence of a specific mixed solvent, and removing volatile materials. CONSTITUTION:A methacrylate resin is reacted with a compound of formula I (wherein R is H, or a 1-20C aliphatic, aromatic or alicyclic hydrocarbon group) at 100-350 deg.C in the presence of a mixed solvent comprising a poor solvent which has a boiling point of 50-135 deg.C at ordinary pressures and hardly dissolves the methacrylate resin at ordinary temperatures and a good solvent which as a boiling point of 135-260 deg.C at ordinary pressures and easily dissolves the methacrylate resin at 100-350 deg.C. Then, volatile materials are separated and removed from the reaction product to obtain the aimed methacrylimide- containing polymer which comprises 2-100wt.% constituent units of formula II and 0-98wt.% constituent units derived from the ethylenic monomer.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、透明性及び耐熱性に優れたメタクリルイミド
含有重合体の製造方法に関する。 〔従来の技術〕 メタクリル酸メチル重合体は透明性のみならず機械的性
質および耐候性に優れるために高性能プラスデック光学
材料及び装飾素材として用いられ、近年では短距離光通
信、光センサー等の分野で用途開発が追、ぬられている
。 しかしながら、メタクリル酸メチル重合体は、熱変形温
度か100’c前後1 +11iJ熱性が1分でないた
め、その用途か制約さねでいる分野もかなりあり、耐熱
性の向]、に対する要求か強い。 メタクリル酸メチル重合体の耐熱性を向トさゼる方法と
して、メタクリル酸メチル1合体をイミド化さ−l−る
方法かあり、例えば、メタクリル酸メチル重合体を第1
級アミンと熱分解縮合反応させる方法(米国特許第2,
416,209号)、メタクリル酸メチル重合体を水酸
化アンモニウム、リン酸アンモニウム及びアル−1−ル
アミンと反応させる方法(英国特許第926.629号
)及びアクリル酸系重合体とアンモニアまたは第1級ア
ミンとを反応させる方法(米国特許第4,246.37
4号)が提案されている。 「発明力檎r1″決しようとする課題)しかしながら、
上記の提案された方法によって得られるイミド化重合体
はなお改良ずへき点を含んでおり、従って、優れた光学
的1’l質、機械的1ノ1質、耐候性及び成形加工性等
の特性を有し、かつ高度な透明性および耐熱Mを有゛づ
るメタクリルイミド含有重合体の出現が望まれるところ
である。 〔課題を解決するための手段] 本発明に係るメタクリルイミド含有重合体の製造方法は
、メタクリル樹脂と一般式 %式%(1) (式中、Rは水素原子または炭素数1〜20の脂肪族、
芳香族もしくは脂環族炭化水素基を表す)で示される化
合物の1種以上とを、常圧下の沸点が50〜135°C
でかつ常温でメタクリル樹脂を熔解し難い貧溶媒と常圧
下の沸点が135°Cを越え260°C未満でかつメタ
クリル樹脂を溶解し7やずい良溶媒との混合溶媒の存在
下に、100°C以上350°〔二辺下の温度において
反応させ、次いで得られた反応生成物から揮発性物質を
分離除去し、−船人に1) 1ζ (式中、Rは前述のとおり−(ある。)で示される構造
単位2〜10 (l屯呈%とエーノーレン(’I単量体
から導かれる構造単位0〜913重里%からなる透明性
及び耐熱性に優れたメタクリルイミド含有重合体≠を得
ることを特徴とする。 本発明の方法においては、特定の溶媒の存在下に一般式 %式%(1) で示される化合物(以下、「イミド化物質」という)と
メタクリル樹脂を反応(!し、ぬる。ごごで、Rは水素
原子または炭素数1〜20の脂肪族、芳香族もしくは脂
環族炭化水素基を表す。イミド化物質の具体例としては
一アンモニア;メチルアミン、エチルアミン、ゾ11ピ
ルアミン等の脂肪族第1アミン頻;アニリン、トルイジ
ン、トリク1」ロアニーリン等の芳香族アミン類;およ
びツク11・\−1−ノルアミン、ボルニルアミン等の
脂環族アミン類かあげられる。また尿素、1.3  ジ
メチル尿素、13−ジエチル尿素、1.3−ジプロピル
尿素の如き加熱またはその他の手段によって容易に第1
アミンを発生ずる化合物類を用いるコこともできる。 これらのイミド化物質の使用量は、イミド化ず場べき程
度によって変わるので一概には限定てきないが、一般に
メタクリル樹脂100重量部に対して1〜250重量部
である。1重量部未満では明白な面4熱性の向上が期待
できない。また、250重足部を超える場合には経済性
の点から好ましくない。 本発明において使用するイミド化剤のうち特に好ましい
ものとしては、耐熱性及び透明性の点からメチルアミン
及びアンモニアがよい。 本発明において用いられる「メタクリル樹脂」とは、固
有粘度が0.01〜3.0であるメタクリル酸エステル
単独重合体またはメタクリル酸ニスう−ルと共重合可能
なエチレン性単量体との共重合体をい)。Jl、申合i
J能なニーyレン14申量体としては、71タクリル酸
:1−スう一ル以夕(のメタクリル酸上スーシール、ア
クリル酸エステル、アクリル酸、メタクリル酸、スーI
Lパ/、2 )jルノ、ノーし/ン等の置換スーy−L
−ン等が4くυられる。 !′li独中合体+:、′、1、び」1.11r合体を
構成するy’ 夕’) ’Jル酸ニスツールとしては、
例えは、メタクリル酸メノ−ル、メタクリル酸エナル、
ツタクリル酸プロピル、メタクリルHrl  ソー」−
ル、メククリル酸イソソjル、ツタクリルf’Wb・1
()−y−ル、メタクリル11i−Q ;、り1z・・
−1−シル、7ノタクリル酸ノルボニル、メタクリルM
 2 1−ナルソイ/口・\−1−シル、メタクリル酸
−・・ソシルなと、アクリル酸上スプルとしては、例エ
バ、−ノ゛クリルjJd27ナル、アクリル酸工升ル、
アクリル酸ゾ11ピル、アクリル酸r1  ブチル、ア
クリル酸・1′ソソチル、アクリル酸tert−ブチル
、パクリル酸ミ、・りli’l−\キシル、アクリル酸
ノルホニル、アクリル酸2 エチル・\ニドシル、アク
リル酸・、ンノルなどを用いろことができろ。これらの
単16体は、中種Cもよくまた2挿具ト(Il用するご
ともで八る。 ごれらのメタクリル樹j指の)ら本発明の方法C,でお
いては、メタクリル酸メチル11′L独重合体または2
5重v%以七のメタクリル酸メチルと7511i17j
%以下の共重合可能なエチレン性?11゜1N体との共
中合体か好ましい。特に、メタクリル酸メチルの中種重
合体は透明性の点から最も好ましい。 本発明の方法において用いる溶媒はメタ)lリル樹脂の
高分子側鎖縮合反応であるイミド化反応の進行を阻害せ
ずに、また部分イミド化反応の場合、メタクリル酸メチ
ルまたはメタクリル酸エステルセグメンi〜部に変化を
1jえないものでなければならない。その溶媒としては
、常圧下の沸点が50〜135°Cでか一つ常温でメタ
クリル樹脂を溶解しく1い貧溶媒と、沸点が135°C
を越え260 ”C未満でかつメタクリル樹脂を溶解し
易い良溶媒との混合溶媒を用いる。好ましくは、貧溶媒
としては溶解1ノ+パラメーターδ値か14.0〜19
.5 (c:rl P / (:Ilり ’ ”’の範
囲のもの、また良溶媒としては溶解性パソメー タδイ
直が8.0〜13.9 (ca 1. /co?) ”
’の範囲のもの(7J か用イ:+ 、)1. Zl。5:’t 冷媒の例、’
−1−、’(4;l: ) 夕/ −ルカ、;(、た良
(容媒の例とし7ζは、ペンタノール、ヘキリ゛ノール
、2 メナルペニ′タノール、4 メチル? ペンタノ
ール、2 上ナル 1 ツタノール、1 ペンタノール
、Aフタツノ−ル等のアルコール杢I8−トシレン′、
エチルヘシ/レン、クメン、メ・ンーJ−レン、〕−7
7タし・ン、う−I ンリン、エチルヘンゼン、ノエチ
ルー・\ソーjどン、ペンチル・\ンセン、ビンエニル
やりのン1.4I族j;こ往水÷、化lA1−14!7
1月しホ1′!ン、イソホIIン、ツク11・−、=l
−,1ナノン、−7むトソlノン、ジブ−ノール上−リ
ール、ノ′\やシル:1−−−う−ル、−7ユソール、
ン、;?、1・−ル、ブナルソj−二〜ルコーーデル、
シフエールエーテル、ノクラ・イl、 ノエー5″レン
グリコルシ工千ルエーテル等のツノ−1ン1.:1−−
チル化合物類かあげられろ。これ−)良溶媒の中−Cは
、キンレンおよび]−〕−ル・〜・ンjどンか好−(−
U7い。 2(お、本発明に打いていう溶解性パラメーターb埴は
ポリマー・ハントフック、2版、シーフランlルゾ、1
゛−コ−1′)−インーイ′−クント、/  I ン′
    ”ノ イ リ −     )ン I    
 リ ン ノ、    −I−’:L  −rlり (
1’olymer  1landhook、5econ
d  回、  、1 °H+−;1n11ru1+1i
、11.1mmt:rl+ut、John  Wile
y  &  5on(、NCw  York)(197
5)に記載されている基
[Industrial Field of Application] The present invention relates to a method for producing a methacrylimide-containing polymer having excellent transparency and heat resistance. [Prior art] Methyl methacrylate polymer is used as a high-performance plus deck optical material and decorative material due to its excellent not only transparency but also mechanical properties and weather resistance.In recent years, it has been used for short-distance optical communications, optical sensors, etc. Application development is being pursued in various fields. However, methyl methacrylate polymer has a heat distortion temperature of around 100'C1 + 11iJ for less than 1 minute, so its use is limited in many fields, and there is a strong demand for heat resistance. As a method of improving the heat resistance of methyl methacrylate polymer, there is a method of imidizing a methyl methacrylate polymer.
