JPH02142332A - Electrical machinery and apparatus - Google Patents

Electrical machinery and apparatus

Info

Publication number
JPH02142332A
JPH02142332A JP29545988A JP29545988A JPH02142332A JP H02142332 A JPH02142332 A JP H02142332A JP 29545988 A JP29545988 A JP 29545988A JP 29545988 A JP29545988 A JP 29545988A JP H02142332 A JPH02142332 A JP H02142332A
Authority
JP
Japan
Prior art keywords
permanent magnet
low thermal
thermal conduction
stator
phase winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29545988A
Other languages
Japanese (ja)
Inventor
Masayoshi Tsunezawa
経澤 昌芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP29545988A priority Critical patent/JPH02142332A/en
Publication of JPH02142332A publication Critical patent/JPH02142332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To prevent temperature rise of a permanent magnet in an electrical machinery such as a linear motor by providing a low thermal conduction layer on the surface of the permanent magnet. CONSTITUTION:Mover 12 of a linear motor 10 is arranged movably along a guide through a predetermined gap with respect to a stator 11. Three-phase winding 121 being subjected to the field of a permanent magnet 111 is provided with three hollow coils arranged with pitch 5/3 times of the pole pitch of the permanent magnet 111. A low thermal conduction medium, i.e., a low thermal conduction layer 13, is provided on the surface of the permanent magnet 111 of the stator 11. The low thermal conduction layer 13 is applied with epoxy resin coating. By such arrangement, heat radiated from a three-phase winding 121 toward the stator 12 is shielded by the low thermal conduction layer 13, and thereby temperature rise of the permanent magnet due to increase of coil current can be suppressed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は電動機、発電機等の永久磁石を備える電気機器
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to electrical equipment including permanent magnets, such as electric motors and generators.

〈従来の技術〉 小型で高速駆動のモータを設計しようとする場合には、
コイル電流を大きくして、モータ推力を大きく採ること
が通常良く行われる。即ち、モータの推力は、 F=B−i・■ ・S F:モータ推力   (N) B:永久磁石の磁束密度(wb) i:コイル有効導体長(m) I:コイルターン数 (T) S:コイル電流   (A) の関係があることから、モータ側に設計変更を加えるこ
となく、コイル電流を大きくすることのみで大きなモー
タ推力を得ることができるのである。
<Conventional technology> When trying to design a small, high-speed motor,
It is common practice to increase the motor thrust by increasing the coil current. That is, the thrust of the motor is: F=B-i・■・SF F: Motor thrust (N) B: Magnetic flux density of permanent magnet (wb) i: Coil effective conductor length (m) I: Number of coil turns (T) Since there is a relationship between S: coil current (A), it is possible to obtain a large motor thrust simply by increasing the coil current without making any design changes to the motor side.

〈発明が解決しようとする課題〉 しかしながら、上記従来例による場合には、コイル電流
を大きくすれば、これに対応してコイルの発熱が大きく
なって永久磁石の温度も上昇し、結果として、コイル電
流増大分に見合った設計通りのモータ推力の増加が得ら
れないという欠点がある。つまりコイルの発熱が大きく
なると、コイルに対向する永久磁石の温度も上昇するこ
とになるが、永久磁石の温度が高くなると、この磁気特
性がコイル電流増大前の状態よりも低下することになる
からで(第4図参照)、実際上は、コイル電流増大によ
る永久磁石の磁気特性、即ち、磁束密度の低下分を見込
んでモータ設計を行っている。
<Problems to be Solved by the Invention> However, in the case of the above conventional example, if the coil current is increased, the heat generation of the coil will correspondingly increase and the temperature of the permanent magnet will also rise, and as a result, the coil This has the disadvantage that the motor thrust cannot be increased as designed in proportion to the increased current. In other words, as the heat generation of the coil increases, the temperature of the permanent magnet facing the coil will also rise, but as the temperature of the permanent magnet increases, its magnetic properties will decrease compared to the state before the coil current increased. (See FIG. 4) In practice, the motor is designed taking into account the reduction in the magnetic properties of the permanent magnet, that is, the magnetic flux density, due to the increase in coil current.

一方において、永久磁石をより磁気特性の優れたものに
設計変更する等すれば、設計通りのモータ推力を得るこ
とができるものの、これに見合ってコストが増加すると
いう問題がある。また、永久磁石を有する電気機器とし
ては、回転モータだけに限らないが、コイル電流の増大
に伴って永久磁石の磁束密度が低下するという欠点は、
発電機やりニアモータ等の電気機器を設計する上でも非
常に大きな障害となり得る。
On the other hand, if the design of the permanent magnet is changed to one with better magnetic properties, it is possible to obtain the motor thrust as designed, but there is a problem in that the cost increases accordingly. In addition, electric devices with permanent magnets, including but not limited to rotary motors, have the disadvantage that the magnetic flux density of permanent magnets decreases as the coil current increases.
It can also be a major obstacle when designing electrical equipment such as generators and near motors.

