JPH02142458A - Heat-treating system - Google Patents

Heat-treating system

Info

Publication number
JPH02142458A
JPH02142458A JP63295116A JP29511688A JPH02142458A JP H02142458 A JPH02142458 A JP H02142458A JP 63295116 A JP63295116 A JP 63295116A JP 29511688 A JP29511688 A JP 29511688A JP H02142458 A JPH02142458 A JP H02142458A
Authority
JP
Japan
Prior art keywords
raw material
pump
heat treatment
flow rate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63295116A
Other languages
Japanese (ja)
Other versions
JPH0813259B2 (en
Inventor
Yoshiro Yamanaka
山中 良郎
Futoshi Kozuka
小塚 太
Masanori Terayama
寺山 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP63295116A priority Critical patent/JPH0813259B2/en
Publication of JPH02142458A publication Critical patent/JPH02142458A/en
Publication of JPH0813259B2 publication Critical patent/JPH0813259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject system capable of dealing one by one with functional mechanism of the system without modifying conventional construction so much by controlling a raw material-feeding pump according to flowing am ount of raw material in the fluid circuit and holding optimum flowing amount of the system. CONSTITUTION:The aimed system is constructed such as raw material Ml is fed from an organic raw material-feeding pump 11 in which extruding amount is affected to secondary pressure to a fluid circuit Lp1 capable of steeply varying viscosity of the raw material Ml by heat-treating and flowing amount of the raw material Ml flowing through the fluid circuit Lp1 is detected, then the pump 11 is controlled by signal Sd1 corresponding to said detected value, thus previously known optimum flowing amount of the treating system is held. For instance, a detector 1 is installed at lower stream of a heat exchanger 20 and rotating number of a motor 12 is controlled by detected signal Sd1 of the detec tor through a motor controller 14, then extrusion at optimum flowing amount from the pump 11 is performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は醸造業或いは食品加工業等における熱処理シス
テムの内、コロイド状(粒径1−1o。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is suitable for use in heat treatment systems in the brewing industry, food processing industry, etc.

mg)或いは懸濁状(粒径100mg以上)の分散系を
成し、時として粘質を呈することの多い有機組成の液状
原料を対象とするシステム、特に。
(mg) or a suspension-like (particle size of 100 mg or more) dispersion system, and a system that targets liquid raw materials of organic composition that often exhibit viscosity.

滅菌、変性等の加熱プロセスを受持つものに関する。It relates to devices that are responsible for heating processes such as sterilization and denaturation.

(従来の技術) 斯かる技術分野の熱処理システムは1例えば。(Conventional technology) One example of a heat treatment system in such a technical field is as follows.

特開昭61−228250号公報等に見る如く、原料を
送給するポンプと、ポンプから供給された原料に熱処理
を施す流体回路とを備えて構成され1通常であれば、処
理系つまり流体回路中での最適原料流1aが分っており
、当然ながら、これを維持することに異存はないが、そ
の際、システムを余りいじると、当業界の場合、最終製
品への影響、特に、味覚や香りの微妙な変化を予測し難
く、−段落するまで長期間の試行錯誤を要することから
、好結果を期待できない。
As seen in Japanese Unexamined Patent Publication No. 61-228250, etc., it is configured to include a pump that feeds raw materials and a fluid circuit that heat-treats the raw materials supplied from the pump. The optimal raw material flow 1a in the system is known, and of course there is no objection to maintaining this, but in this case, if the system is modified too much, it will affect the final product, especially the taste. Good results cannot be expected because it is difficult to predict subtle changes in scent and fragrance, and it takes a long period of trial and error to reach a certain level.

そこで、従来は、性能の比較的安定したポンプを選定し
て、吐出邊の最適値を経験的に割出し。
Conventionally, pumps with relatively stable performance were selected and the optimal value for the discharge point was determined empirically.

この値に設定した状態で連続運転を行なうに留めていた
I was limited to continuous operation with this value set.

