JPH02142203A - One-edge short-circuit type microstrip antenna - Google Patents

One-edge short-circuit type microstrip antenna

Info

Publication number
JPH02142203A
JPH02142203A JP29676788A JP29676788A JPH02142203A JP H02142203 A JPH02142203 A JP H02142203A JP 29676788 A JP29676788 A JP 29676788A JP 29676788 A JP29676788 A JP 29676788A JP H02142203 A JPH02142203 A JP H02142203A
Authority
JP
Japan
Prior art keywords
conductor element
line
microstrip antenna
radiation conductor
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29676788A
Other languages
Japanese (ja)
Other versions
JPH0693571B2 (en
Inventor
Yoshiaki Tsuda
喜秋 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29676788A priority Critical patent/JPH0693571B2/en
Publication of JPH02142203A publication Critical patent/JPH02142203A/en
Publication of JPH0693571B2 publication Critical patent/JPH0693571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To match a resonance frequency to a desired frequency by attaching the microstrip line of the same length as the side length of a radiation conductor element parallelly to an opening peripheral edge in one side of the radiation conductor element and connecting the microstrip line respectively by plural conductor lines. CONSTITUTION:A microstripe line 9 of the same length as a side length (b) of a radiation conductor element 1 is attached parallelly to an opening peripheral edge 7 in one side of the radiation conductor element 1 and connected respectively by plural conductor lines 10. A resonance frequency fo of a oneedge short-circuit type microstrip antenna can be arbitrarily set by a microstrip antenna line 9, which is connected to the radiation conductor element 1 by the conductor line 10, without changing a dielectric constant g of a dielectric substrate 2. Then, a side length (a) of the radiation conductor element 1 is made electrically variable and the resonance frequency can be changed. Thus, even when the resonance frequency is changed, the resonance frequency can be matched to the desired frequency according to the connection condition of the conductor line.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、同軸線路により給電する一端短絡型マイク
ロストリップアンテナに関し、特に放射導体素子の開放
端に平行にストリップ線路を被着し導体線路で接続する
ことで、放射導体素子の共振周波数を任意に可変とする
構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a one-end short-circuit type microstrip antenna that is fed with power by a coaxial line, and in particular, a microstrip antenna with a strip line attached parallel to the open end of a radiating conductor element and a conductor line. The present invention relates to a structure in which the resonance frequency of a radiation conductor element can be arbitrarily varied by connecting the element.

〔従来の技術〕[Conventional technology]

不平衡平面回路共振器を利用したマイクロストリップア
ンテナは、一般に小型・軽量で低損失であるという利点
を有している。第3図(、)と(b)は。
Microstrip antennas using unbalanced planar circuit resonators generally have the advantages of being small, lightweight, and low loss. Figures 3(,) and (b) are.

例えば羽石、須賀「片側短絡型マイクロス) IJツブ
アンテナ」昭和61年度電子通信学会総合全国大会(8
9−5)3−275から3−276ページに示された従
来の一端短絡型マイクロストリップアンテナの一例を示
す図である。第3図(、)は平面図。
For example, Haneishi, Suga ``Single-side short-circuit type micros IJ tube antenna'' 1985 IEICE General Conference (8th
9-5) A diagram showing an example of the conventional one-end short-circuit type microstrip antenna shown on pages 3-275 to 3-276. Figure 3 (,) is a plan view.

第3図(b)は断面図である。FIG. 3(b) is a sectional view.

図中、(!)は辺長aとbの矩形の一辺短絡型平面回路
による放射導体素子、(2)は波長に比べて十分薄−誘
電体基板(比誘電率81.  厚さh ) 、 (3)
は接地導体板、(4)は入力端子の同軸線路、(6)は
同軸線路(4)の中心導体、(5)は同軸線路(4)の
中心導体(6)を放射導体素子(1)へ接続する給電点
、(7)は電波を放射する開放周辺端、(81は放射導
体素子(11を接地導体板(3)に接続する短絡周辺端
である。
In the figure, (!) is a radiation conductor element made of a rectangular short-circuited planar circuit with side lengths a and b, (2) is a dielectric substrate that is sufficiently thin compared to the wavelength (relative dielectric constant 81. Thickness h), (3)
is the ground conductor plate, (4) is the input terminal coaxial line, (6) is the center conductor of the coaxial line (4), (5) is the center conductor (6) of the coaxial line (4) and the radiation conductor element (1). (7) is an open peripheral end that radiates radio waves, (81 is a short-circuit peripheral end that connects the radiation conductor element (11) to the ground conductor plate (3).