本発明は上記事情に鑑みて創案されたものであり、コイ
ルが発熱しても永久磁石の温度が上昇しないように改良
した電気機器を提供することを目的としている。
The present invention was devised in view of the above circumstances, and an object of the present invention is to provide an improved electrical device that prevents the temperature of the permanent magnet from rising even when the coil generates heat.

く課題を解決するための手段〉 本発明にかかる電気機器は、電動機、発電機その他の永
久磁石を備える機器であって、前記永久磁石の表面に低
熱伝導層を設けである。
Means for Solving the Problems The electrical equipment according to the present invention is a motor, a generator, or other equipment that includes a permanent magnet, and a low heat conductive layer is provided on the surface of the permanent magnet.

〈作用〉 コイルから発せられた熱は、永久磁石の表面に設けた低
熱伝導層に遮蔽される。
<Operation> The heat emitted from the coil is shielded by a low thermal conductivity layer provided on the surface of the permanent magnet.

〈実施例〉 以下、本発明にかかる電気機器をリニアモータを例に掲
げて説明する。第1図はりニアモータの概略構成を示す
その側面図である。第2図及び第3図は低熱伝導層の変
形例を説明するための三相巻線、永久磁石の模式図であ
る。
<Example> Hereinafter, an electric device according to the present invention will be described using a linear motor as an example. FIG. 1 is a side view showing the schematic structure of the beam near motor. FIGS. 2 and 3 are schematic diagrams of three-phase windings and permanent magnets for explaining modified examples of the low thermal conductivity layer.

第1図に示すようにリニアモータ10は、固定子継鉄1
12の上面に複数個の永久磁石111を交互に着磁せし
めた固定子11と、可動子継鉄122の下面に三相巻線
121を固着した可動子12から構成されており、図外
のりニアモータ制御回路によって三相巻線121(コイ
ルに相当する)を三相励磁させることにより、可動子1
2を固定子11の上面に交互に駆動するような基本構成
となっている。更に詳しく説明すると、可動子12は、
図外のガイドによって、固定子11に対し所定のギャッ
プ長を開は移動自在になされている。また、永久磁石1
11から磁界の影響を受ける三相巻線121は、永久磁
石111の磁極ピッチに対して573倍のピッチで互い
に並べられた3個の空心コイルを備えている。更に、固
定子11の永久磁石111の表面には、低熱伝導性介在
物たる低熱伝導層13が設けられている。この低熱伝導
層13はエポキシ樹脂をコーティングしたり、或いはセ
ラミックを溶射する等して形成されており、三相巻線1
21から発せられる伝導熱を遮蔽するようになっている
As shown in FIG. 1, the linear motor 10 includes a stator yoke 1
It consists of a stator 11 with a plurality of permanent magnets 111 alternately magnetized on the top surface of the stator 12, and a mover 12 with a three-phase winding 121 fixed on the bottom surface of the mover yoke 122. By energizing the three-phase winding 121 (corresponding to a coil) in three phases by the near motor control circuit, the movable element 1
2 are alternately driven onto the upper surface of the stator 11. To explain in more detail, the mover 12 is
A guide (not shown) allows the stator 11 to move freely to a predetermined gap length. Also, permanent magnet 1
The three-phase winding 121 that is influenced by the magnetic field from the permanent magnet 11 includes three air-core coils that are arranged with a pitch that is 573 times the magnetic pole pitch of the permanent magnet 111. Further, on the surface of the permanent magnet 111 of the stator 11, a low thermally conductive layer 13, which is a low thermally conductive inclusion, is provided. This low thermal conductivity layer 13 is formed by coating with epoxy resin or thermally spraying ceramic, and is formed by coating the three-phase winding 1 with
It is designed to shield the conductive heat emitted from 21.

