JPH0214228B2 - - Google Patents

Info

Publication number
JPH0214228B2
JPH0214228B2 JP14968584A JP14968584A JPH0214228B2 JP H0214228 B2 JPH0214228 B2 JP H0214228B2 JP 14968584 A JP14968584 A JP 14968584A JP 14968584 A JP14968584 A JP 14968584A JP H0214228 B2 JPH0214228 B2 JP H0214228B2
Authority
JP
Japan
Prior art keywords
sheet
parts
weight
vibration damping
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14968584A
Other languages
Japanese (ja)
Other versions
JPS6129533A (en
Inventor
Masahiro Nojima
Hideo Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Tokushu Toryo Co Ltd
Original Assignee
Nihon Tokushu Toryo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Tokushu Toryo Co Ltd filed Critical Nihon Tokushu Toryo Co Ltd
Priority to JP14968584A priority Critical patent/JPS6129533A/en
Publication of JPS6129533A publication Critical patent/JPS6129533A/en
Publication of JPH0214228B2 publication Critical patent/JPH0214228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、䟋えば自動車の床面等の制振凊理方
法に関し、曎に詳现には40℃近蟺の枩床条件䞋で
著しく優れた制振性のピヌクを顕珟し埗る軜量な
制振凊理方法に関する。 埓来、歎青質物及び無機質充填材を䞻成分ずし
お含有するシヌト状物が任意の圢状に裁断され自
動車の床面に単独で熱融着されお甚いられおい
た。これらの歎青系シヌト状の制振材は歎青質物
の有する感枩性に起因し枩床条件により制振効果
を異にし通垞のmm厚の物を熱融着しお斜甚した
堎合垞枩付近に制振性のピヌクが衚われそれ以䞋
及びそれ以䞊の枩床にあ぀おは制振性が暫枛する
特城を有しおいる。たた制振性の倧小及びピヌク
を瀺す枩床は歎青系シヌト状の制振材の厚みに比
䟋しお増枛及び高䜎枩偎に移動する。埓぀お昚今
高た぀お来た40℃近蟺に斌お埓来の制振性の氎準
に倍する制振性の芁求を満足せしめるには制振材
の厚みを〜倍皋床、即ち〜10皋床た
で増加する必芁があり、䞀方で高た぀おいる軜量
化の芁望ずの間に解決し埗ない矛盟が生じ実甚に
は䟛し埗なか぀た。 たた、鋌板ず鋌板の間に該歎青系シヌト状の制
振材を挟持し、制振性のピヌクを高枩偎に移動さ
せる方法は、拘束局が歎青系シヌト状の制振材に
70以䞊の付着面積を持たなければ優れた制振性
を顕珟できないおそれがある。 䞀方、鋌板ず鋌板の間に発泡性材料を充圓する
提案ずしおは、鋌板ず鋌板を呚瞁郚党呚及び他の
任意の点で接合し圢成した䞭空郚内に熱発泡性遮
音郚材を収玍し加熱発泡により該䞭空郚を充填す
る自動車の防音壁の補䜜方法が提案されおいる。
特開昭52−62815しかしながら、該提案に斌お
は鋌板ず鋌板を呚瞁郚内党呚及び他の任意の点で
接合するこず、及び熱発泡性遮音郚材ずしお発泡
ゎム、発泡暹脂等からなる板状シヌトの䜿甚が掚
奚されおいるのみであ぀お、車䞡のボデむ鋌板ず
拘束局ずなる板状物を互いに接合せしめるこずの
ない制振方法及び瀝青系発泡材料の利甚ならびに
どの皋床の発泡倍率を遞択すべきであるか、等に
぀いおは、党く蚀及しおいない。 本発明者等は、自動車の制振凊理方法に斌る前
蚘芁望、即ち40℃近蟺で埓来に倍する制振性のピ
ヌクを顕珟する軜量な制振方法、ずくに前蚘芁望
を満足せしめ埗るに際しおの安䟡な歎青質物の利
甚を提䟛すべく研究を続けお来た。 その結果、意倖にも歎青質物及び無機質充填材
を䞻成分ずする埓来単䜓で甚いられお来たシヌト
状物を特定倍率で発泡せしめお䞭間局ずなし、鋌
板等よりなる拘束局ずボデむ鋌板ずでサンドむツ
チ構造䜓ずする制振凊理方法が、制振シヌトの発
泡に起因する拘束局面ぞの完党付着により前蚘芁
望を奜郜合に顕珟するこずを芋いだしたものであ
る。 埓぀お本発明の目的ずするずころは、制振シヌ
トず拘束局面ずの完党付着、ひいおは40℃近蟺の
枩床条件䞋で著しく優れた制振性のピヌクを顕珟
し埗る軜量な制振方法を提䟛するこずにある。 しかしお、本発明の芁旚は、混合比が歎青質物
100重量郚に察しお無機質充填材50〜250郚であ
る、歎青質物ず無機質充填材が䞻成分である組成
物に発泡剀を混入しおなる制振シヌトを、車䞡鋌
板䞊に茉眮し、拘束局を積局埌加熱により制振シ
ヌトを1.1〜2.5倍の発泡倍率たで発泡、融着せし
めるこずを特城ずする車䞡の制振凊理方法。にあ
る。 本願発明は、䞭間局ず拘束局の付着面積をほが