A method of conducting a thermal decomposition condensation reaction with a class amine (U.S. Patent No. 2,
416,209), a method of reacting a methyl methacrylate polymer with ammonium hydroxide, ammonium phosphate and al-1-lamine (British Patent No. 926,629), and a method of reacting a methyl methacrylate polymer with ammonia or primary Method of reacting with amines (U.S. Pat. No. 4,246.37)
No. 4) has been proposed. ``Inventive Power R1'' Problem to be Solved) However,
The imidized polymer obtained by the above proposed method still contains a breaking point without any improvement, and therefore has excellent optical properties, mechanical properties, weather resistance, moldability, etc. It is desired to develop a methacrylimide-containing polymer that has the following properties and has a high degree of transparency and heat resistance M. [Means for Solving the Problems] The method for producing a methacrylimide-containing polymer according to the present invention comprises combining a methacrylic resin with the general formula % (1) (where R is a hydrogen atom or a fatty acid having 1 to 20 carbon atoms). family,
aromatic or alicyclic hydrocarbon group) with a boiling point of 50 to 135°C under normal pressure.
In the presence of a mixed solvent of a poor solvent that is difficult to dissolve methacrylic resin at room temperature and a good solvent that has a boiling point of more than 135°C and less than 260°C and that dissolves methacrylic resin at normal pressure, The reaction is carried out at a temperature of 350° or lower than C, then the volatile substances are separated and removed from the resulting reaction product, and the reaction is carried out at a temperature of 1) 1ζ (where R is as described above). ) to obtain a methacrylimide-containing polymer with excellent transparency and heat resistance consisting of 2 to 10% of structural units (1%) and 0 to 913% of structural units derived from enolene (I monomer) The method of the present invention involves reacting (! R represents a hydrogen atom or an aliphatic, aromatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms.Specific examples of imidized substances include monoammonium; methylamine, ethylamine, Examples include aliphatic primary amines such as 11-pyramine; aromatic amines such as aniline, toluidine, and trichloraniline; and alicyclic amines such as 11-1-noramine and bornylamine.Also, urea , 1.3 dimethyl urea, 13-diethyl urea, 1.3-dipropylurea, etc., which can be readily prepared by heating or other means.
It is also possible to use compounds that generate amines. The amount of these imidized substances to be used varies depending on the degree of imidization and cannot be strictly limited, but is generally 1 to 250 parts by weight per 100 parts by weight of the methacrylic resin. If it is less than 1 part by weight, no obvious improvement in surface 4 thermal properties can be expected. Further, if the weight exceeds 250 feet, it is not preferable from the economic point of view. Among the imidizing agents used in the present invention, methylamine and ammonia are particularly preferred from the viewpoint of heat resistance and transparency. The "methacrylic resin" used in the present invention refers to a methacrylic acid ester homopolymer having an intrinsic viscosity of 0.01 to 3.0 or a copolymer with an ethylenic monomer copolymerizable with methacrylic acid varnish. polymer). Jl, Shinai i
J-functional polymers include methacrylic acid, acrylic acid ester, acrylic acid, methacrylic acid, sulphate,
L pa/, 2) Substitutions such as j runo, no sh/n, etc.
−n, etc. are reduced by 4. ! 'li German-Chinese merger +:, ', 1, bi'1.
For example, menol methacrylate, enal methacrylate,
Propyl ivy, methacrylate
ru, meccrylic acid isosol j, ivytacryl f'Wb・1
()-y-l, methacryl 11i-Q;, ri 1z...
-1-sil, norbornyl 7-notacrylate, methacryl M
2 1-Narusoy/ku・\-1-sil, methacrylic acid--sosil, examples of acrylic acid sprue include Eva, -Nacrylic jJd27Nal, acrylic acid sulfur,
Zo-11pyr acrylate, r1-butyl acrylate, 1'-sosotylacrylate, tert-butyl acrylate, mi-pacrylate, lyli'l-\xyl, norphonyl acrylate, 2-ethyl acrylate\nidocyl, acrylic You can use acid, alcohol, etc. In the method C of the present invention, methacrylic Methyl acid 11'L autopolymer or 2
7511i17j with 5% or more of methyl methacrylate
% or less copolymerizable ethylenic? A conjugation with the 11°1N isomer is preferred. In particular, a medium polymer of methyl methacrylate is most preferred from the viewpoint of transparency. The solvent used in the method of the present invention can be used without inhibiting the progress of the imidization reaction, which is a polymer side chain condensation reaction of the meth)lyl resin, and in the case of a partial imidization reaction, the solvent can be used for methyl methacrylate or methacrylate segment i. It must not be possible to make any changes in the ~ part. The solvent is a poor solvent with a boiling point of 50 to 135°C under normal pressure or one that can dissolve the methacrylic resin at room temperature, and a poor solvent with a boiling point of 135°C.
Use a mixed solvent with a good solvent that exceeds 260"C and that easily dissolves the methacrylic resin. Preferably, the poor solvent has a solubility of 1 + parameter δ value of 14.0 to 19
.. 5 (c:rlP/(:IlR) '''', and as a good solvent, the solubility pathometer δ value is 8.0 to 13.9 (ca 1./co?)''
' range (7J or i:+,) 1. Zl. 5:'t Example of refrigerant,'
-1-,'(4;l:) evening/-Luke; Alcohols such as 1-tutanol, 1-pentanol, and A-phtatonol, I8-tosylene',
Ethylhesi/Len, Cumen, Men-J-Len, ]-7
7 Tashi-n, U-I Nrin, Ethylhenzen, Noethyl \Sojdon, Pentyl \Nsen, Vinenylyarinon 1.4I group j;Korou water ÷, chemical lA1-14!7
January 1'! N, Isoho II, Tsuk11・-,=l
-, 1 nano, -7 tosol, dibu-nor on lille, no'\yasil: 1---- uru, -7 yusol,
hmm,;? , 1.-le, Bunarsoj-2~Le Cordel,
The horns of Schiffer Ether, Nokura Il, Noe 5'' Lengricorsi Kosenru Ether, etc. 1.:1--
Can you name some chill compounds? In this -) good solvent, -C is a very good solvent.