なお、低熱伝導層13の変形例としては、第2図に示す
ように、永久磁石111の表面を鏡面処理するようにし
てもかまわない。即ち、永久磁石111の表面を研削加
工したり或いはアルミニウム等の金属蒸着を行ったりす
ることにより鏡面に仕上げるのである。この変形例によ
る場合には、三相巻線121からの輻射熱を遮蔽するこ
とができる。また、他の変形例としては、第3図に示す
ように、本実施例による低熱伝導層13の表面に上記し
た変形例による低熱伝導層13を形成するようにしても
かまわない。かかる変形例による場合には、三相巻線1
21からの伝導熱、輻射熱をともに遮蔽することができ
、高い熱遮蔽効率を得ることができる。
As a modification of the low thermal conductivity layer 13, as shown in FIG. 2, the surface of the permanent magnet 111 may be mirror-finished. That is, the surface of the permanent magnet 111 is finished into a mirror surface by grinding or by vapor deposition of a metal such as aluminum. According to this modification, radiant heat from the three-phase winding 121 can be shielded. In addition, as another modification, as shown in FIG. 3, the low thermal conductivity layer 13 according to the above-described modification may be formed on the surface of the low thermal conductivity layer 13 according to this embodiment. In such a modification, the three-phase winding 1
Both conductive heat and radiant heat from 21 can be shielded, and high heat shielding efficiency can be obtained.

しかしながら、本実施例による低熱伝導層13であって
も、エポキシ樹脂を白色にしたり或いは淡白色の塗料を
塗布したりすることで、三相巻線121からの輻射熱を
成る程度遮蔽することができる。
However, even with the low thermal conductivity layer 13 according to this embodiment, the radiant heat from the three-phase winding 121 can be shielded to a certain extent by making the epoxy resin white or applying a pale white paint. .

上記したようなりニアモータにおいては、モータ推力を
より大きくするために、三相巻線121に流れるコイル
電流を大きく設定したとしても、三相巻線121から固
定子側に発せられる熱は、低熱伝導層13に遮蔽される
ので、永久磁石111の温度上昇は抑止されることにな
る。つまりコイル電流が増大しても、永久磁石111に
温度変化が生じないが故に、モータ推力を決定する一つ
の要因たる永久磁石111の磁束密度の低下がみられず
、結果として、コイル電流増大分に見合ったモータ推力
の増大が見込めることになる。しかも、コイル電流を大
きくすること以外には、永久磁石111の表面に低熱伝
導層13を新たに設けるだけの設計変更だけで、モータ
推力をアップすることができるので、安価、小型で高速
駆動のりニアモータを開発する上で非常に大きな意義が
ある。
As described above, in the near motor, even if the coil current flowing through the three-phase winding 121 is set to a large value in order to increase the motor thrust, the heat emitted from the three-phase winding 121 to the stator side has a low thermal conductivity. Since the permanent magnet 111 is shielded by the layer 13, the temperature rise of the permanent magnet 111 is suppressed. In other words, even if the coil current increases, there is no temperature change in the permanent magnet 111, so the magnetic flux density of the permanent magnet 111, which is one of the factors that determines the motor thrust, does not decrease, and as a result, the increase in coil current This means that the motor thrust can be expected to increase commensurately. Moreover, in addition to increasing the coil current, the motor thrust can be increased by simply adding a new low heat conduction layer 13 on the surface of the permanent magnet 111, which makes it possible to increase the motor thrust. This is of great significance in developing near motors.

なお、本発明にかかる電気機器は、上記したりニアモー
タだけに止まらず直流機等の回転モータや発電機等にも
適用可能であって、かかる場合には電力変換効率を高く
することができる。
Note that the electrical equipment according to the present invention is applicable not only to the above-described near motor but also to rotary motors such as DC machines, generators, etc., and in such cases, power conversion efficiency can be increased.

〈発明の効果〉 以上、本発明にかかる電気機器による場合には、コイル
から発せられた熱が永久磁石の表面に設けた低熱伝導層
に遮蔽されるような構成となっているので、コイル電流
を太き(したことに基づく永久磁石の温度上昇を抑止で
きることになる。しかも、コイル電流を大きくする以外
には、低熱伝導層を新たに設けるだけの設計変更のみで
、上記メリットを得ることができることから、低価格で
高性能な電気機器を開発する上で非常に大きな意義があ
る。
<Effects of the Invention> As described above, in the case of the electric device according to the present invention, the heat emitted from the coil is shielded by the low thermal conductivity layer provided on the surface of the permanent magnet, so the coil current is This means that it is possible to suppress the temperature rise of the permanent magnet due to the increase in the thickness of the coil.Furthermore, other than increasing the coil current, the above merits can be obtained by simply changing the design by adding a new low thermal conductivity layer. This has great significance in developing low-cost, high-performance electrical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図にかけては本発明にかかる電気機器の
一実施例を説明するための図であって、第1図はりニア
モータの概略構成を示すその側面図、第2図及び第3図
は低熱伝導層の変形例を説明するための三相巻線、永久
磁石の模式図である。 第4図は永久磁石の磁気特性を示すB−H曲線のグラフ
である。 IO・ 11 ・ 111・ 12 ・ 121・ 13 ・ ・リニアモータ ・固定子 ・永久磁石 ・可動子 ・三相巻線 ・低熱伝導層
1 to 3 are diagrams for explaining an embodiment of the electrical equipment according to the present invention, in which FIG. 1 is a side view showing a schematic configuration of a near motor, and FIGS. 2 and 3 are views thereof. is a schematic diagram of a three-phase winding and a permanent magnet for explaining a modification of the low thermal conductivity layer. FIG. 4 is a graph of a B-H curve showing the magnetic characteristics of a permanent magnet. IO・ 11 ・ 111・ 12 ・ 121・ 13 ・ ・Linear motor・Stator・Permanent magnet・Mover・Three-phase winding・Low thermal conductivity layer