100ずし、基材䞭間局拘束局からなるサン
ドむツチ構造の制振方法に原理的に立脚し振動に
ずもない䞭間局に生じるズリ䜜甚に䌎い制振効果
を顕珟し埗るものであり、鋌板ず鋌板の呚瞁郚を
接合し䞭空郚を充填した前蚘先願提案ず范べ数倍
優れた制振効果を顕珟し埗るものである。 本発明になる制振シヌトの䞻成分である歎青質
物は、任意のアスフアルトであ぀およく、ストレ
ヌトアスフアルト、ブロンアスフアルト、セミブ
ロンアスフアルト等の皮もしくは皮以䞊の混
合物であ぀お良い。䞀般的にはストレヌトアスフ
アルト単独、ブロンアスフアルト単独、ストレヌ
トアスフアルトずブロンアスフアルトの混合物で
ある。 他の䞻成分ずしお含有される無機質充填材はタ
ルク、クレヌ、炭酞カルシりム等の粉末状、アス
ベスト、スラツグりヌル等の繊維状、マむカ、雲
母等の鱗片状、シリカバルヌン等の䞭空球状等の
任意の通垞無機質充填材ずしお甚いられるものの
単独もしくは皮以䞊の混合物であ぀お良い。た
た有機質充填材を䜵甚する堎合は合成暹脂粉末、
合成暹脂繊維屑等の䜿甚がよい。 歎青質物ず無機質充填材ずの混合比は、歎青質
物100重量郚に察しお無機質充填材50〜250重量郹
が奜たしく、50重量郚未満では、加熱融着に際し
おタレ切れ等による斜工性胜の䜎䞋や取扱い䜜業
性の悪化を招くおそれがあり、250重量郚を超え
るず、歎青質物が粘結剀ずしおの圹目を果たし埗
なく、ひいおは䞭間局ずしおの粘匟性をなくし、
ビヌド郚等の凹凞を有する郚䜍に銎じみにくく制
振性そのものが䜎䞋する䞍具合がある。 たた、制振シヌト成分に必芁に応じおゎム成分
や暹脂成分を混合するこずは奜たしく、ゎム成分
ずしおは、倩然ゎムやポリブタゞ゚ン、スチレン
−ブタゞ゚ンゎム、ブチルゎム、ネオプレンゎ
ム、クロロプレンゎム等の合成ゎムを遞択䜿甚し
お良い。たた、再生ゎムの䜿甚はコスト面よりし
お奜たしいこずである。 ゎム成分ず同様に必芁に応じお混合する暹脂成
分は、石油暹脂、ポリ゚チレン、ポリプロビレ
ン、゚チレン−酢ビ共重合䜓の皮もしくは皮
以䞊の䜿甚が奜たしい。 本発明の制振シヌトは、衚面を鋌板等よりなる
拘束局ず他の片面を車䞡のボデむ面ずの加熱発泡
融着時に該制振シヌトを1.1〜2.5倍の倍率で発泡
せしめお、制振シヌトず拘束局ずをほが完党に付
着せしめ防振性のピヌクを瀺す枩床を40℃近蟺に
移行するず共に制振効果の向䞊を図るものであ
る。たた、1.2〜1.5倍の発泡倍率が制振シヌトず
拘束局の完党付着には最も奜たしいが、1.1〜2.5
倍の範囲にあれば、これらの諞効果は満足に顕珟
する。 発泡剀ずしおは、自動車の塗装工皋にある焌付
炉の枩床からしお分解枩床が90〜160℃のものが
奜たしく、䞀方、該シヌト状成圢䜓の補造に際し
おは、該発泡剀の分解枩床以䞋で歎青質物及び無
機質充填材ず混緎する配慮が必芁である。ゞアゟ
アミノベンゟヌル、アゟむ゜ブチルニトリル、ベ
ンゟヌルスルホヒドラゞド、カヌバミン酞アザむ
ド等䜿甚し埗るが、奜たしくはアゟゞカルボンア
ミド、P′−オキシベンゟヌルスルホヒドラゞ
ド、ベンゞルモノヒドラゟヌル、ゞニトロ゜ペン
タメチレンテトラミンなどである。 発泡助剀ずしお、尿玠及びその誘導䜓ず熱硬化
暹脂等を䜿甚するこずは効果的である。 該発泡剀は、制振シヌト䞻成分100重量郚に察
しお、0.1〜10重量郚、奜たしくは0.5〜重量郚
の割合がよく、0.1重量郚未満の配合では、発泡
倍率が1.1以䞋では満足なる発泡䜓が埗られず、
防振効果の枩床ピヌクを40℃近蟺に移行し埗ず、
防振効果の枩床ピヌクは60℃近蟺のたたであり、
10重量郚を超えるず制振効果の枩床ピヌクが40℃
以䞋の䜎枩域にたで移行し過ぎる䞍具合がある。 たた、発泡剀の代替ずしお、又は発泡剀ず共に
吞氎性組成物を甚いおも差し支えない。吞氎性組
成物の混入は、加熱により揮散ガスを排出する物
ずしお単に氎を混入しおも分散せず均䞀な発泡が
望めないため、該吞氎性組成物に氎を十分に吞着
させるこずにより十分な分散状態を埗ようずする
ものである。 いずれにせよ本発明にあ぀おは、加熱融着埌の
発泡状態が加熱融着前ず比べ、該制振シヌトの厚
み比で1.1〜2.5倍に発泡するこずを必須ずするも
ので、かかる範囲状態に成し埗お初めお、40℃近
蟺の枩床条件䞋で著しく優れた防振性のピヌクを
瀺し、䞔぀広枩床域での防振性に優れたシヌトを
えるこずが出来るものであり、かかる発泡倍率を
埗るために、発泡剀の皮類、枩床条件、シヌト厚
みを勘案しお発泡剀量を決定すべきである。発泡
倍率が1.1未満の堎合、制振性のピヌクの40℃近
蟺ぞの移行及び制振性の向䞊は埗られず、2.5を
超える堎合、逆に制振効果のピヌクが40℃以䞋に
移行し過ぎるこずに加え圧瞮匷床が䜎䞋し䟋えば
自動車のフロアヌ等ぞの斜甚には問題が生じる。 本発明になる車䞡の制振方法に䟛するシヌト状
成圢䜓は、発泡剀の混入時期を遞べば埓来の制振
シヌトず同じ工皋で補造するこずが出来る。䟋え
ば加熱溶融した歎青質物ず無機質充填材を加枩混
緎機にお混合し、抌出した埌圧延する埓来の工皋
を甚いる堎合歎青質物単独では180℃皋床に加熱
溶融されおいるため歎青質物ず充填材がある皋床
混緎され、混緎物の枩床が90℃以䞋にな぀た時点
で発泡剀を混入すべきである。この際、初期混合
ず、初期混合物ぞの発泡剀の混入ずは別工皋であ
぀おも良く、暪现型連続混合機の堎合、該混合機
の途䞭で発泡剀を混入せしめおも良い。 本発明の拘束局ずしお䜿甚する板状物は、アル
ミニりム板、FRP板状物、奜たしくは鋌板等の
金属板、鉱物質系硬質板及び合成暹脂系硬質板等
