JPH02141319A - Suspension device for vehicle - Google Patents

Suspension device for vehicle

Info

Publication number
JPH02141319A
JPH02141319A JP29572388A JP29572388A JPH02141319A JP H02141319 A JPH02141319 A JP H02141319A JP 29572388 A JP29572388 A JP 29572388A JP 29572388 A JP29572388 A JP 29572388A JP H02141319 A JPH02141319 A JP H02141319A
Authority
JP
Japan
Prior art keywords
hydraulic
vehicle
passage area
hydraulic cylinder
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29572388A
Other languages
Japanese (ja)
Inventor
Shin Takehara
伸 竹原
Toshiki Morita
俊樹 森田
Takeshi Edahiro
毅志 枝廣
Hiroyoshi Kumada
拡佳 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP29572388A priority Critical patent/JPH02141319A/en
Publication of JPH02141319A publication Critical patent/JPH02141319A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/22Spring constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To prevent unexpected variation of vehicle height by arranging an adjusting means for adjusting passage area on the communicating passage between a hydraulic cylinder and gas springs of each wheel, and enlarging the spring constant by controlling the adjusting means to minify the passage area at ignition off. CONSTITUTION:Hydraulic chambers 3c delimited with pistons 3b of hydraulic cylinders 3 respectively arranged between respective wheels, front and rear, right and left, and a vehicle body are communicated with gas springs 5 (5FL - 5RR) respectively through communicating passages 4. Each gas spring 5 is provided a plurality of pieces (four pieces), and the above-stated hydraulic chamber 3c is communicated to hydraulic chambers defined by respective diaphragms 5e. In this case, a damping force changeover valve (passage area adjusting means) 26 to adjust passage area is provided on a common communicated passage 4 between a first and second gas springs 5a, 5b. This changeover valve 26 is controlled to minify the passage area at ignition switch off.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両のサスペンション装置に関し、特に液圧シ
リンダとガスばねとを備えたハイドロニューマチックサ
スペンション装置(HPS装置)の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a suspension system for a vehicle, and more particularly to an improvement in a hydropneumatic suspension system (HPS system) equipped with a hydraulic cylinder and a gas spring.

(従来の技術) 従来より、この種のサスペンション装置(HPS装置)
は、例えば特公昭59−14365号公報に開示される
ように、車両の車輪毎に液圧シリンダと、該液圧シリン
ダに連通ずるガスばねとを備えて、ガスばねの低いバネ
定数でもって車両の乗心地性を良好にしている。
(Prior art) This type of suspension device (HPS device) has been used in the past.
For example, as disclosed in Japanese Patent Publication No. 59-14365, each wheel of a vehicle is equipped with a hydraulic cylinder and a gas spring communicating with the hydraulic cylinder, and the gas spring has a low spring constant. The ride quality is good.

(発明が解決しようとする課8) ところで、上記の如きHPS装置おいて、各車輪の液圧
シリンダに適宜液圧を給排すれば、ガスばねのバネ定数
を適宜変化させたと同様にできるので、車両のサスペン
ション特性を車両の直進時や旋回時等の運転状態に合せ
ることができ、より一層に乗心地性や走行安定性を向上
できる。
(Problem 8 to be solved by the invention) By the way, in the HPS device as described above, if hydraulic pressure is supplied and discharged appropriately to the hydraulic cylinders of each wheel, it can be done in the same way as changing the spring constant of the gas spring appropriately. It is possible to match the suspension characteristics of the vehicle to the driving conditions such as when the vehicle is traveling straight or when turning, and it is possible to further improve ride comfort and driving stability.

しかるに、その場合、エンジンの停止時には、非走行時
であって各液圧シリンダへの液圧の給排制御も停止する
から、バネ定数はガスばねが本来有する低い値にある。
However, in that case, when the engine is stopped, the control of supplying and discharging hydraulic pressure to each hydraulic cylinder also stops when the engine is not running, so the spring constant is at the low value that gas springs originally have.

