JPH02142677A - Method for welding steel - Google Patents

Method for welding steel

Info

Publication number
JPH02142677A
JPH02142677A JP25475889A JP25475889A JPH02142677A JP H02142677 A JPH02142677 A JP H02142677A JP 25475889 A JP25475889 A JP 25475889A JP 25475889 A JP25475889 A JP 25475889A JP H02142677 A JPH02142677 A JP H02142677A
Authority
JP
Japan
Prior art keywords
torch
welding
welded
bead
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25475889A
Other languages
Japanese (ja)
Other versions
JPH0431787B2 (en
Inventor
Kazuo Yoshida
和夫 吉田
Tadahiro Umemoto
忠宏 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP25475889A priority Critical patent/JPH02142677A/en
Publication of JPH02142677A publication Critical patent/JPH02142677A/en
Publication of JPH0431787B2 publication Critical patent/JPH0431787B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To weld steel without bead bottom cracking due to penetration of H2 by increasing heat gain of a postheating torch than that of a welding torch among a preheating torch, the welding torch and the postheating torch arranged at intervals in the welding direction. CONSTITUTION:The respective torches 4 whose mutual intervals are set like the formula are elevated by driving a supporting mechanism 9 and nozzles 2 are arranged in opposition at the proper intervals on a weld line W of material C to be welded. Inert gases are than supplied 11 to the respective nozzles 2 and spaces between the respective nozzles 2 tips and the material C to be welded are covered by the inert gases. A current is than carried between electrodes 3 of the respective nozzles 2 and the material C to be welded by a current supply means 10 and area are generated to start welding. Filler metal 5 is then supplied between the electrode 3 of the welding torch 4b and the material C to be welded and a traveling truck 8 is made to travel in the arrow direction and welding is performed along the weld line W. Namely, after the material C to be welded is preheated by the are generated by the preheating torch 4a, the filler metal 5 is molten by the welding torch 4b to form a bead B and further, the bead B is postheated by the postheating torch 4c having heat gain higher then the torch 4b.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、鋼材の溶接方法に係り、特に、被溶接物のビ
ード下割れの発生を抑えるとともに、被溶接物内に形成
される硬化域を除去するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of welding steel materials, and in particular, suppresses the occurrence of under-bead cracking in a workpiece and suppresses hardened areas formed within the workpiece. It is intended to remove.

「従来の技術j 一般に、厚肉の炭素鋼や低合金鋼等の被溶接物を溶接す
る場合、第1図に示すように、溶接時に形成されるビー
ドBの下部に水素が入り込んで、被溶接物C内にビード
下割れXが生じ易く、また、ビードBの下部近傍に硬化
域Yが形成され易い。
``Conventional technologyj'' Generally, when welding objects such as thick-walled carbon steel or low-alloy steel, as shown in Figure 1, hydrogen enters the lower part of the bead B formed during welding, causing damage to the objects. Under-bead cracks X are likely to occur in the welded product C, and hardened regions Y are likely to be formed near the bottom of the bead B.

そして、ビード下割れXが発生した状態や硬化域Yが形
成された状態になると、被溶接物Cの靭性がその溶接部
分で低下してしまうため、その対策が必要となる。
When the under-bead crack X occurs or the hardened region Y is formed, the toughness of the welded object C decreases at the welded portion, so countermeasures are required.

従来、その対策法の一つとして、被溶接物Cを溶接前に
予熱・しておいて、溶接作業の終了後に、後熱を付与す
ることや、焼き戻し等の熱処理を施すことが実施されて
いる。
Conventionally, one of the countermeasures has been to preheat the welded object C before welding, and after the welding work is completed, to apply postheat or to perform heat treatment such as tempering. ing.

「発明が解決しようとする課題」 しかしながら、このような従来方法にあっては、次のよ
うな改善すべきaWnが残されている。
"Problems to be Solved by the Invention" However, in such a conventional method, the following aWn remains to be improved.