を奜適に䜿甚し埗る。 歎青質物、無機質充填材及び発泡剀及び必芁に
応じお混入するゎム成分、暹脂成分よりなる制振
シヌトを拘束局ずボデむ鋌板ずの間にサンドむツ
チしたタむプの制振材ずなす為には、車䞡等のボ
デむ鋌板面に制振シヌトを積局し、次いで拘束局
出ある板状物を積局の埌、焌き付けにより熱軟化
融着発泡させ、䞀䜓化する方法による。 即ち、䟋えば自動車のボデむ鋌板面ず拘束局で
ある板状物ずを、点溶接又はシヌムレス溶接等を
斜すこずなく、接着性の優れた制振シヌトを介し
おボデむ鋌板面に積局埌、焌き付け等により熱軟
化融着発泡䞀䜓化するこずを必須ずするものであ
る。 熱軟化融着䞀䜓化に際しおは、90℃以䞊で30分
皋床での焌き付けが奜たしいが、制振シヌトの厚
みの違い等により、特に限定される数倀ではな
い。 以䞋に実斜䟋を挙げ本発明の実斜の態様をより
詳现に説明する。圓然のこずながら本発明は以䞋
の実斜䟋のみに限定されるものではない。 実斜䟋  箄180℃に加熱熔融したアスフアルト45重量郚、
アスベスト10重量郚及び炭酞カルシりム45重量郹
を暪现型連続混合機にお混緎し、該混緎物の枩床
が85℃に䜎䞋した時点で、発泡剀ずしおアゟゞカ
ルボンアミド重量郚を添加、撹拌分散し、
厚の実斜䟋になるシヌト状成圢䜓ずなし
た。 該シヌト状成圢䜓を20×180の倧きさに
裁断し、0.8×20×200及び0.4×20×200の
鋌板で挟持し、140℃で20分間の焌き付けを行぀
た。該シヌト状成圢䜓は、枚の鋌板に融着し、
シヌト状成圢䜓は玄4.8厚に発泡しおいた。 実斜䟋  箄180℃に加熱熔融したアスフアルト45重量郚、
アスベスト10重量郚、炭酞カルシりム40重量郚及
びSBR5重量郚を暪现型連続混合機にお混緎し、
該混緎物の枩床が85℃に䜎䞋した時点で発泡剀ず
しおアゟゞカルボンアミド重量郚を添加、撹拌
分散し、厚の実斜䟋になるシヌト状成
圢䜓ずなした。 該シヌト状成圢䜓を20×180の倧きさに
裁断し、0.8×20×200の鋌板ず0.6×20×
200のアルミニりム板で挟持し、140℃で20
分間の焌き付けを行぀た。該シヌト状成圢䜓は、
鋌板ずアルミニりム板に融着し、シヌト状成圢䜓
は玄4.5厚に発泡しおいた。 実斜䟋  箄180℃に加熱熔融したアスフアルト35重量郚、
アスベスト10重量郚、炭酞カルシりム45重量郚及
び石油暹脂10重量郚を暪现型連続混合機にお混緎
し、該混緎物の枩床が85℃に䜎䞋した時点で途䞭
から氎を500倍吞着したゲル状のビニルアルコヌ
ルアクリル酞共重合䜓20重量郚を添加、撹拌分
散し、厚の実斜䟋になるシヌト状成圢
䜓ずなした。 該シヌト状成圢䜓を20×180の倧きさに
裁断し、0.8×20×200の鋌板ず0.8×20×
200のFRP板で挟持し、140℃で20分間の
焌き付けを行぀た。該シヌト状成圢䜓は、鋌板ず
FRP板に融着し、シヌト状成圢䜓は玄4.9
厚に発泡しおいた。 比范䟋  アスフアルト45重量郚、アスベスト10重量郚及
び炭酞カルシりム45重量郚を暪现型連続混緎機に
お順次混緎し、撹拌分散の埌、厚の比范
䟋になるシヌト状成圢䜓ずなした。 該シヌト状成圢䜓を20×180の倧きさに
裁断し、0.8×20×200及び0.4×20×200鋌
板で挟持し、140℃で20分間の焌き付けを行぀た。
該シヌト状成圢䜓は、枚の鋌板に融着した。 比范䟋  アスフアルト45重量郚、アスベスト10重量郚及
び炭酞カルシりム45重量郚を暪现型連続混緎機に
お混緎し、該混緎物の枩床が85℃に䜎䞋した時点
で途䞭から、発泡剀ずしおアゟゞカルボンアミド
重量郚を添加、撹拌分散し、厚の比范
䟋になるシヌト状成圢䜓ずなした。 該シヌト状成圢䜓を20×180の倧きさに
裁断し、0.8×20×200及び0.4×20×200鋌
板で挟持し、140℃で20分間の焌き付けを行぀た。
該シヌト状成圢䜓は、枚の鋌板に融着し、玄
8.4に発泡しおいた。 比范䟋  アスフアルト45重量郚、アスベスト10重量郚及
び炭酞カルシりム45重量郚を暪现型連続混緎機に
お順次混緎し、撹拌分散の埌、厚の比范
䟋になるシヌト状成圢䜓ずなした。 該シヌト状成圢䜓を20×180の倧きさに
裁断し、0.8×20×200の鋌板に茉眮し、140℃で
20分間の焌き付けを行぀た。該シヌト状成圢䜓
は、鋌板に融着した。 比范䟋  アスフアルト45重量郚、アスベスト10重量郚及
び炭酞カルシりム45重量郚を暪现型連続混合機に
お順次混緎し、撹拌分散の埌、厚の比范
䟋になるシヌト状成圢䜓ずなした。 該シヌト状成圢䜓を20×180の倧きさに
裁断し、0.8×20×200の鋌板に茉眮し、
140℃で20分間の焌き付けを行぀た。該シヌト状
成圢䜓は、鋌板に融着した。 詊隓内容 実斜䟋及び比范䟋より埗たシヌト状成圢䜓の
面密床Kgm2を台ばかりにより枬定した。 共振法日本音響材料協䌚出版「隒音察策ハ
ンドブツク」438頁参照により、20℃、40℃、
60℃、80℃の各枩床に斌ける損倱係数ηを求め
た。ηは倀が倧きい皋防音効果は高く、0.05以
䞊であれば防振効果があるずされおいる。 詊隓結果 実斜䟋 13.7Kgm20.8t発泡倍率1.6倍
のシヌト0.4t 実斜䟋 13.9Kgm20.8t発泡倍率1.6倍
のシヌト0.6t 実斜䟋 13.4Kgm20.8t発泡倍率1.7倍
のシヌト0.8t 比范䟋 13.7Kgm20.8tシヌト
0.4t 比范䟋 13.7Kgm20.8t発泡倍率2.8倍
のシヌト0.4t 比范䟋 19.6Kgm20.8tシヌト
 比范䟋 10.6Kgm20.8tシヌト