このため、その状況で例えば運転者が車両から降りたり
、荷物を積載又は取出す際には、車両重量が変化する分
、車両は低いバネ定数でもって上下変化し、唐突な車高
変化が生じる憾みがある。
Therefore, in such a situation, for example, when the driver gets out of the vehicle or loads or takes out luggage, the vehicle will move up and down with a low spring constant to compensate for the change in vehicle weight, causing a sudden change in vehicle height. There is.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、サスペンション特性を変化させる場合、車両走行
時と共に、エンジンの停止した停駐車時にも、車両重量
の変化に拘らず、唐突な車高変化を防止して、良好なサ
スペンション特性を得ることにある。
The present invention has been made in view of the above, and its purpose is to prevent sudden changes in suspension characteristics when the vehicle is running, as well as when the vehicle is stopped and parked with the engine stopped, regardless of changes in vehicle weight. The objective is to prevent vehicle height changes and obtain good suspension characteristics.

(課題を解決するための手段) 上記目的を達成するため、本発明では、エンジン停止時
をイグニッションオフで検出し、このオフ時には、車両
型】の変化に伴うガスばねと液圧シリンダとの間の油流
通量を少なく制限して、バネ定数を高くする。
(Means for Solving the Problems) In order to achieve the above object, the present invention detects when the engine is stopped by turning off the ignition, and detects the gap between the gas spring and the hydraulic cylinder due to the change in the vehicle type. Reduce the oil flow rate to increase the spring constant.

つまり、本発明の具体的な解決手段は、車両の車輪に各
々液圧シリンダと、該液圧シリンダに連通ずるガスばね
とを備え、上記各車輪の液圧シリンダに液圧を給排する
ことにより車両のサスペンション特性を可変にする車両
のサスペンション装置を前提とする。そして、上記各車
輪の液圧シリンダとガスばねとの間の連通路に、該連通
路の通路面積を調整する通路面積調整手段を配置する。
That is, the specific solution of the present invention is to provide each wheel of a vehicle with a hydraulic cylinder and a gas spring communicating with the hydraulic cylinder, and to supply and discharge hydraulic pressure to and from the hydraulic cylinder of each wheel. The present invention is based on a vehicle suspension system that can vary the suspension characteristics of a vehicle. A passage area adjustment means for adjusting the passage area of the communication passage is disposed in the communication passage between the hydraulic cylinder and the gas spring of each wheel.

更に、エンジンのイグニッションオフ時を検出するオフ
時検出手段と、該オフ時検出手段で検出するイグニッシ
ョンオフ時に上記各連通路の通路面積を小さくするよう
上記各車輪の通路面積調整手段を制御してバネ定数を高
める制御手段とを設ける構成としている。
Further, an off-time detection means for detecting when the engine ignition is off, and a passage area adjustment means for each wheel so as to reduce the passage area of each communication passage when the ignition is off, as detected by the off-time detection means. The structure includes a control means for increasing the spring constant.

(作用) 以上の構成により、本発明では、イグニッションがオフ
されてエンジンが停止すると、’tcli圧シリンダへ
の液圧の給排制御が停止すると共に、通路面積調整手段
が制御されてガスばねと液圧シリンダ間の通路面積が小
さく調整される。その結果、その後、運転者等が車両か
ら降りたり、荷物を積載する際には、その車両重量の変
化に応じて浦がガスばねと液圧シリンダ間で流通するも
のの、その連通路の通路面積が小さい分、油流通量も少
なく制限されてバネ定数が高まったと等しい状況になる
ので、唐突な車高変化が防止される。
(Function) With the above configuration, in the present invention, when the ignition is turned off and the engine is stopped, the supply and discharge control of the hydraulic pressure to the 'tcli pressure cylinder is stopped, and the passage area adjustment means is controlled so that the gas spring The passage area between the hydraulic cylinders is adjusted to be small. As a result, when the driver, etc. gets out of the vehicle or loads cargo, the air flows between the gas spring and the hydraulic cylinder depending on the change in vehicle weight, but the passage area of the communication path Since the oil flow rate is small, the oil flow rate is also limited, which is equivalent to increasing the spring constant, thereby preventing sudden changes in vehicle height.