即ち、前述の予熱及び後熱処理は、被溶接物Cの冷却速
度を遅くしてビードBと被溶接物Cとの熱、溶接及び後
熱等の各処理が個別の熱源によって行なわれるものであ
るために、各処理を実施する間に、被溶接物Cの温度が
降下してしまい、水素を十分に放出するには至っていな
い。さらに、これらの各処理に焼き戻し処理を付加する
場合であると、全体として溶接作業が繁雑なものとなり
、全体の作業時間も長くなり易い。
That is, in the preheating and post-heat treatments described above, the cooling rate of the welded object C is slowed down, and each treatment such as heating the bead B and the welding object C, welding, and post-heating is performed by an individual heat source. Therefore, the temperature of the object to be welded C drops during each process, and hydrogen is not sufficiently released. Furthermore, if a tempering process is added to each of these processes, the welding process as a whole becomes complicated and the overall working time tends to increase.

一方、ビード下割れXの発生を防止する他の方法として
、水素発生量の少ない溶接棒(溶加材)を用いることも
検討されているが、ビーを下割れXの発生mを紘少さ仕
る効果が認められるものの、その発生を完全に防止する
には至っていない。
On the other hand, as another method to prevent the occurrence of under-bead cracking Although it has been recognized that it has a protective effect, it has not yet been able to completely prevent its occurrence.

本発明は、このような事情に鑑みてなされたもので、 (i)被溶接物内にビード下割れが発生することを防止
すること。
The present invention has been made in view of the above circumstances, and has the following objects: (i) To prevent the occurrence of under-bead cracking in a workpiece to be welded.

(ii)被溶接物内の硬化域を除去すること。(ii) removing hardened areas within the workpiece;

(iii)これらの処理を溶接作業の実施工程と内時に
、簡便な設備で行なうこと。
(iii) These treatments should be carried out using simple equipment during and during the welding process.

等を目的とするものである。The purpose is to

[課題を解決するための手段」 かかる課題を解決する手段として、予熱トーチ、溶接ト
ーチ及び後熱トーチを溶接方向に間隔を空けて被溶接物
に対向配置させ、ガス被覆中で前記各トーチからアーク
を発生させるとともに、溶接トーチで溶加材を溶融状態
とすることにより、被溶接物の溶接を行なう方法であっ
て、溶接トーチの入熱量より後熱トーチの入熱量を大き
くし、かつ、各トーチの間隔を溶接条件と関連づけてそ
れぞれ設定するものである。
[Means for Solving the Problem] As a means for solving the problem, a preheating torch, a welding torch, and a postheating torch are arranged facing the workpiece at intervals in the welding direction, and each torch is A method of welding a workpiece by generating an arc and melting the filler metal with a welding torch, in which the heat input of the post-heating torch is larger than the heat input of the welding torch, and The distance between each torch is set in relation to the welding conditions.

「作用」 各トーチの間隔が、各トーチの入熱量や被溶接物の温度
等の条件を考慮してそれぞれ設定されていると、予熱処
理によって必要温度まで高められた被溶接物が、高温状
態に保持されたまま溶接及び後熱処理されて、水素の入
り込みを少なくし、かつ、入り込んだ水素の追い出し効
果を大きくしてビード割れの発生を少なくする。
"Function" If the interval between each torch is set in consideration of conditions such as the heat input of each torch and the temperature of the workpiece, the workpiece that has been raised to the required temperature by preheating will be in a high-temperature state. Welding and post-heat treatment are carried out while the material is maintained at a constant temperature, thereby reducing the intrusion of hydrogen and increasing the effect of expelling the intruded hydrogen, thereby reducing the occurrence of bead cracking.

そして、後熱処理時の入熱量を溶接処理時より大きくす
ることによって、被溶接物がマルテンサイト変態する現
象を抑制して、ビード割れの発生を防止する。
By making the amount of heat input during the post-heat treatment larger than that during the welding process, the phenomenon of martensitic transformation of the welded object is suppressed, and the occurrence of bead cracking is prevented.

また、各トーチによる加熱は、それぞれのアーク発生に
よってなされるために、三つのトーチを有する溶接機を
使用することにより、他の設備を要することなく、予熱
、溶接及び後熱処理が連続した一連の工程順に実施され
る。
In addition, since heating by each torch is achieved by the generation of individual arcs, by using a welding machine with three torches, preheating, welding, and post-heat treatment can be performed in a continuous series without requiring any other equipment. The steps are carried out in order.

「実施例」 以下、第2図ないし第4図に基づいて、・本発明に係る
鋼材の溶接方法の一実施例を説明する。
"Example" Hereinafter, based on FIGS. 2 to 4, an example of the method for welding steel materials according to the present invention will be described.