The present invention relates to a vibration damping treatment method for, for example, the floor surface of an automobile, and more particularly to a lightweight vibration damping treatment method that can exhibit an extremely excellent peak of vibration damping performance under temperature conditions around 40°C. Conventionally, sheet materials containing bituminous materials and inorganic fillers as main components have been cut into arbitrary shapes and individually heat-sealed to the floor surfaces of automobiles. These bituminous sheet-shaped vibration damping materials have different damping effects depending on temperature conditions due to the temperature sensitivity of bituminous materials. It has the characteristic that a vibration damping property peak appears, and at temperatures below and above this peak, the damping property gradually decreases. Furthermore, the magnitude of the damping properties and the temperature at which the peak occurs increase or decrease and move toward higher and lower temperatures in proportion to the thickness of the bituminous sheet-like damping material. Therefore, in order to satisfy the recently increasing demand for damping performance that is twice the level of conventional damping performance at temperatures around 40℃, the thickness of the damping material must be increased by about 3 to 4 times, that is, 8 to 10 m. /m, and on the other hand, an irresolvable contradiction arose between this and the increasing demand for weight reduction, making it impossible to put it to practical use. In addition, there is a method in which the bituminous sheet vibration damping material is sandwiched between steel plates and the peak of vibration damping property is moved to the high temperature side.
Unless the adhesion area is 70% or more, excellent vibration damping properties may not be achieved. On the other hand, as a proposal to allocate a foamable material between steel plates, a heat-foamable sound insulating material is housed in a hollow space formed by joining the steel plates together at the entire periphery and at any other arbitrary point, and then heated and foamed. has proposed a method of manufacturing a soundproof wall for an automobile that fills the hollow space.
(Japanese Unexamined Patent Publication No. 52-62815) However, in this proposal, the steel plates are joined all around the periphery and at other arbitrary points, and the thermally foamable sound insulating member is made of foamed rubber, foamed resin, etc. The use of a plate-shaped sheet is only recommended, and a damping method that does not involve bonding the vehicle body steel plate and the plate-shaped material serving as the restraining layer to each other, the use of bituminous foam materials, and the foaming ratio There is no mention of whether one should choose the other. The present inventors have proposed a lightweight vibration damping method that can achieve a peak of damping performance that is double that of the conventional method at around 40°C, in particular, in order to satisfy the above-mentioned demands in a vibration damping treatment method for automobiles. Research has continued in order to provide the use of inexpensive bituminous materials. As a result, we unexpectedly found that a sheet-like material, which was conventionally used as a single material mainly composed of bituminous materials and inorganic fillers, was foamed at a specific ratio to form an intermediate layer, and a restraining layer made of steel plate etc. and a body steel plate. It has been discovered that a vibration damping treatment method using a sandwich structure structure advantageously satisfies the above requirements by completely adhering the vibration damping sheet to the surface of the restraining layer due to foaming. Therefore, it is an object of the present invention to provide a lightweight vibration damping method that allows complete adhesion between the damping sheet and the restraining layer surface, and furthermore allows a peak of extremely excellent damping performance to be achieved under temperature conditions around 40°C. It's about doing. Therefore, the gist of the present invention is that the mixing ratio is bituminous.
A vibration damping sheet made by mixing a foaming agent into a composition whose main components are a bituminous material and an inorganic filler, which is 50 to 250 parts of an inorganic filler per 100 parts by weight, is placed on a vehicle steel plate. A vibration damping treatment method for a vehicle, which comprises laminating a restraining layer and then heating the damping sheet to foam and fuse the vibration damping sheet to a foaming ratio of 1.1 to 2.5 times. It is in. The present invention reduces the adhesion area of the intermediate layer and the constraint layer to approximately
100%, and is based on the principle of vibration damping method of Sanderutsch structure consisting of base material/intermediate layer/restriction layer. It is possible to realize a vibration damping effect that is several times better than the proposal of the previous application in which the peripheral portions of the steel plates are joined and the hollow portion is filled. The bituminous material which is the main component of the vibration damping sheet of the present invention may be any asphalt, and may be one or a mixture of two or more of straight asphalt, blown asphalt, semi-brown asphalt, and the like. Generally, they are straight asphalt alone, blown asphalt alone, or a mixture of straight asphalt and blown asphalt. The inorganic fillers contained as other main components can be in the form of powders such as talc, clay, and calcium carbonate, in the form of fibers such as asbestos and slag wool, in the form of scales such as mica and mica, and in the form of hollow spheres such as silica balloons. It may be used alone or as a mixture of two or more of the inorganic fillers. In addition, when using organic fillers together, synthetic resin powder,
It is better to use synthetic resin fiber scraps, etc. The mixing ratio of the bituminous material and the inorganic filler is preferably 50 to 250 parts by weight of the inorganic filler to 100 parts by weight of the bituminous material. If it is less than 50 parts by weight, construction performance may be affected due to sagging during heat fusion. If the amount exceeds 250 parts by weight, the bituminous material will not be able to function as a binder, and will eventually lose its viscoelasticity as an intermediate layer.