(発明が解決しようとする課題) 然るに、こうしたポンプは、一般に1M料の受手が受動
的に作動することを前提として性能の安定性が論じられ
ており、受手が能動的様相を呈してボンプニ次圧を強引
に変化させるような場合、ポンプ自体としては与えられ
た条件内で正常に機能していても、システム全体から見
れば、吐出橡が設定値を踏み外す結果となることを否め
ず、まして処理系内の原料に最適流量の維持を期すこと
は難しく、処理温度のバラつきから収量の低下につなが
らざるを得ない。
(Problem to be Solved by the Invention) However, the stability of performance of such pumps is generally discussed on the assumption that the receiver of the 1M charge operates passively; If the pump pressure is forcibly changed, even if the pump itself is functioning normally within the given conditions, from the perspective of the entire system, it is undeniable that the discharge pipe will deviate from the set value. Furthermore, it is difficult to maintain an optimum flow rate for the raw material in the processing system, and variations in processing temperature inevitably lead to a decrease in yield.

この点、当分野の熱処理システムは、例えばデンプン質
の糊化に見る如く、対象となる原料に比較的大幅な粘度
変化を招来し得る条件で熱処理を施す場合が少なくない
In this regard, heat treatment systems in this field often perform heat treatment on the target raw material under conditions that can cause a relatively large change in viscosity, as seen in gelatinization of starch, for example.

これは、処理系の外に視点を置いてみたとき流体回路が
圧力的に能動なメカニズムを発動し得るに等しく、そう
した場合、従来方式の侭では。
This is equivalent to the fact that when viewed from outside the processing system, the fluid circuit can activate a pressure-active mechanism, which is the case with conventional methods.

粘度変化の小康を座して待つよりは無いことを意味して
いる。
This means that it is better to sit and wait for a lull in viscosity changes.

本発明は斯かる従来の熱処理システムにおける問題弗を
有効に解決すべく為されたもので、その目的とする処は
、従来よりの構成を余りいじることなく、処理系の能動
的メカニズムに好便に対処し得る熱処理システムを提供
するにある。
The present invention has been devised to effectively solve the problems in the conventional heat treatment system, and its purpose is to provide a system that is convenient for the active mechanism of the treatment system without having to modify the conventional configuration too much. The objective is to provide a heat treatment system that can cope with this.

(課題を解決するための手段) 一ヒ記目的を達成すべく本発明は、流体回路を流れる原
料の流量を検出し、検出流儀に応じた信号でポンプを制
御することにより1処理系の最適流!a−を維持するよ
うにした・ (作用) 上記手段によれば、実質的に、ポンプへフィードバンク
制御を掛けるに等しく、従って、吐出付の強制的安定化
が可能きなり、しかも設備構成上必要な措置を、フィー
トバフクラインの付設程度に留め得る。
(Means for Solving the Problems) In order to achieve the above object, the present invention detects the flow rate of raw material flowing through a fluid circuit, and controls the pump with a signal according to the detection style, thereby optimizing one processing system. Flow! (Action) According to the above means, it is practically equivalent to applying feed bank control to the pump, and therefore, forced stabilization of the discharge is possible, and moreover, it is necessary for the equipment configuration. Measures can be limited to installing a foot buff line.

(実施例) 以下5本発明を、熱源と被処理物間に熱媒を介/Eゴせ
で加熱を行なう/11接加熱型の熱処理システムに適用
した実施例に付き、添付図面に基いて詳細な説明を行な
う。
(Example) The following 5 examples are based on the attached drawings, in which the present invention is applied to a heat treatment system of 11 indirect heating type, in which a heating medium is provided between a heat source and an object to be treated. A detailed explanation will be provided.

先ず、第1図及び第2図を参照して、熱媒を被処理物と
接触させない非接触式システムの例を示す。
First, with reference to FIGS. 1 and 2, an example of a non-contact type system in which a heating medium is not brought into contact with a workpiece will be shown.

第1図は非接触式熱処理システムの流れ概要図、第2図
は同システムの流体回路を構成する熱交換ユニットの縦
断面図である。
FIG. 1 is a flow diagram of a non-contact heat treatment system, and FIG. 2 is a vertical sectional view of a heat exchange unit that constitutes a fluid circuit of the system.