第2図及び第3図は、本発明の方法を実施するために好
適な溶接機!の例を示しており、不活性ガス噴射用のノ
ズル2とアーク発生用の電極3とを備えた3&gのトー
チ4(予熱トーチ4a・溶接トーチ4b・後熱トーチ4
c )を溶接方向に間隔を空けて設け、溶接トーチ4b
に、これによって発生させられるアーク中に溶加材5を
供給する溶加材供給手段6を設けた基本構成である。
FIGS. 2 and 3 show a welding machine suitable for carrying out the method of the present invention! 3&g torch 4 (preheating torch 4a, welding torch 4b, postheating torch 4) equipped with a nozzle 2 for inert gas injection and an electrode 3 for arc generation.
c) are provided at intervals in the welding direction, and the welding torch 4b
The basic configuration is provided with filler material supply means 6 for supplying filler material 5 into the arc generated thereby.

また、溶接機lは、被溶接物Cの溶接1wに沿って設け
られた走行レール7及び走行台車8を備え、走行台車8
には、各トーチ4を支持する支持機構9と、トーチ4に
電流を供給する電流供給手段1゜と、前記ノズル2に不
活性ガスを供給するガス供給手段11とが搭載されてい
る。
Further, the welding machine 1 includes a traveling rail 7 and a traveling trolley 8 provided along the welding 1w of the workpiece C, and the traveling trolley 8
is equipped with a support mechanism 9 for supporting each torch 4, current supply means 1° for supplying current to the torches 4, and gas supply means 11 for supplying inert gas to the nozzle 2.

前記支持機構9は、各トーチ4を後に詳述する間隔で支
持する支持枠12と、支持枠12に取り付けられた昇降
板13と、昇降板13に取り付けられた送り螺子14と
、送り螺子14j回転駆動することにより昇降板13を
トーチ4とともに昇降させる電動モータ15とによって
構成されている。
The support mechanism 9 includes a support frame 12 that supports each torch 4 at intervals described in detail later, a lifting plate 13 attached to the support frame 12, a feed screw 14 attached to the lift plate 13, and a feed screw 14j. The electric motor 15 rotates to raise and lower the elevating plate 13 together with the torch 4.

前記溶加材供給手段6は、走行台車8に取り付けられた
溶加材巻回ボビン16と、支持枠12を貫通して設けら
れ溶接トーチ4bの先端近傍に突出させられるガイド筒
17と、昇降板13に取り付けられて溶加材巻回ボビン
16から引き出された溶加材5をガイド筒17を挿通さ
せて溶接トーチ4bの先端に送り込む給送ローラ18と
、給送ローラ18を回転駆動する電動モータ19とによ
って構成されている。
The filler material supplying means 6 includes a filler material winding bobbin 16 attached to the traveling carriage 8, a guide tube 17 provided through the support frame 12 and projected near the tip of the welding torch 4b, and a guide tube 17 that can be moved up and down. The feed roller 18 is attached to the plate 13 and is rotated to feed the filler metal 5 pulled out from the filler metal winding bobbin 16 through the guide tube 17 and to the tip of the welding torch 4b. It is configured by an electric motor 19.

前記電流供給手段10は、走行台車8に取り付けた電源
コントローラ20と、各トーチ4と被溶接物Cとの間に
電流を供給するための給電ケーブル21とによって(1
■成されており、電源コントローラ20により、各トー
チ4への電流を調整して溶接入熱mを設定するものであ
る。
The current supply means 10 is operated by (1
(2) The power supply controller 20 adjusts the current to each torch 4 to set the welding heat input m.

前記ガス供給手段11は、走行台車8に取り付けまたは
別置きされたボンベ22と、ボンベ22から支持枠12
を介して各トーチ4のノズル2へ不活性ガスを供給する
供給ホース23とによって構成されている。
The gas supply means 11 includes a cylinder 22 attached to the traveling cart 8 or placed separately, and a cylinder 22 that is connected to the support frame 12 from the cylinder 22.
The supply hose 23 supplies inert gas to the nozzle 2 of each torch 4 through the nozzle 2 of each torch 4.