次に動作原理について説明する。給電点(5)からマイ
クロ波を給電すると、開放周辺端(7)より電波が放射
される。第3図(、)と(b)に示す一例では直線偏波
として動作する。
Next, the operating principle will be explained. When microwaves are fed from the feeding point (5), radio waves are radiated from the open peripheral end (7). The example shown in FIGS. 3(a) and 3(b) operates as a linearly polarized wave.

この一端短絡型マイクロストリップアンテナの基本モー
ドの共振周波数foは、主に放射導体素子(1)の辺長
aと誘電体基板(2)の比誘電率εrにより決定される
。また0周波数帯域幅は、主に誘電体基板(2)の比誘
電率8r と厚さhにより決定され。
The fundamental mode resonance frequency fo of this one-end short-circuited microstrip antenna is mainly determined by the side length a of the radiation conductor element (1) and the relative dielectric constant εr of the dielectric substrate (2). Further, the zero frequency bandwidth is mainly determined by the dielectric constant 8r and the thickness h of the dielectric substrate (2).

εrを小とし、hを大にする程広帯域となる性質がある
が、高次モードの発生を防止するために厚さhの選択範
囲には限界があり、実用化されている一端短絡型マイク
ロストリップアンテナの周波数帯域は第4図に示すよう
に数チ程度である。
The smaller εr and the larger h, the wider the band, but in order to prevent the generation of higher-order modes, there is a limit to the range of thickness h that can be selected. The frequency band of the strip antenna is approximately several inches, as shown in FIG.

給電点インピーダンスは、給電点(5)を開放周辺端(
7)に一致させてc = 0とした場合に高インピーダ
ンスとなり、給電点(5)を放射導体素子(1)の短絡
周辺端(8]に近ずけるに従って順次給電点インピーダ
ンスが低下する性質があり、同軸線路(4)とインピー
ダンス整合を図るように寸法Cを選定する。
The feed point impedance is the feed point (5) at the open peripheral end (
7), the impedance becomes high when c = 0, and the impedance of the feeding point gradually decreases as the feeding point (5) approaches the short-circuit peripheral end (8) of the radiation conductor element (1). The dimension C is selected so as to achieve impedance matching with the coaxial line (4).

また0寸法dは交差偏波成分の発生を防止するため、d
=b/2  とする。
In addition, the 0 dimension d prevents the generation of cross-polarized components, so d
=b/2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の一端短絡型マイクロストリップアンテナは以上の
ように構成されているので、インピーダンス整合、交差
偏波抑圧や共振周波数の観点から一端短絡型マイクロス
トリップアンテナの寸法。
Since the conventional one-end short-circuited microstrip antenna is configured as described above, the dimensions of the one-end short-circuited microstrip antenna are important from the viewpoints of impedance matching, cross-polarization suppression, and resonant frequency.

形状や同軸線路の位置が限定されているので、多数個一
端短絡型マイクロストリップアンテナを製造して使用す
る場合、各々の電気的特性は、使用する誘電体基板の誘
電率のばらつきゃ工作性の公差で異なり1本質的に狭帯
域の一端短絡型マイクロストリップアンテナの共振周波
数の整合が困難である等の問題点があった。
Since the shape and position of the coaxial line are limited, when manufacturing and using a large number of single-end short-circuited microstrip antennas, the electrical characteristics of each microstrip antenna will vary due to variations in the dielectric constant of the dielectric substrate used and workability. There have been problems such as differences in tolerances and difficulties in matching the resonant frequency of the short-circuited microstrip antenna, which has an essentially narrow band.