図中、Slは非接触式熱処理システムの全体を表し、同
システムSlは、液状原料M!;Lを非接触熱媒として
の熱湯whで比較的緩やかに加熱して変性処理を行なう
為のもので、システム的には、原本1M文を所要1号送
給する供給系Sfと、供給された原本1M文に熱処理を
施す処理系Splとを備えて成り、設備として1足えれ
ば、ホッパー10に(貯溜した原料Mlをフィードポン
プ11に通し加圧送給するフィードラインLfと、熱湯
whを熱媒とする熱交換器20に原料Mlを通して加熱
処理し処理済原料Mpを排出するプロセスラインLpl
とで構成されている。
In the figure, Sl represents the entire non-contact heat treatment system, and the system Sl represents the liquid raw material M! ; This is for denaturing L by relatively gently heating it with hot water wh as a non-contact heating medium.The system consists of a supply system Sf that feeds the original 1M text as required; It is equipped with a processing system Spl that heat-processes the original 1M text, and if one additional equipment is added, it is equipped with a feed line Lf for supplying the stored raw material Ml to the hopper 10 under pressure through the feed pump 11, and hot water wh. A process line Lpl that heats the raw material Ml through the heat exchanger 20 as a heat medium and discharges the treated raw material Mp.
It is made up of.

ポンプ11は、これを駆動する電動モータ12を備え、
モータ12は、リード線13を介してコントローラ14
から送られた制御信号Scに応じ作動する。
The pump 11 includes an electric motor 12 that drives it,
The motor 12 is connected to a controller 14 via a lead wire 13.
It operates in response to a control signal Sc sent from.

尚、制御信号Scは゛層圧信号として与えられ。Note that the control signal Sc is given as a layer pressure signal.

モータ12は信号Scの大小に応じて回転数を増減し、
信号Sc一定の場合1回転数が負荷に略反比例するもの
とし、一方、コントローラ14は単独でモータ12を制
御する場合、ポンプ11に、その二次圧が正常であれば
、最適流量を吐出させ得るように設定されているものと
する。従って、原料Mu又はMpの粘度が上がり、ボン
ブ11の二次圧が勝手に大きくなって、負荷が増大した
ような場合、(単独制御であれば)信号Scの大きさが
当初の設定値に保たれた侭変化しないことから、漏れ等
によりポンプ11の吐出量が低下して、最適流量を維持
できなくなる。
The motor 12 increases or decreases the rotation speed depending on the magnitude of the signal Sc,
When the signal Sc is constant, the number of revolutions is approximately inversely proportional to the load.On the other hand, when the controller 14 independently controls the motor 12, it causes the pump 11 to discharge the optimal flow rate if its secondary pressure is normal. It is assumed that it is set to obtain. Therefore, if the viscosity of the raw material Mu or Mp increases, the secondary pressure of the bomb 11 increases automatically, and the load increases, the magnitude of the signal Sc will return to the original set value (if controlled independently). Since the maintained temperature does not change, the discharge amount of the pump 11 decreases due to leakage, etc., and the optimum flow rate cannot be maintained.

熱交換器20は横置のユニー/ ト21を複数段積上げ
直列に接続したもので、各ユニー/ ト21は、第2図
に示すように、ストレートな原料導通用内管22と、こ
れを同軸に囲繞する熱湯導通用外管23から成り、原料
流通時その流束を直径振分けに二分して180度位相を
ずらすスワールプレート24が90度ピッチで内管22
の略全長に亘り連設されている。
The heat exchanger 20 is composed of horizontally placed units/tooths 21 stacked in multiple stages and connected in series. Each unit/tooth 21 has a straight inner tube 22 for conducting raw material and a straight inner tube 22 for conducting the raw material, as shown in FIG. Consisting of an outer tube 23 for conducting hot water coaxially surrounding the inner tube 22, a swirl plate 24 divides the flux into two diameter distributions during raw material distribution and shifts the phase by 180 degrees.
It is installed continuously over almost the entire length of.

本実施例では、以上において、プロセスラインLplを
実際に流れている原料Mpの流量を検出する検出器lを
熱交換器20の下流側に取付け、その検出信号Sdlを
伝えるリード1i12をモータコントローラ14に接続
してフイービバツク制御を掛けることにより、制御信号
Scの大きさを適宜増減せしめ、以って、モータ12の
回転数を一定に保持し、ポンプ11に常に最適流量を吐
出させるようにしている。
In this embodiment, the detector l for detecting the flow rate of the raw material Mp actually flowing through the process line Lpl is installed on the downstream side of the heat exchanger 20, and the lead 1i12 transmitting the detection signal Sdl is connected to the motor controller 14. By connecting the control signal Sc to the controller and applying feedback control, the magnitude of the control signal Sc is increased or decreased as appropriate, thereby keeping the rotational speed of the motor 12 constant and causing the pump 11 to always discharge the optimum flow rate. .