前記支持枠12は、各トーチ4内のガス案内孔と連通し
て、不活性ガスを各ノズル2に分配するものとされてい
る。
The support frame 12 communicates with gas guide holes in each torch 4 and distributes inert gas to each nozzle 2.

ここで、各トーチ4a・4b・4Cの相互間隔について
説明すると、各トーチ4a・4b・4Cの相互間隔は、
入熱量や被溶接物Cの温度(任意のトーチ毎における加
熱前の温度=初期温度、及び加熱後冷却中の温度=設定
温度)等を考慮して決定される。
Here, to explain the mutual spacing of each torch 4a, 4b, 4C, the mutual spacing of each torch 4a, 4b, 4C is as follows.
It is determined in consideration of the amount of heat input, the temperature of the object to be welded C (temperature before heating for each arbitrary torch = initial temperature, and temperature during cooling after heating = set temperature), etc.

半無限固体をその表面を移動する点熱源によって加熱し
た際に、半無限固体が温度θまで冷却されるのに要する
時間(’I’)は、次式で示される。
When a semi-infinite solid is heated by a point heat source moving on its surface, the time ('I') required for the semi-infinite solid to cool down to temperature θ is expressed by the following equation.

ただし 熱拡散率 溶接効率 単位長さ当たりの入熱 比熱 密度 θ:設定温度(温度) θ。:初期温度 そして、隣り合う任意のトーチの相互間隔りは、前記(
1)式と溶接速度Vとによって、次式により設定される
However, thermal diffusivity welding efficiency heat input specific heat density θ per unit length: Set temperature (temperature) θ. : Initial temperature and mutual spacing of any adjacent torches is the above (
It is set by the following formula using the formula 1) and the welding speed V.

L=vT くトーチ間隔の計算例〉 前記(2)式に以下の条件を代入して、相互間隔(7(
トーチ4a・4bの間隔LX、)−チ4b−4cの間隔
Ly  )を求めた。
L=vT Example of calculation of torch spacing> By substituting the following conditions into the above equation (2), the mutual spacing (7(
The distance LX between the torches 4a and 4b and the distance Ly between the torches 4b and 4c were determined.

代入条件 k = 0.146(cm’/5ec)、C= 0.1
28(cat/g a(: )、ρ−7.79(g/a
m3)、 η=0.5、 v = to(cI++/ m1n)、θ=300(’
C) Q = 20(k J / can) :予熱トーチ4
aによる入熱量 θ。=25(’C)  :予熱トーチ4aに、よる入熱
時の初期温度 及び   Q = 10(kJ 7cm) :溶接トー
チ4bによる入熱量 θ。−200(’C)  :溶接トーチ4bによる入熱
時の初期温度 これらの諸条件により、 L X#1.6(cm)、L y弁2.2(Cm)が得
られる。
Substitution conditions k = 0.146 (cm'/5ec), C = 0.1
28 (cat/ga a(: ), ρ-7.79(g/a
m3), η=0.5, v=to(cI++/m1n), θ=300('
C) Q = 20 (k J / can): Preheating torch 4
Heat input θ due to a. = 25 ('C): Initial temperature at the time of heat input by preheating torch 4a, and Q = 10 (kJ 7 cm): Amount of heat input θ by welding torch 4b. -200 ('C): Initial temperature during heat input by welding torch 4b With these conditions, L X #1.6 (cm) and Ly valve 2.2 (Cm) are obtained.

このように、各トーチ4の相互間隔を設定し、支持機構
9を駆動して各トーチ4を昇降させることによって、ノ
ズル2を被溶接物Cの溶接線W上に適宜間隔で対向配置
した後、ガス供給手段【lにより各ノズル2へ不活性ガ
スを供給し、各ノズル2の先端と被溶接物Cとの間を不
活性ガスによって被覆するとともに、電流供給手段10
により各ノズル2の電極3と、被溶接物Cとの間に電流
を流してアークを発生さ仕ることによって溶接が開始さ
れる。
In this way, by setting the mutual spacing between the torches 4 and driving the support mechanism 9 to raise and lower the torches 4, the nozzles 2 are arranged facing each other on the welding line W of the workpiece C at appropriate intervals. , the gas supply means [l supplies inert gas to each nozzle 2 to cover the space between the tip of each nozzle 2 and the workpiece C with the inert gas, and the current supply means 10
Welding is started by passing a current between the electrode 3 of each nozzle 2 and the workpiece C to generate an arc.