(発明の効果) 以」二説明したように、本発明の車両のサスペンション
装置によれば、ガスばねと液圧シリンダを備え、該液圧
シリンダへの液圧の給排によりサスペンション特性を可
変にする場合、イグニッションオフ時には、ガスばねと
液圧シリンダ間の連通路の通路面積を小さく制御して上
記ガスばねのバネ定数を高めたに等しい状況としたので
、運転者等の降車や荷物の積載等により車両重量が変化
する際にも、唐突な車高変化を防止でき、サスペンショ
ン性能の向上を図ることができる。
(Effects of the Invention) As explained above, the vehicle suspension device of the present invention includes a gas spring and a hydraulic cylinder, and the suspension characteristics can be varied by supplying and discharging hydraulic pressure to the hydraulic cylinder. In this case, when the ignition is turned off, the passage area of the communication passage between the gas spring and the hydraulic cylinder is controlled to a small value to create a situation equivalent to increasing the spring constant of the gas spring, so that it is difficult for the driver to get out of the car or to load luggage. Even when the vehicle weight changes due to factors such as this, sudden changes in vehicle height can be prevented, and suspension performance can be improved.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は車体、2Fは前輪、2Rは後輪で
あって、車体1と前輪2Fとの間、車体1と後輪2R間
には、各々液圧シリンダ3が配置されている。該各液圧
シリンダ3内は、シリンダ本体3a内に嵌挿したピスト
ン3bにより液圧室3cが画成されている。上記ピスト
ン3bに連結したロッド3dの上端部は車体1に連結さ
れ、シリンダ本体3aは各々車輪21”、2Rに連結さ
れている。
In FIG. 1, 1 is a vehicle body, 2F is a front wheel, and 2R is a rear wheel. Hydraulic cylinders 3 are arranged between the vehicle body 1 and the front wheels 2F, and between the vehicle body 1 and the rear wheels 2R. . Inside each hydraulic cylinder 3, a hydraulic chamber 3c is defined by a piston 3b fitted into the cylinder body 3a. The upper end of the rod 3d connected to the piston 3b is connected to the vehicle body 1, and the cylinder body 3a is connected to wheels 21'' and 2R, respectively.

また、上記各液圧シリンダ3の液圧室3cには、各々、
連通路4を介してガスばね5が連通接続されている。該
各ガスばね5は、ダイヤフラム5eによりガス室5fと
液圧室5gとに区画され、該液圧室5gが液圧シリンダ
3の液圧室3cに連通する。
Moreover, in the hydraulic chamber 3c of each hydraulic cylinder 3,
A gas spring 5 is connected through the communication path 4 . Each gas spring 5 is divided into a gas chamber 5f and a hydraulic chamber 5g by a diaphragm 5e, and the hydraulic chamber 5g communicates with the hydraulic chamber 3c of the hydraulic cylinder 3.

また、8は油圧ポンプ、9.9は該油圧ポンプ8に液圧
管路10を介して接続された比例流量制御弁であって、
各液圧シリンダ3P、3Rへの液圧の供給、排出を行う
機能を有する。
Further, 8 is a hydraulic pump, 9.9 is a proportional flow control valve connected to the hydraulic pump 8 via a hydraulic pipe line 10,
It has a function of supplying and discharging hydraulic pressure to each hydraulic cylinder 3P, 3R.

さらに、12は油圧ポンプ8の油吐出圧を検出する吐出
圧針、13は各液圧シリンダ3の液圧室3cの液圧を検
出する油圧計、14は対応する車輪2 F、 2 Hの
車高(シリンダストローク量)を険出する車高センサ、
15は対応する車輪2F、2Rのばね上船速度を検出す
る加速度センサであって、これ等の検出信号は各々内部
にCPU等を有するコントローラ17に人力されて、サ
スペンション特性の可変制御に倶される。
Furthermore, 12 is a discharge pressure needle that detects the oil discharge pressure of the hydraulic pump 8, 13 is a hydraulic gauge that detects the hydraulic pressure in the hydraulic chamber 3c of each hydraulic cylinder 3, and 14 is a corresponding wheel 2F, 2H. Vehicle height sensor that detects high (cylinder stroke amount)
Reference numeral 15 denotes an acceleration sensor for detecting the sprung boat speed of the corresponding wheels 2F and 2R, and these detection signals are manually inputted to a controller 17 having a CPU, etc. inside, and are involved in variable control of suspension characteristics. Ru.