Claims (1)

【特許請求の範囲】[Claims] (1)電動機、発電機その他の永久磁石を備える電気機
器において、前記永久磁石の表面に低熱伝導層を設けて
あることを特徴とする電気機器。
(1) An electric device including a motor, a generator, or other permanent magnet, characterized in that a low thermal conductivity layer is provided on the surface of the permanent magnet.
JP29545988A 1988-11-22 1988-11-22 Electrical machinery and apparatus Pending JPH02142332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29545988A JPH02142332A (en) 1988-11-22 1988-11-22 Electrical machinery and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29545988A JPH02142332A (en) 1988-11-22 1988-11-22 Electrical machinery and apparatus

Publications (1)

Publication Number Publication Date
JPH02142332A true JPH02142332A (en) 1990-05-31

Family

ID=17820862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29545988A Pending JPH02142332A (en) 1988-11-22 1988-11-22 Electrical machinery and apparatus

Country Status (1)

Country Link
JP (1) JPH02142332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023606A1 (en) * 2007-05-21 2008-12-04 Siemens Ag Tooth module for a primary part of an electrical machine
JP2015032693A (en) * 2013-08-02 2015-02-16 Ckd株式会社 Electromagnetic coil, method for producing electromagnetic coil, and electromagnetic actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023606A1 (en) * 2007-05-21 2008-12-04 Siemens Ag Tooth module for a primary part of an electrical machine
JP2015032693A (en) * 2013-08-02 2015-02-16 Ckd株式会社 Electromagnetic coil, method for producing electromagnetic coil, and electromagnetic actuator

Similar Documents

Publication Publication Date Title
JP7136272B2 (en) Rotating electric machine
US4605874A (en) Brushless D.C. dynamoelectric machine having ferrite material magnetic circuit
JP7238318B2 (en) Rotating electric machine
Rallabandi et al. Design procedure of segmented rotor switched reluctance motor for direct drive applications
US20040108789A1 (en) High torque brushless DC motors and generators
FR2543754B1 (en) ELECTROMAGNETIC ROTARY MACHINE WITH BRUSHLESS DIRECT CURRENT
JPH11178256A (en) Stator coil
CN112956113A (en) Electric machine
Amin et al. Hybrid adopted materials in permanent magnet-assisted synchronous reluctance motor with rotating losses computation
US20150084472A1 (en) Electrical Power Motor-Generator Excited by Magnetic Transference
Wang et al. Effect of slot-pole combination on the electromagnetic performance of ironless stator AFPM machine with concentrated windings
Luo et al. Analysis and design of ironless toroidal winding of tubular linear voice coil motor for minimum copper loss
Yu et al. Electromagnetic shielding analysis of a canned permanent magnet motor
Zhang et al. Comparison between dual-armature linear switched flux permanent magnet machine and linear surface-mounted permanent magnet machine considering thermal conditions
Baqaruzi et al. The Effect of Halbach Array Configuration on Permanent-Magnet Synchronous Generator (PMSG) Outer-Runner
Ullah et al. Design and analysis of consequent pole dual stator hybrid excited linear flux switching machine for rail transit system
Wang et al. Magnetic gear ratio effects on performances of linear primary permanent magnet vernier motor
Godbehere et al. Design and thermal analysis of a rotating transformer
JP2004112961A (en) Plastic molded motor
US9831753B2 (en) Switched reluctance permanent magnet motor
JPH02142332A (en) Electrical machinery and apparatus
CN112889214A (en) Control device for rotating electric machine and control method for rotating electric machine
JPS6111542B2 (en)
JPS63310366A (en) Synchronous machine
US3335300A (en) Linear induction motor