そして、溶接開始状態から、溶加材供給手段6を駆動し
て溶接トーチ4bの電極3と被溶接物Cとの間に、溶加
材5を供給するとともに、走行台車8を第3図の矢印方
向へ走行させることによって、第4図(a)〜第4図(
e)に示すように、溶接線Wに沿って溶接が行なわれる
Then, from the welding start state, the filler metal supply means 6 is driven to supply the filler metal 5 between the electrode 3 of the welding torch 4b and the workpiece C, and the traveling carriage 8 is moved as shown in FIG. By running in the direction of the arrow, the
As shown in e), welding is performed along the welding line W.

即ち、第4図(a)に示すように、矢印の溶接方向の前
方に位置する予熱トーチ4aの発生アークにより被溶接
物Cが予熱され、次いで、予熱された被溶接物Cの上に
、溶接トーチ4bで溶加材5が溶解させられることによ
って、第4図(b)に示すように、ビードBが形成され
、さらに、第4図(C)に示すように、後熱トーチ4C
の発生アークによりビードB及び被溶接物Cに後熱が与
えられる。これらの工程が順次繰り返されることによっ
て、溶接線Wの全長にわたって溶接が実施される。
That is, as shown in FIG. 4(a), the workpiece C is preheated by the arc generated by the preheating torch 4a located forward in the welding direction of the arrow, and then, on the preheated workpiece C, By melting the filler metal 5 with the welding torch 4b, a bead B is formed as shown in FIG. 4(b), and further, as shown in FIG.
After-heat is given to the bead B and the workpiece C by the generated arc. By sequentially repeating these steps, welding is performed over the entire length of the weld line W.

このような溶接作業における予熱、溶接及び後熱工程は
、各トーチ4を順次溶接方向に移動させる連続した一連
の工程で行なわれるため、各処理後における被溶接物C
の温度降下を抑えて、例えば、被溶接物Cを200℃以
上の高温度に維持して冷却を遅らせ、溶接ビードBの下
に入り込んだ水素の拡散時間を十分に確保して、ビード
下割れXの発生を防止することができる。また、冷却速
度を遅らせることにより、例えば900℃以上の高温と
された被溶接物pがマルテンサイト変態することを阻止
でき、組織的な面からビード下割れXの発生を防止する
ことができる。
The preheating, welding, and postheating processes in such welding work are performed in a continuous series of steps in which each torch 4 is sequentially moved in the welding direction, so that the workpiece C after each process is
For example, by keeping the object C to be welded at a high temperature of 200°C or higher to delay cooling, and ensuring sufficient time for the hydrogen that has entered under the weld bead B to diffuse, we can prevent under-bead cracking. Generation of X can be prevented. Furthermore, by slowing down the cooling rate, it is possible to prevent the welded object p heated to a high temperature of, for example, 900° C. or higher, from undergoing martensitic transformation, and it is possible to prevent the occurrence of under-bead cracks X from a structural standpoint.

さらに、後熱トーチ4Cによる入熱量を溶接トーチ4b
による入熱量よりも大きくすることによって、溶接後に
形成される被溶接物C内の硬化域Yをビードロを介して
焼き戻し温度に加熱できるものとなり、硬化域Yを除去
することができる。
Furthermore, the amount of heat input by the post-heating torch 4C is calculated from the welding torch 4b.
By making the amount of heat input larger than the heat input amount, the hardened region Y in the welded object C formed after welding can be heated to the tempering temperature via the beads, and the hardened region Y can be removed.

なお、溶接機lの実施例では、予熱、溶接、後熱処理を
行なう各トーチ4a・4b・4Cをそれぞれ1個とした
が、複数としてもよい。また、<トーチ間隔の計算例〉
で示した入熱量及びトーチ間隔は、被溶接物Cや溶加材
5の材質等により変更可能である。さらに、被溶接物C
の形状は、平板状に限られるものではなく、管の周溶接
にも適用可能である。
In the embodiment of the welding machine 1, there is one torch 4a, 4b, and 4C for preheating, welding, and post-heat treatment, but a plurality of torches 4a, 4b, and 4C may be provided. Also, <Example of calculation of torch spacing>
The amount of heat input and the torch interval shown in can be changed depending on the material of the workpiece C and the filler metal 5, etc. Furthermore, the object to be welded C
The shape is not limited to a flat plate shape, and can also be applied to circumferential welding of pipes.