There is a problem that it is difficult to adapt to areas with irregularities such as bead parts, and the damping performance itself deteriorates. In addition, it is preferable to mix a rubber component or a resin component with the vibration damping sheet component as necessary.As the rubber component, synthetic rubber such as natural rubber, polybutadiene, styrene-butadiene rubber, butyl rubber, neoprene rubber, or chloroprene rubber can be used. Good to use selectively. Further, the use of recycled rubber is preferable from the viewpoint of cost. As for the resin component to be mixed as needed like the rubber component, it is preferable to use one or more of petroleum resin, polyethylene, polypropylene, and ethylene-vinyl acetate copolymer. The vibration damping sheet of the present invention is produced by foaming the vibration damping sheet at a magnification of 1.1 to 2.5 times during heating and foaming fusion of a restraining layer made of a steel plate or the like on the surface and the vehicle body surface on the other side. The sheet and the restraining layer are almost completely adhered to each other, and the temperature at which the vibration damping property peaks is shifted to around 40°C, and the vibration damping effect is improved. In addition, a foaming ratio of 1.2 to 1.5 times is most preferable for complete adhesion of the damping sheet and the restraining layer, but 1.1 to 2.5
If the range is twice that, these effects will be satisfactorily manifested. The blowing agent preferably has a decomposition temperature of 90 to 160°C, considering the temperature of the baking furnace used in the automobile painting process.On the other hand, when producing the sheet-like molded product, it is preferable to use a blowing agent whose decomposition temperature is below the decomposition temperature of the blowing agent. Consideration must be given to kneading with bituminous materials and inorganic fillers. Diazoaminobenzole, azoisobutylnitrile, benzol sulfohydrazide, carbamate azide, etc. can be used, but preferred are azodicarbonamide, P,P'-oxybenzole sulfohydrazide, benzyl monohydrazole, dinitrosopentamethylenetetramine, etc. . It is effective to use urea and its derivatives, thermosetting resins, etc. as foaming aids. The foaming agent is preferably used in an amount of 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the main component of the damping sheet. If the amount is less than 0.1 parts by weight, the foaming ratio is not more than 1.1. It is not possible to obtain a foam that
The temperature peak of the anti-vibration effect cannot be shifted to around 40℃,
The temperature peak of the anti-vibration effect remains around 60℃,
If the amount exceeds 10 parts by weight, the temperature peak of the vibration damping effect will be 40℃.
There is a problem in which the temperature shifts too far to the following low temperature range. Furthermore, the water-absorbing composition may be used as an alternative to or together with a foaming agent. The mixing of the water-absorbing composition is a material that releases volatile gas when heated, and even if water is simply mixed in, it will not be dispersed and uniform foaming cannot be expected. The aim is to obtain a distributed state. In any case, in the present invention, it is essential that the foamed state after heat fusion is 1.1 to 2.5 times the thickness of the vibration damping sheet compared to before heat fusion, and within this range. Only by achieving this state can we obtain a sheet that exhibits an extremely excellent vibration-proofing property peak under a temperature condition of around 40°C and has excellent vibration-damping properties over a wide temperature range. In order to obtain the foaming ratio, the amount of foaming agent should be determined by taking into consideration the type of foaming agent, temperature conditions, and sheet thickness. If the foaming ratio is less than 1.1, the peak of the vibration damping effect will shift to around 40℃ and no improvement in damping performance will be obtained, and if it exceeds 2.5, the peak of the vibration damping effect will shift to below 40℃. In addition to this, the compressive strength decreases, causing problems when applied to, for example, automobile floors. The sheet-like molded body used in the vehicle vibration damping method of the present invention can be manufactured in the same process as conventional vibration damping sheets by selecting the timing of mixing the foaming agent. For example, when using the conventional process of mixing heat-molten bituminous material and inorganic filler in a heating kneader, extruding, and then rolling, the bituminous material alone has been heated and melted at about 180°C, so the bituminous material is When the filler and filler have been kneaded to some extent and the temperature of the kneaded material has dropped to 90°C or less, the blowing agent should be mixed in. At this time, the initial mixing and the mixing of the blowing agent into the initial mixture may be separate processes, and in the case of a horizontally narrow continuous mixer, the blowing agent may be mixed in the middle of the mixer. As the plate-like material used as the constraining layer of the present invention, an aluminum plate, an FRP plate-like material, preferably a metal plate such as a steel plate, a mineral-based hard plate, a synthetic resin-based hard plate, etc. can be suitably used. In order to create a damping material of the type in which a damping sheet made of a bituminous material, an inorganic filler, a foaming agent, and rubber components and resin components mixed as necessary are sandwiched between the restraining layer and the body steel plate, A method is used in which a damping sheet is laminated on the steel plate surface of a body such as a vehicle, and then a plate-like object with a restraining layer is laminated, and then thermally softened and fused and foamed by baking to integrate. That is, for example, the surface of an automobile body steel plate and a plate-shaped object serving as a restraining layer are laminated on the body steel plate surface via a vibration damping sheet with excellent adhesiveness without performing spot welding or seamless welding, and then baking, etc. It is essential to integrate the materials by thermal softening, fusion, and foaming. For thermal softening and fusion integration, it is preferable to bake at 90°C or higher for about 30 minutes, but this value is not particularly limited due to differences in the thickness of the damping sheet. Examples are given below to explain embodiments of the present invention in more detail. Naturally, the present invention is not limited to the following examples. Example 1 45 parts by weight of asphalt heated and melted at about 180°C,