この発明は上記のような問題点を解消するためになされ
たもので、放射導体素子と同軸線路の位置等の寸法、形
状を変化させずに、また、誘電体基板の誘電率のばらつ
きや工作性の公差が付加されても、共振周波数の整合や
インピーダンス整合等の電気的特性の整合を可能とする
一端短絡型マイクロストリップアンテナを得ることを目
的とする。
This invention was made to solve the above-mentioned problems, and it is possible to eliminate variations in the permittivity of the dielectric substrate and the machining process without changing the dimensions and shapes such as the position of the radiation conductor element and the coaxial line. The present invention aims to obtain a one-end short-circuited microstrip antenna that enables matching of electrical characteristics such as resonant frequency matching and impedance matching even if a physical tolerance is added.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る一端短絡型マイクロストリップアンテナ
は、放射導体素子(1)の1辺の開放周辺端(7)に平
行に放射導体素子(1)の辺長すと同じ長さのマイクロ
ストリップ線路を被着し、複数本の導体線路でそれぞれ
を接続することによって、この−端短絡型マイクロスト
リップアンテナの共振周波数を可変し、所望の周波数に
整合をとることにしたものである。
The one-end short-circuited microstrip antenna according to the present invention includes a microstrip line having the same length as the side of the radiating conductor element (1) in parallel to the open peripheral end (7) of one side of the radiating conductor element (1). The resonant frequency of this minus-end short-circuited microstrip antenna can be varied and matched to a desired frequency by attaching the microstrip antenna to the microstrip antenna and connecting them with a plurality of conductor lines.

〔作用〕[Effect]

この発明における一端短絡型マイクロストリップアンテ
ナは、放射導体素子(1)の1辺の開放周辺端(7)に
平行に放射導体素子(1)の辺長すと同じ長さのマイク
ロス) IJツブ線路を被着し、複数本の導体線路でそ
れぞれを接続することにより、放射導体素子(1)の辺
長aが等測的に変化し、誘電体基板(2)の比誘電率ε
rを変化させなくても一端短絡型マイクロストリップア
ンテナの共振周波数を所望の周波数に整合を図れる。
The one-end short-circuit type microstrip antenna of the present invention includes a microstrip (IJ tube) parallel to the open peripheral end (7) of one side of the radiation conductor element (1) and having the same length as the side length of the radiation conductor element (1). By attaching a line and connecting each with a plurality of conductor lines, the side length a of the radiation conductor element (1) changes isometrically, and the relative dielectric constant ε of the dielectric substrate (2) changes.
The resonant frequency of the short-circuited microstrip antenna can be matched to a desired frequency without changing r.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)と(b)は、この発明の一実施例を示す図
であり、第1図(a)ti平面図、第1図(b) H断
面図を示す図である。図中、(1)から(81は、上記
従来の一端短絡型マイクロストリップアンテナと全く同
一のものである。(9)は、従来の放射導体素子(1)
の辺長aを可変させるために誘電体基板(2)の表面に
被着した放射導体素子(1)の辺長すと同じ長さのマイ
クロストリップ線路、aaは、マイクロストリップ線路
(91間と放射導体素子(1)の開放周辺端(7)にそ
れぞれを電気的に接続するための導体線路である。
FIGS. 1(a) and 1(b) are diagrams showing an embodiment of the present invention, and FIG. 1(a) is a ti plan view, and FIG. 1(b) is a sectional view taken along H. In the figure, (1) to (81) are exactly the same as the conventional one-end short-circuited microstrip antenna. (9) is the conventional radiation conductor element (1).
A microstrip line having the same length as the side length of the radiation conductor element (1) attached to the surface of the dielectric substrate (2) in order to vary the side length a of This is a conductor line for electrically connecting each to the open peripheral end (7) of the radiation conductor element (1).