「発明の効果」 以上説明したように、本発明に係る鋼材の溶接方法は、
予熱トーチ、溶接トーチ及び後熱トーチを溶接方向に間
隔を空けて配置して、各トーチでアークを発生させるこ
とにより、予熱、溶接及び後熱処理をするのに加えて、
溶接トーチの入熱量より後熱トーチの入熱量を大きくす
ることと、各トーチの間隔を溶接条件と関連づけて設定
することとを行なうものであるから、 ■予熱処理によって加熱された被溶接物が、高温状態に
保持されたまま溶接及び後熱処理されるため、水素の入
り込みを少なくしてビード下割れの発生を少なくするこ
とができる。
"Effects of the Invention" As explained above, the method for welding steel materials according to the present invention has the following effects:
In addition to preheating, welding, and postheating by arranging a preheating torch, a welding torch, and a postheating torch at intervals in the welding direction and generating an arc with each torch,
The heat input of the post-heating torch is made larger than the heat input of the welding torch, and the interval between each torch is set in relation to the welding conditions. Since welding and post-heat treatment are carried out while being maintained at a high temperature, the intrusion of hydrogen can be reduced and the occurrence of under-bead cracking can be reduced.

■予熱ないし後熱処理までの各工程中の高温状態の保持
と、後熱処理時の入熱量を溶接処理時より大きくするこ
ととによって、被溶接物がマルテンサイト変態する現象
を抑制して被溶接物内に形成される硬化域を、焼き戻し
温度に加熱して除去し、靭性低下を防止してビード割れ
の発生防止効果を高めることができる。
■ By maintaining a high temperature state during each process from preheating to post-heat treatment, and by increasing the amount of heat input during post-heat treatment compared to the welding process, the phenomenon of martensitic transformation of the welded object can be suppressed and the welded object can be welded. The hardened region formed inside the steel can be removed by heating to the tempering temperature, thereby preventing a decrease in toughness and increasing the effect of preventing bead cracking.

■予熱、溶接及び後熱処理を溶接作業の実施工程と同時
に行なうことにより、溶接機以外の格別な設備を要する
ことなく、簡便に実施することができる。
■ By performing preheating, welding, and post-heat treatment at the same time as the welding process, it can be easily performed without requiring special equipment other than a welding machine.

等の効果が得られる。Effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の溶接時において溶接部に発生したビード
下割れや硬化域を示す概略図、第2図ないし第4図は本
発明に係る鋼材の溶接方法の一実施例を示すもので、第
2図は本発明の方法を実施するために好適な溶接機の例
を示す側面図、第3図はその正面図、第4図は各トーチ
による処理状態の概略図である。 B・・・・・・ビード、 C・・・・・・被溶接物、 X・・・・・・ビード下割れ、 Y・・・・・・新化域、 W・・・・・・溶接線、 l・・・・・・溶接機、 2・・・・・・ノズル、 3・・・・・・電極、 4(4a・4b・4c)・・・・・・トーチ、5・・・
・・・溶加材、 6・・・・・・溶加材供給手段、 7・・・・・・走行レール、 8・・・・・・走行台車、 9・・・・・支持機構、 IO・・・・・電流供給手段、 11・・・・・・ガス供給手段。
FIG. 1 is a schematic diagram showing under-bead cracks and hardened areas that occur in the weld during general welding, and FIGS. 2 to 4 show an example of the method for welding steel materials according to the present invention. FIG. 2 is a side view showing an example of a welding machine suitable for carrying out the method of the present invention, FIG. 3 is a front view thereof, and FIG. 4 is a schematic diagram of processing states using each torch. B... Bead, C... Work to be welded, X... Crack under the bead, Y... New area, W... Welding. Wire, l... Welding machine, 2... Nozzle, 3... Electrode, 4 (4a, 4b, 4c)... Torch, 5...
... filler metal, 6 ... filler metal supply means, 7 ... traveling rail, 8 ... traveling trolley, 9 ... support mechanism, IO ... Current supply means, 11 ... Gas supply means.