U7. 2 (Oh, the solubility parameter b for the present invention is Polymer Hunt Hook, 2nd edition, Seaflan Luso, 1
゛-co-1')-in-i'-kunt, /
``Noi Ri-n I''
Rin no, -I-': L -rl (
1'olymer 1landhook, 5econ
d times, , 1 °H+-; 1n11ru1+1i
, 11.1mmt:rl+ut, John Wile
y & 5on (, NCw York) (197
Groups listed in 5)

【1(に(9拠した(il′I
をい−)。 用いる混合溶媒中の良冷妓の常圧1・の沸点か260°
C以上である場合には、ゴミ1化反応に。1、り得られ
た反応生成物から溶媒を1、成分と3゛ろ揮発性物質を
1−分に分離除去J−ることか困難となる。 また、用いる混合溶媒において貧溶媒と良溶媒の溶解性
パラメーターδ値が1−記範囲外の1:11合ね・lで
あると均一・な・ゴミ1化反応を行い運く、晶t′iの
すくれたメタクリルイミド含イ1車合体を+’−> j
llい。 本発明の方法において使用する混合溶媒の111は、生
産性の面からは少量であろごとが好ましいが、あまり少
量すぎると前記の溶媒の効果か低トするのでメタクリル
樹脂100重量部に対して10〜LO(01重量部の範
囲がよい。また、貧溶媒と良溶媒の比は99/1〜1/
99、好ましくは90/10−10/9(1(重量比)
である。 本発明の方法において用いる前記の溶媒は、メタクリル
樹脂の重合体間にイミド化反応を容易に(<〕) 拡散さ−l゛Cイミド反応を均一か一つ迅速に行わセる
とともに、反応系の温度制御を効果的に行うことを可能
にする。その結果、所望の光学材料としての透明性かつ
耐熱性に優れたメタクリルイミド含有重合体が得られる
。 メタクリル樹脂とイミド化物質との反応温度は、溶媒の
存在下において100°(:〜350°〔:、好ましく
は150°C〜300°Cである。反応温度が100°
C未満ではイミ「化反応か遅く、35F] ’Cを超え
ると原料メタクリル樹脂の分解反応が併発しやすい。 反応時間は、特に限定されないが生産性の面から短い方
がよく、20分〜5時間の範囲である。 ・イミド化反応6コおいて、反応系に水分が存在すると
メタクリル樹脂のエステル部がイミド化縮合反応過程で
副反応として水Qこよ♂・加水分解か起り、その結果、
得られるメタクリルイミド含有重合体中にメタクリル酸
か生成し7て本発明の目的とする所望のイミl化量を有
するメタクリルイミド含有重合体が得難くなる。したか
って、この反応においては、反応系に実質的に水分を含
有しない条件下、すなわち水分量が1重量%以ド、好ま
しくむ、i無水の条件下で行う。 また、反応系の雰囲気としては、111られる・イミド
化重合体の帯色性の点から、窒素、−・IJ ?) 、
j、またはアルゴンガス等を存在させた不活性ガス雰囲
気下で反応させるのがよい。 本発明の方法におけるメタクリル樹脂のイミド化量は、
耐熱性の点から一般式(II)で表されろ構造単位が2
〜100重量%、好ましくは30〜100重四%、さら
に好ましくは50〜100重足%の範囲となる程度とす
る。 本発明方法によりイミド化されて得られるメタクリルイ
ミド含有重合体は固有粘凌(測定方法は後述) 0.0
2〜4.5を有する。 本発明を実施するに用いる反応装置は、本発明の目的を
阻害しないものであれば特に限定されることはなく、プ
ラグフロータイブ反応装置、スクリュー押出タイプ反応
装置、塔状反応装置、管壁反応装置、ダクト状反応装置
、槽壁反応装置等が用いられる。イミド化を均一に行い
かつ均−ZCメ([1) タクリルイミト含有重合体を得るためには、供給「−1
お、1び取り出し1−1を設け−(なる攪拌装置を備え
た槽壁反応装置で反応器内全体に混合機能をもつものが
好ましい。 最後に、メタクリル樹脂とイミド化物質との反応で斗じ
た高分子間縮合反応)1:成物を含有する反応生成物か
ら揮発性物質の大部分を分離除去−4る。 最終重合体中の残存揮発性物質の含有量が2重量%以下
、好ましくは1重量%以下となるように分離除去する。 揮発性物質の除去は、−・般のヘント押出機、デポラタ
イザー等を使用しで行うか、あるいは他の方法、例えば
、反応ηユ成物を溶媒で希釈し、多量の非IJ溶性媒中
て沈殿、)慮過さ−1て乾燥する方法等を用いて行°う
ことができる。 本発明の方法においては、必要に応じて、酸化防止剤、
可塑剤、滑剤、紫外線吸収剤等の添加剤を添加すること
ができる。 本発明の方法は、連続もしくは回分式のいずれても実施
できる。 次に、本発明の実施において使用する代表的な装置を第
1図を参照しながら説明する。 溶媒は溶媒貯槽1から濾過器33を取り、溶媒供給槽4
に送られる。必要に応じて添加される添加剤は貯槽5か
らライン6を経て溶媒供給槽、14コ供給されて溶解さ
れ、ライン2を通り、ポンプ3によってライン7を通り
樹脂溶解槽10にiXられる。一方、樹脂はペレット貯
槽8からライン9より樹脂溶解槽10に供給される。樹
脂溶解槽IOは攪拌機11およびジャケット12を備え
、ジャケント12中には熱媒体が開孔13および14を
通じて流通する。樹脂溶解槽10中の溶解樹脂は排出ラ
イン15、ポンプ16、ライン17を経て、反応槽20
に送られ、イミド化物質貯槽18からライン19を通り
濾過器34を経゛ζ供給されたイミド化物質と反応槽2
0中で反応する。反応槽20はスパイラルリボン型攪拌
機21およびジャケット22を備え、ジャケット22中
には熱媒体が開孔23および24を通し7て流通ずる。 反応槽20中の反応生成物は排出ライン25、ポンプ(
1こ)) 2G  ノ4ン2■を経て揮発物分離機28に送られ2
.lに(揮発分か除大さ才′1.2・]から排出されろ
。揮発物置1;j(機2Bはツク’、I J−、E (
)、−・ント;(1、加熱のためのf段32を備えてい
る。 〔発明の効果」 以干に説明した本発明のL法にJ、れば、イミ]−化反
応を容易に制御でき、が・−ノ品質のすくれたメタクリ
ルイ、I−含有車合体をL′Y的に有利に製造(き、か
り4H+られたilj合体0,1透明性と耐熱性にすく
と1.る。特に、得られた重合体の透光性能は波長G4
6nmにおいて5.000dB/kn11J−「とすく
れている。 したか、′(,1−述の特性か要求される分野、例えは
、光学繊維、光ディスク、CR′]’用フィルタ、テレ
ヒ用フィルター、螢光管フィルター、液晶フィルター、
メーター類、またはデジタル表示板等の−)−イスプレ
イ関係、照明光学関係、自動車等の・\ノドライトカバ
ー、し・ンス、電気部品、他の樹脂とのブし・ントによ
ろ成形材料等の広範囲に使用でき、その[業的、ON及
び価値は極めて高い。 〔実施例〕 以下、実施例により、本発明をさらに訂し2く説明する
。実施例において使用されろ部および%11Iすべて重
量部および重量%である。なお、実施例において使用し
た第1図の装置?1′系C1[次の仕様をイ1するもの
である。 樹脂溶解槽   500! 反応槽  40n 揮発物分離装置 軸スクリューヘン;−押出機 スクリユー:30n1mφx 720+n+nR:ヘン
ト部長: 50 nun これら実施例において重合体の1、へ性測定は次の方法
によった。 (1)赤外線吸収スペクトルは赤外線分光光度計(■日
立製作所製285型)を用いKBrディスク法によって
測定した。 (2)重合体の固有粘度は、デr:1−ヒショノプ(D
eereax−Bischof f)粘度計によって試
料ポリマー濃度0.5重量%のジメチルポルノ、アミド
78液の流動■、5間(L !; ) とシメナルホル
ムアミトの流動時間(オ0)とを1ilA度2510.