次いで、第3図及び第4図を参照し、熱媒を被処理物に
直接接触させる接触式システムの例を述べる。
Next, with reference to FIGS. 3 and 4, an example of a contact system in which a heating medium is brought into direct contact with a workpiece will be described.

第3図は接触式熱処理システムの流れ概要図。Figure 3 is a flow diagram of the contact heat treatment system.

第4図は同システムの流体回路を構成するスチームイン
ジェクターの縦断面図で、前の実施例と同様なものは同
じ参照番号で表されている。
FIG. 4 is a longitudinal cross-sectional view of a steam injector constituting the fluid circuit of the system, in which parts similar to those of the previous embodiment are designated by the same reference numerals.

図中、S2は接触式熱処理システムの全体を表し、同シ
ステムS2は、液体原料Mlに熱媒としての蒸気Stを
直接混入接触させ、比較的速やかに加熱して滅菌処理を
行なう為のもので、システム面では、処理系Sp2の加
熱方式が、また、設備面では、プロセスラインLp2を
スチームインジェクター40で構成し、その原料流量検
出信号Sd2をモータ12のコントローラ14に入力し
ている点が、前実施例と相違している。
In the figure, S2 represents the entire contact heat treatment system, and the system S2 is for sterilizing liquid raw material Ml by directly mixing and contacting steam St as a heating medium and heating it relatively quickly. In terms of the system, the heating method of the processing system Sp2 is different, and in terms of equipment, the process line Lp2 is configured with a steam injector 40, and the raw material flow rate detection signal Sd2 is inputted to the controller 14 of the motor 12. This is different from the previous embodiment.

インジェクター40は、原料導通管41とこれに平行な
スチームヘッダー42を複数本の傾斜ノズル43・・・
でつないだ構造のもので、プロセスラインLP2の原料
流量が誤検出されない程度に蒸気Stの吹込み量を抑え
である。
The injector 40 includes a raw material conduit 41, a steam header 42 parallel to this, and a plurality of inclined nozzles 43...
The flow rate of the steam St is suppressed to such an extent that the flow rate of the raw material in the process line LP2 is not erroneously detected.

最後に、第5図を参照して、接触非接触併用式熱処理シ
ステムの例を説明しておく。
Finally, an example of a contact/non-contact type heat treatment system will be described with reference to FIG.

第5図は同システムの流れ図で、前の実施例と同様なも
のは同じ参照番号で表されている。
FIG. 5 is a flow diagram of the same system, in which similar parts to the previous embodiment are designated by the same reference numerals.

図中、S3は接触非接触併用式熱翅理システムの全体を
表し1本システムS3は、前記接触式システムS2の供
給系Sfと処理系Sp2との間に。
In the figure, S3 represents the entire contact/non-contact thermal processing system, and one system S3 is located between the supply system Sf and the processing system Sp2 of the contact system S2.

非接触式システムS1の処理系SPIを介在せしめたも
ので、設備的には、フィードラインLfとプロセスライ
ンLp2をプロセスラインLplで直列につないだ構成
を有し、下流側に位置するプロセスラインLp2の原料
流量検出信号Sd2がコントローラ14にフィードバッ
クされている。尚、接続位置での温度条件と圧力条件が
整合すれば、プロセスラインLPIとLp2の接続順序
を逆にし、ラインLplからの検出信号Sdlをフィー
ドバックさせるようにしても良い。
The processing system SPI of the non-contact system S1 is interposed, and in terms of equipment, the feed line Lf and the process line Lp2 are connected in series by the process line Lpl, and the process line Lp2 located on the downstream side The raw material flow rate detection signal Sd2 is fed back to the controller 14. Note that if the temperature conditions and pressure conditions at the connection positions match, the connection order of the process lines LPI and Lp2 may be reversed, and the detection signal Sdl from the line Lpl may be fed back.

以上、いずれの実施例においても、従来よりの構成、つ
まり、フィードバック系1.2を除いた各システム51
〜S3の構成を余りいじることなく、処理系Spl、S
p2の能動的メカニズム、即ち、ポンプ11の二次圧押
上げに逐一対処することができる。
As described above, in any of the embodiments, the conventional configuration, that is, each system 51 except for the feedback system 1.
~ Processing system Spl, S without changing the configuration of S3 too much
The active mechanism of p2, that is, pushing up the secondary pressure of the pump 11 can be dealt with one by one.