第2図は、放射導体素子(1)の開放周辺端(7)とマ
イクロストリップ線路(9)を導体線路ααで接続する
ことで、放射導体素子(1)の辺長aが電気的に変化さ
せた場合の一端短絡型マイクロストリップアンテナの共
振周波数の変化を示す図である。
Figure 2 shows that the side length a of the radiation conductor element (1) is electrically changed by connecting the open peripheral end (7) of the radiation conductor element (1) and the microstrip line (9) with a conductor line αα. FIG. 3 is a diagram showing a change in the resonant frequency of a one-end short-circuited microstrip antenna when the antenna is short-circuited.

上記のように構成されたこの発明による一端短絡型マイ
クロストリップアンテナの一実施例の動作について説明
する。
The operation of one embodiment of the one-end short-circuit type microstrip antenna according to the present invention configured as described above will be described.

入力端子の同軸線路(4)へ入力された高周波信号は、
中心導体(b) ’に経由して給電点(5)を励振し、
放射導体素子(1)から導体線路(1(Iを通りマイク
−ストリップ線路(9)へ流れ、電気的な開放周辺端(
7)から直線偏波の電波が放射される。放射導体素子(
1)に対する給電点(5)の位置は、従来の一端短絡型
マイクロストリップアンテナと同様に、インピーダンス
整合と交差偏波抑圧の観点から定められる。−方、一端
短絡型マイクロストリップアンテナの共振周波数fo 
Fis誘電体基板(2)の比誘電率εr を変化させず
に、放射導体素子(1)に導体線路a1で接続している
マイクロストリップ線路(9)で任意に設定できる。従
来の一端短絡型マイクロストリップアンテナの放射導体
素子(1)の開放周辺端(7)に平行にマイクロストリ
ップ線路(9)を被着し、それぞれを導体線路αGで接
続し放射導体素子(1)の辺長aを電気的に長くするこ
とで共振周波数は、第2図の点線で示すように低い周波
数に移動し、マイクロス) IJツブ線路(9)と放射
導体素子(1)間を接続する導体線路al]を取ること
で放射導体素子(1)の辺長aを電気的に短かくするこ
とで共振周波数は、第2図の一点破線で示すように高い
周波数に移動する等の共振周波数の可変ができる。
The high frequency signal input to the coaxial line (4) of the input terminal is
Excite the feed point (5) via the center conductor (b)',
Flows from the radiating conductor element (1) through the conductor line (1 (I) to the microphone-strip line (9), with an electrically open peripheral end (
7), linearly polarized radio waves are emitted. Radiation conductor element (
The position of the feeding point (5) relative to 1) is determined from the viewpoint of impedance matching and cross-polarization suppression, similar to the conventional short-circuited microstrip antenna. - On the other hand, the resonant frequency fo of the short-circuited microstrip antenna
The dielectric constant εr of the Fis dielectric substrate (2) can be arbitrarily set without changing it using the microstrip line (9) connected to the radiation conductor element (1) by the conductor line a1. A microstrip line (9) is attached in parallel to the open peripheral end (7) of the radiation conductor element (1) of a conventional one-end short-circuit type microstrip antenna, and each is connected with a conductor line αG to form the radiation conductor element (1). By electrically increasing the side length a of By shortening the side length a of the radiation conductor element (1) electrically by taking the conductor line al], the resonance frequency shifts to a higher frequency as shown by the dot-dashed line in Figure 2. Frequency can be varied.

なお、上記実施例では、放射導体素子(1)とマイクロ
ストリップ線路(9)を接続するのに導体線路a1を用
いるとしたが金ワイヤ又は、金リボン等で形成してもよ
い。また、上記実施例では、放射導体素子(1)と接地
導体板(3)の間に誘電体基板(2)を1枚で説明した
が、複数枚の誘電体基板または空気層で構成してもよく
、上記実施例と同様の効果が得られる。
In the above embodiment, the conductor line a1 is used to connect the radiation conductor element (1) and the microstrip line (9), but it may be formed of gold wire, gold ribbon, or the like. In addition, in the above embodiment, one dielectric substrate (2) is provided between the radiation conductor element (1) and the ground conductor plate (3), but it may be configured with a plurality of dielectric substrates or an air layer. The same effect as in the above embodiment can be obtained.