 Io〔二で測定し、E!;/L(l埴からポリマーの
相対粘度ηrel を求め、しかる後、次式。J、り算
出した値である。 固イ1粘度 lim In(ηrt: I ) /((
式中、(: L;l冷媒100 m9あたりのポリマー
のグラム数を表す。) (ご3)熱変形温度番jl: AS1’Mll 648
に、1.(ついて測定した。 (4)重合体のメルトインデー7クスは、八STMD 
1238(230°〔;、荷重3.8 kgでの10分
間のg数)を用いて求めた。 (5)重合体の一イミド化II+(%)の測定は、元素
分)ハ(直 (池1定機Cl−I N :r−ター (
MT   3)  柳本製作所製)での窒素含量及びゾ
し1トンNMRJNM FXlo() (JEOI) 
 スペクトロメーターl(lOMIIzにより測定し7
 だ。 ((i ) ij)られた重合体の透光性能は、以丁の
方法Cごより測定用試料を作成し7て測定した。 第2図C,ニボす内鋒4 (1+nmφのハし・ル11
5、外径38mmφのピストン46、内径31繍φのノ
ズル47より構成されたビスI−ン型押出機を使用U7
、その押出機のバレル温度を加熱ヒーター4で加タノシ
して、220〜250°C±1°Cに調節した。 次いで、バレル45内に、1分乾燥した重合体試料49
を入れて溶融し、定速モーター5Gc=よりピストン4
6を移動さ−Uて、ノズル47から溶融重合体をストラ
ンド状で押出し、下部二ンプ「1−ラ50で引き取り、
直径1 mmφのス1−ランF cこ賦形した。 この賦形された1鵬φのスI・ラン1を引取ろ過程で、
低屈折率重合体(2,2,2トIJフルオロエチルメタ
クリレート重合体、j(< Fd平均分子!ル8X10
’、屈折率n 、”J、410)を酢酸エチルに溶解さ
せた溶液(重合体濃度35重量%)を収容したデインピ
ングボット51中を通して、賦形ストランドの表面に1
5陶厚さ(乾燥厚さ)の塗膜を形成さセた。 この塗膜を有する賦形ストラン1を、熱交換器52で1
50°Cに加熱した空気53を循環さ−lた(1【Ir
 /)71 i n )乾燥器541−16ご通し7で
、酢酸エチルン容剤を除去し2て直径1価φの光転jズ
体を捲取り機55で巻取った。この得られた光伝送体を
透光性能を測定するための試料とと7だ。 次いて、この試料を用いて第;3図に示す装置で、透光
11能(光伝送性能)を評価した。 第3図は試料の透光11能をff1l+定−4る装置の
概略図であり、安定化電源61によ−2で安定されたハ
ロケンランプ62から出た光を、レンズ63によっ−C
平行光線にした後、T渉フィルター64によって単色化
し7.1−記ス[ソンI状光伝送体試料に0と等しい開
1−’I数をもリレンス(i 5の焦点に望める。 この焦点に、光伝送体試料0()の入射端面66が位r
す°jるようGこ調節し7て該伝送体試料60に光を入
射さ一口る。 入射端面(8()から人η・IU7だ先は減衰して出射
器67から出射さ一ロる。 この出射光は−I分に広い面積をも一つフォlダイオ−
168に、Yり電流に変換され、電流 電圧変模型の増
幅器69によって増幅して電圧;l 7 (1!、二よ
り電圧4ftとしてJダεみ取る。 光伝送性能の測定は、次の手順により行う。まず、光伝
送体60を!。の長さになる。lうに画:I:+5面を
ストランド軸に直角に切断し、平滑な面にイトげ前記の
装置(第3図)に入射端面60及び11″射端面67が
測定中に動かないように装着ずろ。 暗室にして電圧計の指示値を読み取る。この電li値を
1.  とする。次に、室内炉を点炉し、出射端面67
を装置からはずし、この端面から長さpの点71で光伝
送体60を切りとる。そして装置に装着されている力の
光伝送体の端面を最初と同しようにストランド軸に直角
な面に任りげ、これを新しい出射端面として装置に装着
Jる。これらの作業中、入射光量を一定に保つため入射
端面l 6は、動かないように注意する。再び暗室にし
、で電圧計の指示値を読み取り、これを1.とする。光
伝送損失(α)は次式によりd1算する。 (1!〕) ここ゛(、p;光伝送体のIQさ(km)1、、+2 
、光量(電圧計読取値) なお、本発明での測定条イ′1は次の通りである。 1−渉フイルター(主波長)64Gnmro (光伝送
体の全長)210(または5m)p、(光伝送体の切断
長)1.5m(または4.5 m )rつ(ボビンの1
白゛1子)19(1曲口ごこて、ボビンは装置を一!ン
パク■にJるために使用し 人別◇:9而66と出射端
面67間の距離か3 (1(+n程度になるようにU7
、残示の光伝送体をボビン(図示−〇−ず)に巻いてお
く。 丁渉フィルターは400nmから1200nmま−(の
主波長を変えろ51とか可能である。 光伝送体の開1■J数の測定は第4図に示す測定装置を
用い゛こ行った。図中 81ばハl、1ゲンランプを内
蔵した平行光線源である。該光源の出力光を心波1..