こ−で、非接触式熱処理システムS1と、これよりフィ
ードバック系を取除いた従来システムとの比較実験例を
示しておく。
Here, an example of a comparative experiment will be shown between the non-contact heat treatment system S1 and a conventional system from which the feedback system has been removed.

皮血且1 ポンプ11: モーノポンプ 2NEL−20吐出量 
s+am 1.2001/hr兵神装備(株)製 熱交換器20 段数、接続:  6設訂列 ユニット21: 外径 23置信 長さ 1.25 ta スワールプレート 34枚 検出if:   ″rr1.磁流量計 ME↑−Y44
2−CB−2F山武ハネウエル(株)製 コントローラ14: デジタル指示調節計 山武ハネウェル(株)製 ズ0−42.tコ[杼 原料M文: 熱媒Wh: 加熱条件 原料側: 熱媒側: フラワーペースト 熱湯 温度 入口  40℃ 出口  115℃ 温度 入口  150℃ 出口  140℃ 流量     30文/win 丈11■求 システム51 設定FL量   2005L/hr加熱
時流量  200交/hr 従来システム 設定流量   200交/hr加熱時流
fit   30fL/hr 次いで、接触式熱処理システムS2の性能試験結果を二
種の原料MsLにつき例示しておく。
Skin Blood 1 Pump 11: Mono Pump 2NEL-20 Discharge Volume
s+am 1.2001/hr Heat exchanger manufactured by Heishin Gitsu Co., Ltd. 20 Number of stages, connection: 6 Setting row unit 21: Outer diameter 23 stacking length 1.25 ta 34 swirl plates detected if: ″rr1.Magnetic flow rate Total ME↑-Y44
2-CB-2F Controller 14 manufactured by Yamatake Honeywell Co., Ltd.: Digital indicator controller 0-42 manufactured by Yamatake Honeywell Co., Ltd. t Co [Shuttle raw material M sentence: Heat medium Wh: Heating conditions Raw material side: Heat medium side: Flower paste hot water temperature Inlet 40℃ Outlet 115℃ Temperature Inlet 150℃ Outlet 140℃ Flow rate 30 sentences/win Length 11 ■ Search system 51 Setting FL amount 2005 L/hr Heating flow rate 200 AC/hr Conventional system Set flow rate 200 AC/hr Heating flow fit 30 fL/hr Next, the performance test results of the contact heat treatment system S2 will be illustrated for two types of raw materials MsL.

1討」 名称: フラワーペースト (コーンスターチ、粉乳、練乳、脱脂粉乳、グラニユー
糖、バニラエツセンス、油、水等の混合液) 粘度: 処理前  3,000 CP  (40℃)処
理後 80,000 CP  (40℃)温度: プロ
セス入口    40℃ 加熱処理      120℃ 処理量:200交/hr 菌数(個/g) 一般生菌:  処理前  4,000 処理後  < 10 1耐熱菌:   処理前  2 、000処理後  (
10 大腸菌:   処理前   (+) 処理後   (−) 報JLu 名称: カスタードクリーム (コーンスターチ、牛乳、卵黄、脱脂粉乳、グラニュー
糖、バニラエツセンス 油、木等の混合液) 粘度: 処理前  3,000 CP  (40℃)処
理後 10,000 CP  (40℃)温度: プロ
セス入口    40℃ 加熱処理      120°C 処理量:200交/hr 菌t!!(個/g) 一般生菌:  処理前  4,000 処理後  <10 耐熱l!i:    処理前  2,000処理後  
<10 大腸LII:    処理前   (+)処理後   
(−) 尚、前記実施例において、モータ12のコントローラ1
4の回路詳細並びにその配設位置は、これを適宜選定し
得ること明らかであろう。
1. Name: Flower paste (mixture of cornstarch, milk powder, condensed milk, skim milk powder, granulated sugar, vanilla essence, oil, water, etc.) Viscosity: Before treatment 3,000 CP (40℃) After treatment 80,000 CP (40℃) Temperature: Process entrance 40℃ Heat treatment 120℃ Processing amount: 200 cycles/hr Number of bacteria (cells/g) General viable bacteria: Before treatment 4,000 After treatment < 10 1 Heat-resistant bacteria: Before treatment 2,000 After treatment (
10 Escherichia coli: Before treatment (+) After treatment (-) News JLu Name: Custard cream (mixture of cornstarch, milk, egg yolk, skim milk powder, granulated sugar, vanilla essence oil, wood, etc.) Viscosity: Before treatment 3,000 After CP (40℃) treatment 10,000 CP (40℃) Temperature: Process entrance 40℃ Heat treatment 120℃ Processing amount: 200 cycles/hr Bacteria t! ! (pcs/g) General viable bacteria: Before treatment 4,000 After treatment <10 Heat resistant l! i: Before treatment After 2,000 treatments
<10 Colon LII: Before treatment (+) After treatment
(-) In the above embodiment, the controller 1 of the motor 12
It will be obvious that the details of the circuit No. 4 and its placement position can be selected as appropriate.