Claims (1)

【特許請求の範囲】 予熱トーチ、溶接トーチ及び後熱トーチを溶接方向に間
隔を空けて被溶接物に対向配置させ、ガス被覆中で前記
各トーチからアークを発生させるとともに、溶接トーチ
で溶加材を溶融状態とすることにより、被溶接物の溶接
を行なう方法であって、溶接トーチの入熱量より後熱ト
ーチの入熱量を大きくし、かつ、任意トーチの間隔(L
)が次式の関係を有することを特徴とする鋼材の溶接方
法。 ▲数式、化学式、表等があります▼ ただし v:溶接速度 k:熱拡散率 η:溶接効率 Q:単位長さ当たりの入熱 C:比熱 ρ:密度 θ:設定温度 θ_0:初期温度
[Scope of Claims] A preheating torch, a welding torch, and a postheating torch are arranged facing the workpiece at intervals in the welding direction, and an arc is generated from each of the torches in a gas coating, and the welding torch is used to perform welding. This is a method for welding workpieces by bringing the materials into a molten state, in which the amount of heat input from the post-heating torch is greater than the amount of heat input from the welding torch, and the distance between arbitrary torches (L
) has the following relationship: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ where v: Welding speed k: Thermal diffusivity η: Welding efficiency Q: Heat input per unit length C: Specific heat ρ: Density θ: Set temperature θ_0: Initial temperature
JP25475889A 1989-09-29 1989-09-29 Method for welding steel Granted JPH02142677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25475889A JPH02142677A (en) 1989-09-29 1989-09-29 Method for welding steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25475889A JPH02142677A (en) 1989-09-29 1989-09-29 Method for welding steel

Publications (2)

Publication Number Publication Date
JPH02142677A true JPH02142677A (en) 1990-05-31
JPH0431787B2 JPH0431787B2 (en) 1992-05-27

Family

ID=17269473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25475889A Granted JPH02142677A (en) 1989-09-29 1989-09-29 Method for welding steel

Country Status (1)

Country Link
JP (1) JPH02142677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077364A1 (en) * 2006-12-22 2008-07-03 Sms Siemag Ag Method and device for welding sheet metal having a preheat and/or reheating device
CN102632317A (en) * 2012-04-23 2012-08-15 湖南华菱湘潭钢铁有限公司 Shielded metal arc welding method for high-strength hardened and tempered steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077364A1 (en) * 2006-12-22 2008-07-03 Sms Siemag Ag Method and device for welding sheet metal having a preheat and/or reheating device
CN102632317A (en) * 2012-04-23 2012-08-15 湖南华菱湘潭钢铁有限公司 Shielded metal arc welding method for high-strength hardened and tempered steel

Also Published As

Publication number Publication date
JPH0431787B2 (en) 1992-05-27

Similar Documents

Publication Publication Date Title
JP5646646B2 (en) Welding method and welding apparatus
JPH1158017A (en) Method and equipment for tig welding
CN105458470A (en) Material increase manufacturing method for titanium alloy shape part by using double-arc hybrid heat source
JP3025975B2 (en) Plate overlay
US3807715A (en) Method and apparatus for heat treating welded joints
JPH02142677A (en) Method for welding steel
US4366950A (en) Method and apparatus for cutting stainless steel
KR100993986B1 (en) Mash seam welding apparatus with post heating device and method of welding using the same
US2363089A (en) Welding process and apparatus
CN113337696A (en) Stainless steel welded pipe heat treatment equipment
WO1992019412A1 (en) Device and method for welding surface-treated metal
CN210711626U (en) Laser quenching device for surface of thin plate
JP3090496B2 (en) Method and apparatus for joining hot rolled material and continuous hot rolling equipment
JPH05329636A (en) Method for continuously cutting steel material
JP2734306B2 (en) One-side automatic Uranami welding method
CN117210782B (en) Plasma cladding equipment suitable for drill bit and cladding process thereof
SU1107414A1 (en) Method of cathode-ray building-up
JPS5496446A (en) Welding method for welded steel pipe of high toughness
JP6884365B2 (en) Thermal cutting method
JPS5447842A (en) Automatic straightening apparatus
JPH0428475B2 (en)
JP6529123B2 (en) Thermal cutting machine
JP2016194132A (en) Method for quenching steel sheet
US2266236A (en) Apparatus for reconditioning metal surfaces
SU506478A1 (en) Method of multi-electrode welding