(ン5(l n In、゛l′埴幅;3110+0−)
目j1ノ。ルタ82に通し−(単色化した後、開[1数
が光伝送体のそれ、[、りも)、きいレンス83により
平行光線を集束して光伝送体84の一方の端面85に人
別さ−lろ。端面85は光伝送体のストランド軸と直角
に切断して平滑に仕上げ、固定具86に、J、す、スラ
ンi・軸と光軸87が一致するように固定′する。 入射光は全長lの光伝送体を通過し、た後、も′)力の
端面88より出射する。ストランド軸と曲角な平滑面に
仕上げられた端面338を固定軸)3 C)の中心軸に
一致させかつスミラン1−軸と+1il記中心軸が直交
するように固定具90により固定軸81)に固定する。 91ば回転腕で固定軸89の中心軸ントわりを回転し、
回転角度θを読み取るごとかできる。92は光を検出す
る光電子増倍管であり、/。 −ス93の内に取り伺けられ、孔94を通過し7た光量
を電流として測定する。該孔94は直径が1、5 mm
で中心軸から125 mmのイ3装置にある。 第3図のような構成の装置により出射光の分4】ば、回
転腕の回転角度θと光電子増倍層の電流との関係で測定
され、−例を小゛1と第5図の、1. ’r LJなる
。 最大電流を1□、とすると10、力用/2に減少する角
度幅2θWと次式から開1−]数(NA)を求めろ、1
点かできる。 N p −”−:i ! nθW (7)残存揮発分は、20 +1 ’C2331111
1111gの減圧加熱型乾熱゛・器内ζ重合体の力11
 ′!、)t ’(7友j(?H(II′+4測定した
のら、次式に、1す′Q出し、]ご。 WO WOは初iUlの重合体の中h:である。 Wは乾燥処理イでの中量てあ七S。 実施例1 1−分にI:’l t%: シフたヌククリル11多メ
チル アクリル酸メナル共中合体(IFC!it 、l
:L・−(] !1 / l 、固りj粘度(1,51
)100部t: 、、  4j:if’肉でン先ど71
L ′−c水l先し7、 塩化カル、・パノ1.I−C
乾燥して茎溜し、た後0.1μm1(ソルオIJボッ′
(イi友′市気1業(l(1)製)−(濾過L7に+ソ
L・790部;J:;J、ひ脱水乾燥しく仄溜した後0
1μIllフルオL2ボア(iJli: ii5 L、
たメタノール10部。l−からりる原料を)容i’l’
l’ +R’;に人才1.1′)τ19素置)桑Uまた
1で200°C−11r攪拌して重合体を溶解シアノ、
。次いて、この溶液を5kg / n、li間の供給速
度−C反応槽に連続的に送り、攪I′r回転数90rp
m、温度230°Cに、II節した。その後、乾燥した
メチルアミンを0.1μIllのフル第11ボアでiI
多過して20モル/11.’1間の速度で反応JHII
H内に連続的に供給し、内圧を55 kg/ afi・
GにU7た。 反応槽内の温度は230°〔:乙こ繍持U7、反応槽内
の平均滞在時間を3.0時間とした。反応物をヘンl 
Jlll出機に連続的に供給しで、溶媒をj゛成分々す
る揮発性物質を分離除去した。−、ント押出機の温度は
ヘント部230°C1押出部230°0、・\ント部真
空度9 mm1lB ・Abs にした。 ダイスから押出したストランド 断して良好な透明性を有するペレッI・状の重合体を得
た。−力、ヘント部よりυ1出した揮発分成分は冷却し
て回収した。 得られた重合体の赤外吸収スベク1ルを測定したところ
波数1720c+n−’、1663cm ’および7 
5 0 tIllにメタクリルイミド含イ1市合体1、
冒1の吸収がJ)C.)れた。また、核磁気共I!r5
スペク]・ルてはごの構造を示すシグナルが示された。 元素分析の結果、窒素含有量は8.3%であり、はぼ完
全にN−メチル化されたメタクリル・イモ1114合体
であることが6育認、された。ごの重合体の物1(1を
評価したところ、次の、1,)な1、エルを示した。 メルトインデックス  1.75g/10分熱変形温度
      1 7 )( ’C残存揮発分量    
 0.35部 記【1文合体ぺL・71・を透光+?l能測定用試料と
し゛(第2図に示ず装置お31.、びツノ法で光伝送体
を作成した(シリンルー温度25(1 °C)。得られ
た光伝送体の透光性能を第3図゛打よひ第4図に示す装
置を用いで測定したとごろ650dll/kmであった
。また、この光伝送体のl?tl Cl数は0.58で
あっlコ。ごの開1」数(+I’はN メナルメタクリ
ルイミト沖合体の屈折率を1.53(1 、2 、 2
 、 2−l・リフルオしノエチルメタクリLーート重
合体の屈折率を1.410として計算サレロF’l: 
g命(直( N A”−vrII +−2” rlP”
” 0.59)に近い稙であー,た。 実施例2〜6 第1表Cコ示ずメタクリル樹脂、・イミド化剤および反
応条件を採用した他は実施例1と同と7方法により種々
のメタクリルイミド含有重合体を得た。 反応槽内圧は20〜80 kg / CIM ににした
。得られた重合体の特性を第1表に示す。 以下余白 実施例■ パ1ルスパイソル攪拌機、圧力a1、試料汀人容2g及
びシャゲノ1−加熱器を備えた10nの反応器内に1分
乾燥し7だメタクリル酸メーy−ルキ合体(固有粘度:
 0. !i5) H)0部と実施例1と同様に処理し
た、トシし・ン80部とメタノール20部との混合物を
入れ、1分窒素置換した後230”Cに屏温撹拌して重
合体を)容解し7た。次いC1230′(:において試
薬片大容器かr+メ」−ルア4フ18.6部(0,fi
士ル比)を?8角q L、 ノご1沌燥ツタノ一ル?8
d女を濾過1−1製して添加し、内圧5 (i kg/
 +1111 0で3.0時間反応させた。 反応終了後N ノナルメタクリルー1゛ミド含有重合体
溶)没を取出し、150°に真空乾燥機で溶媒を除去し
て乾燥し多孔質の重合体を得た。 得られた重合体の赤外吸収スベク1ルを測定したところ
波数1720cm 1.16(’i3cm−’および7
50cmにメタクリルイミド含自重合体特イjの吸収が
みられた。重合体の評価結果を第2表に示す。 実施例8,9、比較例1〜6 第2表に示す条件で、実施例7の方法をくり返して種々
の重合体を製造し、 それを評価した。 比較例7 実施例1で用いたものと同一のメタクリル酸メチル共重
合体を十分乾燥後、50mmφのスクリフーー径をもつ
二軸押出機(L/D−33)に12kg/11rの割合
で供給した。この−二−軸押出機ばペレットの可塑化ゾ
ーン、イミド化剤供給ゾーン、イミド化反応ゾーン、ヘ
ントゾーン、メタリング押出ゾーン及びダイス部から構
成され、それぞれの温度を245°C,255°C,2
75°C、270’C、215’Cおよび255°Cに
設定した。ヘントゾーンは真空度を5 mm11g a
bsに維持した。−軸押出機のイミド化剤供給ゾーンに
は逆止弁を連して2.79kg/時間でメチルアミンを
供給した。ダイス部より得られるストランドを水冷後ペ
レット状にして試料とした。 この試料を乾燥後、押出賦形装置によりストランド状に
して実施例1と同様にして透光性能を評価した。 得られた重合体の赤外吸収スペクトルを測定したところ
波数1720cm−’、166.3cm−’および75
0cmにN−メチルメタクリルイミを重合体特有の吸収
がめられ、メタクリルイミド811合体であることが薙
認された。 得られた11′c合体の物性を評価した。結果を以下に
示す。 メル1−・インデックス  8.5gr/10分熱変形
温度      153°C 透光性能       35000dB / km (
646nm)以下の結果から溶媒の存在しない系で、イ
ミド衣反応を行っても透光性能に優れた−(ミ)含有重
合体は得られないことが判明した。この理由は、輔押出
機内で溶媒か7r、/Iシない場合高純度の溶融メタク
リル重合体とメチルアミンの混合がI−分に行われない
ためイミ]・化反応が均一に進行しないためと考えられ
る。
[1 (based on (9) (il'I
). The boiling point of the liquid in the mixed solvent used is 260° at normal pressure 1.
If it is higher than C, it becomes a garbage 1 reaction. It becomes difficult to separate and remove the solvent, components and volatile substances from the reaction product obtained in 1 minute. In addition, if the solubility parameter δ value of the poor solvent and good solvent in the mixed solvent used is 1:11, which is outside the range of 1-1, a homogeneous dust-1 reaction will occur, and the crystal t' Combining one car containing methacrylimide in i +'-> j
It's so bad. The mixed solvent 111 used in the method of the present invention is preferably used in a small amount from the viewpoint of productivity, but if the amount is too small, the effect of the solvent will be reduced. - LO (01 parts by weight is preferable. Also, the ratio of poor solvent to good solvent is 99/1 to 1/
99, preferably 90/10-10/9 (1 (weight ratio)
It is. The above-mentioned solvent used in the method of the present invention facilitates (<) the imidization reaction between the polymers of the methacrylic resin. This enables effective temperature control. As a result, a methacrylimide-containing polymer having excellent transparency and heat resistance as a desired optical material is obtained. The reaction temperature between the methacrylic resin and the imidized substance is 100° (: ~ 350° [:, preferably 150° C. to 300° C.) in the presence of a solvent.