(発明の効果) 以」二の説明により明らかな如く、本発明によれば、熱
処理システムの処理系に位置する流体回路中の原料流量
を検出し、検出温情に応じた信号でポンプを制御して、
最適流量を維持するようにしているので、従来よりの構
成を余りいじることなく、処理系の能動的メカニズムに
逐一対処することができ、その結果、処理温度も安定し
、収量が増す。
(Effects of the Invention) As is clear from the following explanation, according to the present invention, the flow rate of the raw material in the fluid circuit located in the treatment system of the heat treatment system is detected, and the pump is controlled with a signal according to the detected temperature. hand,
Since the optimum flow rate is maintained, the active mechanisms of the processing system can be dealt with one by one without much modification to the conventional configuration, and as a result, the processing temperature is stabilized and the yield is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を熱媒加熱型の熱処理システムに適用した
実施例に付いてのもので、第1図は非接触式システムの
流れ図、第2図は同システムを構成する熱交換ユニット
の縦断面図、第3図は接触式システムの流れ図、第4図
は同システムを構成するスチームインジェクターの縦断
面図、第5図は接触非接触併用式システムの流れ図であ
る。 尚、図中、1は流量検出器、2はリード線、11はフィ
ードポンプ、12はモータ、14はコントローラ、20
は熱交換器、40はスチームインジェクタ、Lfはフィ
ードライン、Lpl、Lp2はプロセスライン、M文は
液体原ネ4.Mpは処理済原料、Slは非接触式熱処理
システム、S2は接触式熱処理システム、S3は接触非
接触併用式熱処理システム、Scは制御信号、Sdl、
Sd2は検出信号、Sfは供給系、Spl、Sp2は処
理系、Stは蒸気、Whは熱湯を表している。 特許
The drawings are of an embodiment in which the present invention is applied to a heat treatment system using a heating medium. Figure 1 is a flowchart of a non-contact system, and Figure 2 is a vertical cross-section of a heat exchange unit that constitutes the system. Fig. 3 is a flowchart of the contact type system, Fig. 4 is a longitudinal sectional view of a steam injector constituting the system, and Fig. 5 is a flowchart of the contact and non-contact type system. In the figure, 1 is a flow rate detector, 2 is a lead wire, 11 is a feed pump, 12 is a motor, 14 is a controller, 20
4. is a heat exchanger, 40 is a steam injector, Lf is a feed line, Lpl, Lp2 are process lines, and M is a liquid source 4. Mp is the processed raw material, Sl is the non-contact heat treatment system, S2 is the contact heat treatment system, S3 is the contact and non-contact heat treatment system, Sc is the control signal, Sdl,
Sd2 represents a detection signal, Sf represents a supply system, Spl and Sp2 represent a processing system, St represents steam, and Wh represents hot water. patent

Claims (5)