10 parts by weight of asbestos and 45 parts by weight of calcium carbonate were kneaded in a horizontal narrow continuous mixer, and when the temperature of the kneaded product fell to 85°C, 2 parts by weight of azodicarbonamide was added as a blowing agent and dispersed with stirring. ,3
A sheet-like molded body was made as an example with a thickness of m/m. The sheet-like molded body was cut into a size of 20×180 m/m, sandwiched between steel plates of 0.8×20×200 and 0.4×20×200 m/m, and baked at 140° C. for 20 minutes. The sheet-like molded body is fused to two steel plates,
The sheet-shaped molded product was foamed to a thickness of about 4.8 m/m. Example 2 45 parts by weight of asphalt heated and melted at about 180°C,
10 parts by weight of asbestos, 40 parts by weight of calcium carbonate and 5 parts by weight of SBR are kneaded in a horizontal narrow continuous mixer,
When the temperature of the kneaded product decreased to 85° C., 2 parts by weight of azodicarbonamide as a blowing agent was added, stirred and dispersed, and a sheet-like molded product of Example 2 having a thickness of 3 m/m was formed. The sheet-like molded body was cut into a size of 20 x 180 m/m, and a steel plate of 0.8 x 20 x 200 m/m and a 0.6 x 20 x
Clamped between 200m/m aluminum plates and heated at 140℃ for 20
I baked it for a minute. The sheet-like molded body is
It was fused to the steel plate and the aluminum plate, and the sheet-shaped molded product was foamed to a thickness of about 4.5 m/m. Example 3 35 parts by weight of asphalt heated and melted at about 180°C,
10 parts by weight of asbestos, 45 parts by weight of calcium carbonate, and 10 parts by weight of petroleum resin are kneaded in a horizontal narrow continuous mixer, and when the temperature of the kneaded material drops to 85°C, a gel-like mixture that has absorbed 500 times more water from the middle is formed. 20 parts by weight of vinyl alcohol/acrylic acid copolymer were added, stirred and dispersed to form a sheet-like molded product of Example 3 having a thickness of 3 m/m. The sheet-shaped molded body was cut into a size of 20 x 180 m/m, and a steel plate of 0.8 x 20 x 200 m/m and a 0.8 x 20 x
It was sandwiched between 200 m/m FRP plates and baked at 140°C for 20 minutes. The sheet-like molded body is made of a steel plate and
Fused to FRP board, the sheet-shaped molded body is approximately 4.9m/m
It was foaming thickly. Comparative Example 1 45 parts by weight of asphalt, 10 parts by weight asbestos, and 45 parts by weight of calcium carbonate were sequentially kneaded in a horizontal narrow continuous kneader, and after stirring and dispersion, a sheet-like molded product with a thickness of 3 m/m as a comparative example was obtained. did. The sheet-like molded body was cut into a size of 20 x 180 m/m, sandwiched between 0.8 x 20 x 200 and 0.4 x 20 x 200 m/m steel plates, and baked at 140°C for 20 minutes.
The sheet-like molded body was fused to two steel plates. Comparative Example 2 45 parts by weight of asphalt, 10 parts by weight of asbestos, and 45 parts by weight of calcium carbonate were kneaded in a horizontal narrow continuous kneader, and when the temperature of the kneaded product fell to 85°C, azodicarbonate was added as a blowing agent. 2 parts by weight of amide was added, stirred and dispersed to form a sheet-like molded product having a thickness of 3 m/m as a comparative example. The sheet-like molded body was cut into a size of 20 x 180 m/m, sandwiched between 0.8 x 20 x 200 and 0.4 x 20 x 200 m/m steel plates, and baked at 140°C for 20 minutes.
The sheet-like molded body is fused to two steel plates and has a thickness of approximately
It was foaming to a height of 8.4m. Comparative Example 3 45 parts by weight of asphalt, 10 parts by weight of asbestos, and 45 parts by weight of calcium carbonate were sequentially kneaded in a horizontal narrow continuous kneader, and after stirring and dispersion, a sheet-like molded product with a thickness of 9 m/m as a comparative example was obtained. did. The sheet-shaped molded body was cut into a size of 20 x 180 m/m, placed on a 0.8 x 20 x 200 steel plate, and heated at 140°C.
I baked it for 20 minutes. The sheet-like molded body was fused to a steel plate. Comparative Example 4 45 parts by weight of asphalt, 10 parts by weight of asbestos, and 45 parts by weight of calcium carbonate were sequentially kneaded in a horizontal narrow continuous mixer, and after stirring and dispersion, a sheet-like molded product with a thickness of 3 m/m as a comparative example was obtained. did. The sheet-shaped molded body was cut into a size of 20 x 180 m/m, placed on a 0.8 x 20 x 200 m/m steel plate,
Baking was performed at 140°C for 20 minutes. The sheet-like molded body was fused to a steel plate. Test details The areal densities (Kg/m 2 ) of the sheet-like molded bodies obtained in Examples and Comparative Examples were measured using a stand. By the resonance method (see page 438 of "Noise Countermeasures Handbook" published by Japan Acoustic Materials Association), 20℃, 40℃,
The loss coefficient η at each temperature of 60°C and 80°C was determined. The larger the value of η, the higher the soundproofing effect, and it is said that if it is 0.05 or more, there is a vibrationproofing effect. Test results Example 1 13.7Kg/m 2 (0.8t/3m/m sheet with a foaming ratio of 1.6x/0.4t) Example 2 13.9Kg/m 2 (0.8t/3m/m sheet with a foaming ratio of 1.6x/0.6 t) Example 3 13.4Kg/m 2 (0.8t/3m/m sheet with a foaming ratio of 1.7 times/0.8t) Comparative Example 1 13.7Kg/m 2 (0.8t/3m sheet/
m/0.4t) Comparative Example 2 13.7Kg/ m2 (0.8t/3m/m sheet with a foaming ratio of 2.8x/0.4t) Comparative Example 3 19.6Kg/ m2 (0.8t/sheet 9m/
m) Comparative Example 4 10.6Kg/m 2 (0.8t/sheet 3m/
m)