If the reaction time is less than 35F, the imitation reaction will be slow, and if it exceeds 35F, the decomposition reaction of the raw material methacrylic resin will easily occur.The reaction time is not particularly limited, but from the viewpoint of productivity, the shorter the better; - In the six imidization reactions, if water is present in the reaction system, the ester moiety of the methacrylic resin will undergo water Q/hydrolysis as a side reaction during the imidization condensation reaction process, and as a result,
Methacrylic acid is produced in the resulting methacrylic acid-containing polymer, making it difficult to obtain a methacrylic acid-containing polymer having the desired amount of imilization, which is the object of the present invention. Therefore, this reaction is carried out under conditions where the reaction system does not substantially contain water, ie, where the water content is 1% by weight or less, preferably under anhydrous conditions. In addition, the atmosphere of the reaction system is nitrogen, -IJ? ),
It is preferable to carry out the reaction in an inert gas atmosphere containing argon gas or the like. The amount of imidization of methacrylic resin in the method of the present invention is
From the point of view of heat resistance, the structural unit represented by the general formula (II) is 2.
The amount is in the range of 100% by weight, preferably 30 to 100% by weight, and more preferably 50 to 100% by weight. The methacrylimide-containing polymer obtained by imidization by the method of the present invention has an intrinsic tenacity (the measurement method will be described later) of 0.0
2 to 4.5. The reactor used to carry out the present invention is not particularly limited as long as it does not impede the purpose of the present invention, and includes a plug flow type reactor, a screw extrusion type reactor, a column reactor, a tube wall reactor, etc. A reactor, a duct-like reactor, a tank wall reactor, etc. are used. In order to perform imidization uniformly and obtain a homogeneous -ZC method ([1) tacrylimito-containing polymer, the supply "-1
In addition, it is preferable to use a tank wall reaction device equipped with a stirring device such as 1 and 1-1, which has a mixing function throughout the reactor. Polymer Condensation Reaction) 1: Separating and removing most of the volatile substances from the reaction product containing the components. The remaining volatile substances in the final polymer are separated and removed so that the content thereof is 2% by weight or less, preferably 1% by weight or less. Removal of volatile substances can be carried out using a conventional Ghent extruder, deporatizer, etc., or by other methods, for example, diluting the reaction product with a solvent and injecting it into a large amount of non-IJ solvent medium. Precipitation, drying, etc. can be used. In the method of the present invention, an antioxidant,
Additives such as plasticizers, lubricants, and ultraviolet absorbers can be added. The method of the present invention can be carried out either continuously or batchwise. Next, a typical apparatus used in carrying out the present invention will be described with reference to FIG. The solvent is taken from the solvent storage tank 1 through the filter 33 and transferred to the solvent supply tank 4.
sent to. Additives added as needed are supplied from the storage tank 5 to the solvent supply tank 14 via line 6 and dissolved therein, passed through line 2, and then transferred to resin dissolution tank 10 via line 7 by pump 3. On the other hand, resin is supplied from the pellet storage tank 8 to the resin melting tank 10 through a line 9. The resin melting tank IO is equipped with an agitator 11 and a jacket 12, and a heat medium flows into the jacket 12 through openings 13 and 14. The melted resin in the resin dissolution tank 10 passes through a discharge line 15, a pump 16, and a line 17, and then flows into the reaction tank 20.
The imidized material is sent from the imidized material storage tank 18 through the line 19 to the filter 34, and the imidized material is supplied to the reaction tank 2.
Reacts in 0. The reaction tank 20 is equipped with a spiral ribbon stirrer 21 and a jacket 22, into which a heating medium flows through openings 23 and 24. The reaction product in the reaction tank 20 is discharged through a discharge line 25 and a pump (
1)) 2G is sent to the volatile matter separator 28 through 2
.. Volatile storage 1; j (machine 2B is tsuku', I J-, E (
), -・nt; (1. Equipped with f stage 32 for heating. [Effect of the invention] If J is added to the L method of the present invention described below, the imidation reaction can be easily carried out. It is possible to produce methacrylate, I-containing car combinations with low quality and advantageous L'Y (L'Y) advantageous production of methacrylic and I-containing car combinations with low quality (0, 1 and 1 in transparency and heat resistance). In particular, the light transmission performance of the obtained polymer is
At 6 nm, it is 5.000 dB/kn11J-'. , fluorescent tube filter, liquid crystal filter,
Meters, digital display boards, etc.) - display related, lighting optical related, automobiles, etc. / Nodorite covers, cabinets, electrical parts, brushing / filter molding materials with other resins, etc. It can be used in a wide range of applications, and its commercial, ON, and value are extremely high. [Examples] Hereinafter, the present invention will be further revised and explained with reference to Examples. All parts and percentages used in the examples are by weight. In addition, the apparatus shown in FIG. 1 used in the examples? 1' series C1 [This specifies the following specifications. Resin dissolving tank 500! Reaction tank 40n Volatile separator shaft screw: - Extruder screw: 30n1mφx 720+n+nR: Gent manager: 50 nun In these Examples, the hesitivity of the polymer was measured by the following method. (1) The infrared absorption spectrum was measured by the KBr disk method using an infrared spectrophotometer (model 285 manufactured by Hitachi, Ltd.). (2) The intrinsic viscosity of the polymer is
eereax-Bischof f) Using a viscometer, measure the flow time (L ! ; ) of a dimethylpornamide 78 solution with a sample polymer concentration of 0.5% by weight and the flow time (L ! ; ) of cymenalformamide 1 il A degree. 2510.
Io [measured in two, E! ;/L(l Determine the relative viscosity ηrel of the polymer from the clay, then use the following formula.
In the formula, (: L; l represents the number of grams of polymer per 100 m9 of refrigerant.) (3) Heat distortion temperature number jl: AS1'Mll 648
1. (Measured accordingly.) (4) The melt index of the polymer is 8 STMD.
1238 (230°; g number for 10 minutes at a load of 3.8 kg). (5) Measurement of monoimidization II+ (%) of the polymer is performed using the elemental content)
MT 3) Nitrogen content and concentration at 1 ton NMRJNM FXlo () (JEOI)
Spectrometer l (measured by lOMIIz7)
is. ((i) ij) The light-transmitting performance of the polymer was measured by preparing a measurement sample according to method C of Icho. Fig.2
5. Use a screw-in type extruder consisting of a piston 46 with an outer diameter of 38 mmφ and a nozzle 47 with an inner diameter of 31 mmφ U7
The barrel temperature of the extruder was increased with a heater 4 and adjusted to 220-250°C±1°C. Then, in the barrel 45, a polymer sample 49 that has been dried for 1 minute is placed.
and melt it, constant speed motor 5Gc = piston 4
6, extrude the molten polymer in the form of a strand from the nozzle 47, and take it up with the lower two pumps 50.
A S1-run Fc with a diameter of 1 mm was formed. In the process of picking up this shaped 1 Pengφ SuI Lan 1,
Low refractive index polymer (2,2,2 to IJ fluoroethyl methacrylate polymer, j (< Fd average molecule! 8X10
', refractive index n, 'J, 410) dissolved in ethyl acetate (polymer concentration 35% by weight) is passed through the impinging bot 51 and applied to the surface of the shaped strand.
A coating film with a thickness of 5 mm (dry thickness) was formed. The shaped strand 1 having this coating film is passed through a heat exchanger 52.
Air 53 heated to 50°C was circulated (1[Ir
/) 71 in) The ethyl acetate container was removed in the dryer 541-16 through 7, and the photoconverter having a diameter of monovalent φ was wound up in the winder 55. This obtained optical transmitter was used as a sample for measuring the light transmission performance. Next, using this sample, the light transmission performance (light transmission performance) was evaluated using the apparatus shown in FIG. FIG. 3 is a schematic diagram of a device for adjusting the light transmittance of a sample by ff1l + -4, in which light emitted from a Haloken lamp 62 stabilized at -2 by a stabilized power supply 61 is passed through a lens 63 to -C.
After collimating the beam, it is made monochromatic by the T beam filter 64, and an open 1-'I number equal to 0 can also be seen at the focal point of 7.1. , the incident end surface 66 of the optical transmitter sample 0 ( ) is at the position r
Adjust G so that it is 7, and let the light enter the transmitter sample 60. From the incident end surface (8()) to the end of η/IU7, the light is attenuated and emitted from the emitter 67.