【特許請求の範囲】[Claims] (1)有機組成の原料を送給するポンプと、該ポンプよ
り供給された原料に熱処理を施して原料粘度を比較的大
幅に変化せしめ得る流体回路とを備えて成り、上記ポン
プは吐出量が二次圧に左右され、上記熱処理は最適の原
料流量が知られている熱処理システムにおいて、前記流
体回路を流れる原料の流量を検出し、検出流量に応じた
信号でポンプを制御して、前記最適流量を維持するよう
にした熱処理システム。
(1) The pump is equipped with a pump that feeds a raw material having an organic composition, and a fluid circuit that can heat-treat the raw material supplied by the pump to relatively significantly change the viscosity of the raw material, and the pump has a discharge amount. In a heat treatment system in which the optimum raw material flow rate is known, the heat treatment depends on the secondary pressure, the flow rate of the raw material flowing through the fluid circuit is detected, the pump is controlled with a signal according to the detected flow rate, and the optimal flow rate is determined. Heat treatment system designed to maintain flow rate.
(2)前記ポンプを電動モータで駆動し、前記信号を該
モータのコントローラへ帰還せしめて成る請求項1に記
載の熱処理システム。
(2) The heat treatment system according to claim 1, wherein the pump is driven by an electric motor, and the signal is fed back to a controller of the motor.
(3)前記ポンプをモーノポンプとした請求項2に記載
の熱処理システム。
(3) The heat treatment system according to claim 2, wherein the pump is a Mono pump.
(4)前記流体回路は原料と熱媒とに非接触状態で熱を
交換させ合う為の機構を備えて成る請求項1に記載の熱
処理システム。
(4) The heat treatment system according to claim 1, wherein the fluid circuit includes a mechanism for causing the raw material and the heat medium to exchange heat with each other in a non-contact state.
(5)前記流体回路は原料に熱媒を直接接触させる為の
機構を備えて成る請求項1若しくは4に記載の熱処理シ
ステム。
(5) The heat treatment system according to claim 1 or 4, wherein the fluid circuit includes a mechanism for bringing a heating medium into direct contact with the raw material.
JP63295116A 1988-11-21 1988-11-21 Heat treatment system Expired - Lifetime JPH0813259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63295116A JPH0813259B2 (en) 1988-11-21 1988-11-21 Heat treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295116A JPH0813259B2 (en) 1988-11-21 1988-11-21 Heat treatment system

Publications (2)

Publication Number Publication Date
JPH02142458A true JPH02142458A (en) 1990-05-31
JPH0813259B2 JPH0813259B2 (en) 1996-02-14

Family

ID=17816498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295116A Expired - Lifetime JPH0813259B2 (en) 1988-11-21 1988-11-21 Heat treatment system

Country Status (1)

Country Link
JP (1) JPH0813259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066022A (en) * 2008-09-08 2010-03-25 Morinaga Milk Ind Co Ltd Method of detecting sterilization start position in steam direct heating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181365A (en) * 1984-08-10 1986-08-14 マ−レン・リサ−チ・コ−ポレ−シヨン Aseptic food processing apparatus and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181365A (en) * 1984-08-10 1986-08-14 マ−レン・リサ−チ・コ−ポレ−シヨン Aseptic food processing apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066022A (en) * 2008-09-08 2010-03-25 Morinaga Milk Ind Co Ltd Method of detecting sterilization start position in steam direct heating

Also Published As

Publication number Publication date
JPH0813259B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
JPH02142458A (en) Heat-treating system
NL193520C (en) Sterilization device.
JP2017198439A (en) Steam supply device and steam supply method
JPS59205100A (en) Liquid transfer system
US6513422B1 (en) Apparatus for evaporative cooling of a liquiform product
US5298266A (en) Process to subject pumpable candy stock to heat
JPS61228250A (en) Heating treatment device for liquid
EP2434912B1 (en) Food product heat treatment apparatus and method for heat treating food products
JP2799341B2 (en) Back pressure applying structure in heat sterilizer for solid-containing liquid
JPH0227236B2 (en) EKISHORISOCHI
CA2320486C (en) An apparatus in an infusor for a liquid food product
JPH0615953B2 (en) Indirect heating device
JPS5933398Y2 (en) Pasteurizer
JP3455302B2 (en) Decompression evaporative cooling system
US20210095929A1 (en) Recirculation flow-loop batch reactor with external heat exchanger
JPH0538639Y2 (en)
JPH0453474A (en) Direct heat sterilizing method and equipment therefor
JPH03221755A (en) Device for liquid heat treatment
JP6807961B2 (en) A method for heating the concentrate in a spray drying facility and a facility for carrying out the method.
JPH01148180A (en) Continuous sterilization apparatus
AU4716293A (en) Bacterial control
JPH10262627A (en) Sterilizer
JPH0127678Y2 (en)
JPH01225468A (en) Automatic control of amount of treating liquid in continuous sterilizing apparatus
CN111685178A (en) Fluid heat treatment device and fluid heat treatment method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 13