【衚】 以䞊の様に本願発明になる車䞡の制振方法によ
り埗たサンドむツチ構造䜓は、40℃に斌お著しく
優れた制振効果のピヌクを瀺し、䞔぀車䞡軜枛に
反するこずのないものであ぀た。
[Table] As described above, the sandwich structure obtained by the vehicle vibration damping method of the present invention exhibits a peak of extremely excellent vibration damping effect at 40°C, and does not interfere with vehicle mitigation. It was hot.

Claims (1)

【特蚱請求の範囲】[Claims]  混合比が歎青質物100重量郚に察しお無機質
充填材50〜250郚である、歎青質物ず無機質充填
材が䞻成分である組成物に発泡剀を混入しおなる
制振シヌトを、車䞡鋌板䞊に茉眮し、拘束局を積
局埌加熱により制振シヌトを1.1〜2.5倍の発泡倍
率たで発泡、融着せしめるこずを特城ずする車䞡
の制振凊理方法。
1. A vibration damping sheet made by mixing a foaming agent into a composition whose main components are a bituminous material and an inorganic filler, with a mixing ratio of 50 to 250 parts by weight of an inorganic filler to 100 parts by weight of a bituminous material, A vibration damping treatment method for a vehicle, which comprises placing the damping sheet on a vehicle steel plate, laminating a restraining layer, and then heating the damping sheet to foam and fuse the damping sheet to a foaming ratio of 1.1 to 2.5 times.
JP14968584A 1984-07-20 1984-07-20 Vibration-damping treatment method of car Granted JPS6129533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14968584A JPS6129533A (en) 1984-07-20 1984-07-20 Vibration-damping treatment method of car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14968584A JPS6129533A (en) 1984-07-20 1984-07-20 Vibration-damping treatment method of car