At 168, Y is converted to a current, and amplified by an amplifier 69 of the current/voltage variation model to obtain a voltage of 1. First, cut the optical transmission body 60 to a length of 1. Cut the sea urchin drawing: I: +5 side perpendicular to the strand axis, and cut it into a smooth surface using the above-mentioned device (Fig. 3). Be sure to install the entrance end surface 60 and the 11" exit end surface 67 so that they do not move during measurement. Read the reading on the voltmeter in a dark room. Set this electric Li value to 1.Next, turn on the indoor furnace. , output end surface 67
is removed from the apparatus, and the optical transmission body 60 is cut off from this end face at a point 71 of length p. Then, the end face of the power light transmitting member attached to the device is set to a plane perpendicular to the strand axis, as it was at the beginning, and this is used as a new output end face to be attached to the device. During these operations, care must be taken not to move the incident end surface l6 in order to keep the amount of incident light constant. Return to the dark room and read the reading on the voltmeter at step 1. shall be. Optical transmission loss (α) is calculated by d1 using the following formula. (1!) Here゛(, p; IQ of optical transmission body (km) 1,, +2
, light amount (voltmeter reading value) The measurement strip A'1 in the present invention is as follows. 1-Winter filter (main wavelength) 64 Gnmro (total length of optical transmission body) 210 (or 5 m) p, (cutting length of optical transmission body) 1.5 m (or 4.5 m) r (1 of bobbin)
White ゛1 child) 19 (1 turn mouth iron, bobbin is used to J the device in one!) Person ◇: 9 and the distance between 66 and the output end face 67 3 (1 (approximately +n) U7 to become
, the remaining optical transmission body is wound around a bobbin (not shown). It is possible to change the dominant wavelength of the interference filter from 400 nm to 1200 nm (51).The measurement of the open 1J number of the optical transmission body was carried out using the measuring device shown in Fig. 4. This is a collimated light source with a built-in Bahal, 1 gen lamp.The output light of the light source is converted into a heart wave 1...
(In 5 (l n In, ゛l′ clay width; 3110+0-)
Eye j1no. The parallel light rays are passed through the router 82 (after being made monochromatic, the number is that of the optical transmission body, [, Rimo), and the parallel rays are focused by the sharp lens 83 and focused on one end surface 85 of the optical transmission body 84. Sa-lro. The end face 85 is cut perpendicular to the strand axis of the optical transmission body, finished smooth, and fixed to a fixture 86 so that the J, S, S, and i axis and the optical axis 87 are aligned. The incident light passes through a light transmission body having a total length l, and then exits from the end face 88 of the force. Fix the fixed shaft 81) with a fixture 90 so that the end surface 338 finished with a smooth surface at an angle with the strand axis is aligned with the center axis of the fixed shaft 3C), and the Sumilan 1-axis and +1il center axis are perpendicular to each other. Fixed to. 91 rotates around the central axis of the fixed shaft 89 with a rotating arm;
This can be done by reading the rotation angle θ. 92 is a photomultiplier tube that detects light; /. - The amount of light that enters the hole 93 and passes through the hole 94 is measured as a current. The hole 94 has a diameter of 1.5 mm.
It is located on the A3 device 125 mm from the central axis. Using the apparatus configured as shown in Fig. 3, the emitted light is measured by the relationship between the rotation angle θ of the rotary arm and the current in the photoelectron multiplier layer. 1. 'r LJ becomes. If the maximum current is 1□, find the opening 1-] number (NA) from the angle width 2θW that decreases to 10, force /2 and the following formula, 1
I can turn it on. N p −”−: i ! nθW (7) The remaining volatile matter is 20 + 1 'C2331111
1111g of reduced pressure heating type dry heat ・Power of ζ polymer in the vessel 11
′! ,)t'(7 friends j(?H(II'+4, then 1'Q is calculated in the following formula,]). WO WO is h: in the polymer of the initial iUl. W is Example 1 1 minute I:'l t%: Sifted Nuccryl 11 polymethyl acrylic acid Menal co-neutral coalesce (IFC!it, l
:L・-(] !1/l, hardness j viscosity (1,51
) 100 copiest: ,, 4j:if' meat de n d 71
L'-c water 7, Cal chloride, pano 1. I-C
After drying and collecting the stems, 0.1μm1 (Soluo IJ bottle)
(Produced by l(1)) - (790 parts of filtration L7 + SO L; J:; J, after dehydration and drying, 0
1 μIll Fluo L2 bore (iJli: ii5 L,
10 parts of methanol. I'l'
l' + R';1.1') τ19 Preparation) Mulberry
. Next, this solution was continuously fed to the C reaction tank at a feed rate of 5 kg/n, li, and stirred at a rotation speed of 90 rpm.
m, temperature at 230°C, section II. Then, add 0.1μIll of dried methylamine to iI in a full 11th bore.
20 mol/11. JHII reacts at a rate between '1
Continuously supplied into the H, the internal pressure is 55 kg/afi・
U7 was in G. The temperature in the reaction tank was 230° [: Otsuko U7, and the average residence time in the reaction tank was 3.0 hours. Mix the reactants
The solvent was continuously fed to a Jllll extractor to separate and remove the volatile substances that make up the solvent. - The temperature of the extruder was set to 230°C in the extrusion section, 230°C in the extrusion section, and a vacuum level of 9 mm11B in the extrusion section.Abs. A pellet-shaped polymer having good transparency was obtained by cutting the strand extruded from the die. - Volatile components ejected from the Ghent section by υ1 were cooled and collected. When the infrared absorption spectrum of the obtained polymer was measured, the wave numbers were 1720c+n-', 1663cm', and 7.
50 tIll contains methacrylimide 1 city combination 1,
J) C. ) was lost. Also, nuclear magnetic co-I! r5
A signal indicating the structure of the spectrum was shown. As a result of elemental analysis, the nitrogen content was 8.3%, and it was confirmed that it was an almost completely N-methylated methacrylic potato 1114 combination. When the polymer 1 (1) was evaluated, it showed the following 1, L. Melt index 1.75g/10min Heat distortion temperature 17) ('C residual volatile content
0.35 part book [1 sentence combination PE L 71. Translucent +? An optical transmission body was prepared using the apparatus (31. When measured using the equipment shown in Figure 3 and Figure 4, it was approximately 650 dll/km.Also, the l?tlCl number of this optical transmission body was 0.58. 1'' number (+I' is N
, calculated assuming that the refractive index of the 2-l refluorinated noethyl methacrylate polymer is 1.410 Salero F'l:
g life (direct (NA"-vrII +-2"rlP"
” 0.59). Examples 2 to 6 Various methods were used as in Example 1 except that the methacrylic resin, imidizing agent, and reaction conditions were used (not shown in Table 1). A methacrylimide-containing polymer was obtained. The internal pressure of the reaction tank was set to 20 to 80 kg/CIM. The properties of the obtained polymer are shown in Table 1. After drying for 1 minute in a 10N reactor equipped with a 2g sample and a 1-heater, the mixture of methacrylic acid and methacrylic acid (intrinsic viscosity:
0. ! i5) Add a mixture of 0 parts of H), 80 parts of toshishin, and 20 parts of methanol, which had been treated in the same manner as in Example 1, and after purging with nitrogen for 1 minute, stir at 230"C and heat the polymer. ) and 7. Next, add 18.6 parts of C1230' (0, fi
Shiruhi)? 8th angle q L, Nogo 1 chaos dry Tsutanoru? 8
Filter 1-1 and add the d woman to the internal pressure 5 (i kg/
The reaction was carried out at +11110 for 3.0 hours. After the reaction was completed, the N-nonalmethacrylic-1-amide-containing polymer solution was taken out, and the solvent was removed and dried in a vacuum dryer at 150° to obtain a porous polymer. When the infrared absorption spectrum of the obtained polymer was measured, the wave number was 1720 cm, 1.16 ('i3 cm-' and 7
At 50 cm, an absorption characteristic of the methacrylimide-containing autopolymer was observed. The evaluation results of the polymer are shown in Table 2. Examples 8 and 9, Comparative Examples 1 to 6 Various polymers were produced by repeating the method of Example 7 under the conditions shown in Table 2, and evaluated. Comparative Example 7 After thoroughly drying the same methyl methacrylate copolymer used in Example 1, it was supplied at a rate of 12 kg/11r to a twin screw extruder (L/D-33) with a screen diameter of 50 mmφ. . This twin-screw extruder is composed of a pellet plasticization zone, an imidization agent supply zone, an imidization reaction zone, a Ghent zone, a metal ring extrusion zone, and a die section, and the respective temperatures are 245 °C, 255 °C, 2
The temperatures were set at 75°C, 270'C, 215'C and 255°C. The degree of vacuum in the hent zone is 5 mm 11 g a
maintained at bs. - A check valve was connected to the imidizing agent supply zone of the shaft extruder, and methylamine was supplied at a rate of 2.79 kg/hour. The strand obtained from the die part was cooled with water and then pelletized to be used as a sample. After drying this sample, it was shaped into a strand using an extrusion shaping device and evaluated for light transmission performance in the same manner as in Example 1. When the infrared absorption spectrum of the obtained polymer was measured, the wave numbers were 1720 cm-', 166.3 cm-' and 75 cm-'.