さらに、上記実施例では、一端短絡型マイクロストIJ
ツブアンテナの形状を矩形の放射導体素子(1)の場合
で説明したが正方形、多角形等の任意形状の放射導体素
子(1)でも同様の効果が得られる。
Furthermore, in the above embodiment, one end short-circuit type microst IJ
Although the shape of the tube antenna has been described in the case of a rectangular radiating conductor element (1), the same effect can be obtained with a radiating conductor element (1) of any shape such as a square or a polygon.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば放射導体素子(1)の
開放周辺端(7)に平行な複数個のマイクロストリップ
線路(9)を導体線路Qlにて接続することで。
As described above, according to the present invention, a plurality of microstrip lines (9) parallel to the open peripheral end (7) of the radiation conductor element (1) are connected by the conductor line Ql.

誘電体基板(2)の比誘電率8r を変化させなくても
放射導体素子(1)の辺長1を電気的に可変とし共振周
波数を変化させることができるので、誘電体基板の比誘
電率のばらつきや工作性の公差により共振周波数が変化
しても導体線路αGの接続状態によ抄所望の共振周波数
忙整合を図れる一端短絡型マイクロストリップアンテナ
が得られる効果がある。
Since the side length 1 of the radiating conductor element (1) can be electrically varied to change the resonance frequency without changing the relative permittivity 8r of the dielectric substrate (2), the relative permittivity of the dielectric substrate (2) can be changed. Even if the resonant frequency changes due to variations in the values or tolerances in workability, it is possible to obtain a one-end short-circuited microstrip antenna that can match the desired resonant frequency by changing the connection state of the conductor line αG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)と(b)はこの発明の一実施例を示す図。 第2図は放射導体素子に導体線路でマイクロストリップ
線路を接続する本数を変化させた場合の一端短絡型マイ
クロストリップアンテナの共振周波数と反射損失の特性
を示す図、第3図は従来の一端短絡型マイクロストリッ
プアンテナの一例を示す図、第4図は従来の一端短絡型
マイクロス) IJツブアンテナの共振周波数と反射損
失の特性を示す図である。 図中、(1)は放射導体素子、(2)は誘電体基板、(
3)は接地導体板、(4)は同軸線路、(5)は給電点
、(6)け中心導体、(7)は開放周辺端、(8)は短
絡周辺端、(9)はマイクロストリップ線路、 Qlは
導体線路である。 なお0図中、同一符号は同一、あるいは相当部分を示す
ものである。
FIGS. 1(a) and (b) are diagrams showing an embodiment of the present invention. Figure 2 shows the resonant frequency and return loss characteristics of a one-end shorted microstrip antenna when the number of microstrip lines connected to the radiating conductor element is changed, and Figure 3 shows the characteristics of the conventional one-end shorted microstrip antenna. FIG. 4 is a diagram showing the resonant frequency and return loss characteristics of a conventional one-end short-circuit type microstrip antenna. In the figure, (1) is a radiation conductor element, (2) is a dielectric substrate, (
3) is the ground conductor plate, (4) is the coaxial line, (5) is the feed point, (6) is the center conductor, (7) is the open peripheral edge, (8) is the shorted peripheral edge, (9) is the microstrip. The line, Ql, is a conductor line. Note that the same reference numerals in Figure 0 indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)波長に比べて薄い誘電体基板上に、一端を接地導
体板に短絡した平面回路による放射導体素子を設け、対
向する接地導体板の背面にマイクロ波の給電のための同
軸線路を設けて構成される一端短絡型マイクロストリッ
プアンテナにおいて、上記平面回路の放射導体素子の接
地導体板と短絡した側の反対の1辺に平行に被着したマ
イクロストリップ線路を導体線路で放射導体素子と接続
し、前記放射導体素子の共振周波数を可変とすることを
特徴とする一端短絡型マイクロストリップアンテナ。
(1) On a dielectric substrate that is thinner than the wavelength, a radiation conductor element is provided using a planar circuit with one end shorted to a grounded conductor plate, and a coaxial line for feeding microwaves is provided on the back of the opposing grounded conductor plate. In the one-end short-circuit type microstrip antenna configured with a microstrip antenna, a microstrip line is attached in parallel to the side opposite to the side shorted to the ground conductor plate of the radiating conductor element of the planar circuit, and the radiating conductor element is connected to the microstrip line by a conductor line. A short-circuited microstrip antenna, characterized in that the resonant frequency of the radiation conductor element is variable.
(2)上記放射導体素子に平行な接地導体板は、単一ま
たは複数個の空気層あるいは誘電体層を挟んで、単一ま
たは複数個配置されたものである特許請求の範囲第(1
)項記載の一端短絡型マイクロストリップアンテナ。
(2) A single or multiple ground conductor plates parallel to the radiation conductor element are arranged with single or multiple air layers or dielectric layers in between.
) One-end short-circuit type microstrip antenna described in item 2.
JP29676788A 1988-11-24 1988-11-24 Short-circuited microstrip antenna Expired - Lifetime JPH0693571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29676788A JPH0693571B2 (en) 1988-11-24 1988-11-24 Short-circuited microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29676788A JPH0693571B2 (en) 1988-11-24 1988-11-24 Short-circuited microstrip antenna