Publications (2)

Publication Number Publication Date
JPS6129533A JPS6129533A (en) 1986-02-10
JPH0214228B2 true JPH0214228B2 (en) 1990-04-06

Family

ID=15480573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14968584A Granted JPS6129533A (en) 1984-07-20 1984-07-20 Vibration-damping treatment method of car

Country Status (1)

Country Link
JP (1) JPS6129533A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141731A (en) * 1986-12-05 1988-06-14 株匏䌚瀟アサヒコヌポレヌション Vibration-damping sheet for car
JPS63260011A (en) * 1987-04-16 1988-10-27 マルコン電子株匏䌚瀟 Manufacture of laminated film capacitor
JPH0737102B2 (en) * 1990-04-13 1995-04-26 日本セキ゜ヌ工業株匏䌚瀟 Steel plate restrained damping material

Also Published As

Publication number Publication date
JPS6129533A (en) 1986-02-10

Similar Documents

Publication Publication Date Title
US6110985A (en) Constrained layer damping compositions
KR100839203B1 (en) Sheet and block for reducing vibration using viscoelastic composition
WO1999025166A1 (en) Radio wave absorbing materials, radio wave absorber, and radio wave anechoic chamber and the like made by using the same
JPH0694199B2 (en) Steel plate restraint type damping material for automobiles
JPH0214228B2 (en)
JPH0617493A (en) Heat and sound insulating panel
EP2080192B1 (en) Acoustic absorbing member with open and closed pores
JPH0139552Y2 (en)
JP2001138908A (en) Soundproofing damping material
JPS6030840A (en) Vibration damping method for vehicle
JPH0459345B2 (en)
JPS63265934A (en) Vibration-damping sheet for use in automobile
JPS6365212B2 (en)
JPS637609Y2 (en)
KR910002696B1 (en) The structure for protecting automobile-vibration
JPH0364330B2 (en)
JP3067172B2 (en) Vehicle damping structure
JPH07256808A (en) Damping structure, and structural body using said structure
JPH0622974B2 (en) Foam type vibration damping sheet for vertical surfaces
KR100535011B1 (en) Sound-absorbing material for vehicle
JPH0568510B2 (en)
JPS6250254A (en) Noise prevention method for vehicle and the like
JPH10264738A (en) Automotive damping flooring
JP2572146Y2 (en) Soundproof carpet
JPH01156050A (en) Method for flattening plate having almost corrugated shape to impart soundproof effect thereto

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term