Absorption peculiar to polymers of N-methyl methacrylimide was observed at 0 cm, and it was confirmed that it was a combination of methacrylimide 811. The physical properties of the obtained 11'c coalescence were evaluated. The results are shown below. Mel 1-index 8.5gr/10min Heat deformation temperature 153°C Light transmission performance 35000dB/km (
646 nm), it was found that even if the imide coating reaction was carried out in a solvent-free system, a -(mi)-containing polymer with excellent light-transmitting performance could not be obtained. The reason for this is that if there is no solvent in the extruder, the high-purity molten methacrylic polymer and methylamine will not be mixed at the same time, and the reaction will not proceed uniformly. Conceivable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用される装置の一具体例を線
図的に示すものである。 1・・・溶媒貯槽、     4・・・溶媒供給槽、8
・・・樹脂ペレット貯槽、  10・・・樹脂溶解槽、
18・・・イミド化物質貯槽、 20・・・イミド化反応槽、 28・・・揮発物分離機
。 第2図は重合体の透光性能を測定するだめの試料を作成
する装置の概略図である。 第3図は重合体試料の透光性能を測定ずろ装置の概略図
である。 第4図は重合体試料の開口数を測定する装置の概略図で
ある。 第5図は第4図の装置で測定された結果Oルー例を示す
図である。
FIG. 1 diagrammatically shows one embodiment of the apparatus used in the practice of the invention. 1... Solvent storage tank, 4... Solvent supply tank, 8
...Resin pellet storage tank, 10...Resin dissolution tank,
18... Imidization substance storage tank, 20... Imidization reaction tank, 28... Volatile separator. FIG. 2 is a schematic diagram of an apparatus for preparing a sample for measuring the light-transmitting performance of a polymer. FIG. 3 is a schematic diagram of a device for measuring the light transmission performance of a polymer sample. FIG. 4 is a schematic diagram of an apparatus for measuring the numerical aperture of a polymer sample. FIG. 5 is a diagram showing an example of the results measured by the apparatus shown in FIG. 4.

Claims (1)

【特許請求の範囲】 1)メタクリル樹脂と一般式 R−NH_2( I ) (式中、Rは水素原子または炭素数1〜20の脂肪族、
芳香族もしくは脂環族炭化水素基を表す)で示される化
合物の1種以上とを、常圧下の沸点が50〜135℃で
かつ常温でメタクリル樹脂を溶解し難い貧溶媒と常圧下
の沸点が135℃を超え260℃未満でありかつメタク
リル樹脂を溶解し易い良溶媒との混合溶媒存在下に、1
00℃以上350℃以下の温度において反応させ、次い
で得られた反応生成物から揮発性物質を分離除去するこ
とを特徴とする、一般的(II) ▲数式、化学式、表等があります▼一般式(II) (式中、Rは前述のとおりである。)で示される構造単
位2〜100重量%エチレン性単量体から導かれる構造
単位0〜98重量%からなる透明性及び耐熱性に優れた
メタクリルイミド含有重合体の製造方法。
[Claims] 1) Methacrylic resin and general formula R-NH_2(I) (wherein R is a hydrogen atom or an aliphatic group having 1 to 20 carbon atoms,
(representing an aromatic or alicyclic hydrocarbon group), a poor solvent with a boiling point under normal pressure of 50 to 135°C and which is difficult to dissolve the methacrylic resin at room temperature, and a poor solvent with a boiling point under normal pressure of 50 to 135°C In the presence of a mixed solvent with a good solvent that is higher than 135°C and lower than 260°C and easily dissolves the methacrylic resin, 1
General (II) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ General formula, which is characterized by reacting at a temperature of 00°C to 350°C and then separating and removing volatile substances from the resulting reaction product. (II) Excellent transparency and heat resistance, consisting of 0-98% by weight of structural units derived from 2-100% by weight of the structural unit represented by the formula (wherein R is as described above) derived from an ethylenic monomer. A method for producing a methacrylimide-containing polymer.
JP29468588A 1988-11-24 1988-11-24 Manufacture of methacrylimide-containing polymer excellent in transparency and heat resistance Pending JPH02142802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29468588A JPH02142802A (en) 1988-11-24 1988-11-24 Manufacture of methacrylimide-containing polymer excellent in transparency and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29468588A JPH02142802A (en) 1988-11-24 1988-11-24 Manufacture of methacrylimide-containing polymer excellent in transparency and heat resistance

Publications (1)

Publication Number Publication Date
JPH02142802A true JPH02142802A (en) 1990-05-31

Family

ID=17810984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29468588A Pending JPH02142802A (en) 1988-11-24 1988-11-24 Manufacture of methacrylimide-containing polymer excellent in transparency and heat resistance

Country Status (1)

Country Link
JP (1) JPH02142802A (en)

Similar Documents

Publication Publication Date Title
JPS63234002A (en) Methacrylic resin composition containing methacrylimide unit and production thereof
CN101809067B (en) Crystallizable polyetherimides, method of manufacture, and articles derived therefrom
JPS60240731A (en) Novel resin material, its production and use
FR2980201A1 (en) THERMOPLASTIC POLYIMIDES
CN102041577A (en) Polyimide fiber and preparation method thereof
KR0161313B1 (en) Polyimide amicester and process for preparing the same
CA2006068C (en) Methacrylimide containing polymer
JPH02178309A (en) Methacrylimide-containing polymer
JPH02142802A (en) Manufacture of methacrylimide-containing polymer excellent in transparency and heat resistance
JP2505970B2 (en) Process for producing methacrylic resin containing methacrylimide unit
JPS6241203A (en) Production of methacrylimide-containing polymer excellent in transparency and heat resistance
JPS6128015A (en) Production of poly(p-phenylenebenzo-bis-thiazole fiber
JPS6164703A (en) Production of methacrylimide-containing polymer excellent in transparency and heat resistance
JPH0552322B2 (en)
CN110409013B (en) Spinning process for preparing St-g-PAN fiber by wet method
JPH0286624A (en) High-molecular weight polyimide, its preparation, and molded article thereof
JPH0242364B2 (en)
JPH0242362B2 (en)
JPH0242363B2 (en)
JPH04356507A (en) Production of methacrylimide unit-containing methacrylic resin
JPS6336606B2 (en)
AU651718B2 (en) Granular material of polyimide precursor, mixture comprising the material and process for producing the material
US4208509A (en) Process for the preparation of polyterephthaloyl-and polydiphenyl ether-4,4-dicarboxylic acid oxalamidrazone
JPH05105717A (en) Process for manufacturing thermoplastic substance, obtained thermoplastic substance and use of same as highly heat-resistant transparent substance
JPH05105716A (en) Methacrylimide group-containing polymer having excellent reproducibility of color tone and its production