Publications (2)

Publication Number Publication Date
JPH02142203A true JPH02142203A (en) 1990-05-31
JPH0693571B2 JPH0693571B2 (en) 1994-11-16

Family

ID=17837863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29676788A Expired - Lifetime JPH0693571B2 (en) 1988-11-24 1988-11-24 Short-circuited microstrip antenna

Country Status (1)

Country Link
JP (1) JPH0693571B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307343A (en) * 1996-05-15 1997-11-28 Nec Shizuoka Ltd Microstrip antenna system
US6906852B1 (en) 2003-12-31 2005-06-14 Texas Instruments Incorporated Wavelength discriminated image dithering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307343A (en) * 1996-05-15 1997-11-28 Nec Shizuoka Ltd Microstrip antenna system
US5977914A (en) * 1996-05-15 1999-11-02 Nec Corporation Microstrip antenna
US6906852B1 (en) 2003-12-31 2005-06-14 Texas Instruments Incorporated Wavelength discriminated image dithering

Also Published As

Publication number Publication date
JPH0693571B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4401988A (en) Coupled multilayer microstrip antenna
US4843403A (en) Broadband notch antenna
US4853704A (en) Notch antenna with microstrip feed
US4072951A (en) Notch fed twin electric micro-strip dipole antennas
US5703601A (en) Double layer circularly polarized antenna with single feed
US4197544A (en) Windowed dual ground plane microstrip antennas
US4660048A (en) Microstrip patch antenna system
US4130822A (en) Slot antenna
US6121930A (en) Microstrip antenna and a device including said antenna
US4083046A (en) Electric monomicrostrip dipole antennas
US4291312A (en) Dual ground plane coplanar fed microstrip antennas
US4125839A (en) Dual diagonally fed electric microstrip dipole antennas
US6281843B1 (en) Planar broadband dipole antenna for linearly polarized waves
US6133880A (en) Short-circuit microstrip antenna and device including that antenna
US4291311A (en) Dual ground plane microstrip antennas
JP4263820B2 (en) Flat antenna for circular polarization
US5512910A (en) Microstrip antenna device having three resonance frequencies
JPH04271605A (en) Feeder device for radiation element operated by two polarizes waves
JP2009527985A (en) Slit loaded taper slot patch antenna
JPH0575329A (en) Multi-layer array antenna system
JP2000261235A (en) Triplate line feeding type microstrip antenna
JPH0653731A (en) Antenna radiation device and method for generation of electromagnetic signal
JPH07235826A (en) Feeding circuit for slot antenna and electronic circuit integrated antenna
Tang et al. Differentially SIW TE 20-mode Fed substrate integrated filtering dielectric resonator antenna for 5G millimeter wave application
JPH11145722A (en) Microstrip antenna