次に、液圧シリンダ3への液圧の給排制御用の油圧回路
を第2図に示す。同図において、油圧ポンプ8は駆動源
20により駆動されるパワーステアリング装置用の油圧
ポンプ21と二連に接続されている。油圧ポンプ8の吐
出管8aには、アキュムレータ22が連通接続され、そ
の下流側は前輪側配管23F及び後輪側配管23Rが並
列接続され、前輪側配管23Fには左輪側配管231’
L及び右輪側配管23PRが並列接続され、該各配管2
3PL、23r’Hには対応する車輪の液圧シリンダ3
PL、  31’Rの液圧室3cが連通接続される。同
様に、後輪側配管23Rには左輪側及び右輪側の配管2
3RL、  231?I?が並列接続され、該各配管2
3RL。
Next, a hydraulic circuit for controlling supply and discharge of hydraulic pressure to the hydraulic cylinder 3 is shown in FIG. In the figure, a hydraulic pump 8 is connected in two series to a hydraulic pump 21 for a power steering device driven by a drive source 20. An accumulator 22 is connected to the discharge pipe 8a of the hydraulic pump 8, and a front wheel side pipe 23F and a rear wheel side pipe 23R are connected in parallel on the downstream side thereof, and a left wheel side pipe 231' is connected to the front wheel side pipe 23F.
L and right wheel side pipe 23PR are connected in parallel, and each pipe 2
3PL, 23r'H corresponds to the hydraulic cylinder 3 of the wheel.
The hydraulic chambers 3c of PL and 31'R are connected in communication. Similarly, the rear wheel side piping 23R has left and right wheel side piping 2.
3RL, 231? I? are connected in parallel, each pipe 2
3RL.

23RI?には対応する車輪の液圧シリンダ31?L、
  3RRの液圧室3cが連通接続される。
23RI? The hydraulic cylinder 31 of the corresponding wheel? L,
The hydraulic pressure chambers 3c of 3RR are connected in communication.

上記各液圧シリンダ3FL〜31?I?に接続するガス
ばね5PL〜5T?Rは、各々、具体的には複数個(4
個)づつ備えられ、これ等は対応する液圧シリンダ3の
液圧室3cに連通する共通連通路4に対して分岐連通路
4a〜4dを介して互いに並列に接続されている。また
、上記各車輪毎の複数個(第1〜第4)のガスばね5a
〜5dは、その分岐連通路48〜4dに介設したオリフ
ィス25a〜25dを備えていて、その各々の減衰作用
と、ガス室5fに封入したガスの緩衝作用の双方により
、サスペンション装置として基本的な機能を発揮する。
Each of the above hydraulic cylinders 3FL to 31? I? Gas spring 5PL to 5T connected to? Each R is specifically a plurality of (4
These are connected in parallel to a common communication passage 4 communicating with the hydraulic pressure chamber 3c of the corresponding hydraulic cylinder 3 via branch communication passages 4a to 4d. Also, a plurality of (first to fourth) gas springs 5a for each of the wheels.
5d is equipped with orifices 25a to 25d interposed in the branch communication passages 48 to 4d, and has a basic function as a suspension device due to the damping effect of each of the orifices and the buffering effect of the gas sealed in the gas chamber 5f. Demonstrates functions.

而して、各車輪のガスばね5FF〜5RI?では、各々
、第1ばね5aと第2ばね5bとの間の・共通連通路4
に該連通路4の通路面積を調整する減衰力切換バルブ(
通路面積調整手段)26が介設されている。該切換バル
ブ26は、共通連通路4を開く開位置と、その通路面積
を顕著に絞る絞位置との二位置を有する。
So, gas springs 5FF to 5RI for each wheel? Now, the common communication path 4 between the first spring 5a and the second spring 5b, respectively.
A damping force switching valve (
A passage area adjusting means) 26 is provided. The switching valve 26 has two positions: an open position where the common communication passage 4 is opened, and a throttle position where the passage area is significantly narrowed.

また、油圧ポンプ8の吐出管8 aには、アキュムレ〜
り22近傍にてアンロードリリーフ弁28が接続される
。該リリーフ弁28は、開位置と閉位置とを有し、吐出
圧計12で計測した油吐出圧が上限設定値以上の場合に
開位置に切換制御されて油圧ポンプ8の油をリザーブタ
ンク29に戻し、アキュムレータ22の油の蓄圧値を設
定値に保持制御する機能を有する。而して、各液圧シリ
ンダ3への油の給排はアキュムレータ22の蓄油でもっ
て行う。
In addition, the discharge pipe 8a of the hydraulic pump 8 has an accumulator to
An unload relief valve 28 is connected near the port 22. The relief valve 28 has an open position and a closed position, and is controlled to be switched to the open position when the oil discharge pressure measured by the discharge pressure gauge 12 is equal to or higher than the upper limit setting value, and the oil from the hydraulic pump 8 is transferred to the reserve tank 29. It has a function of controlling and maintaining the oil pressure value of the accumulator 22 at a set value. Oil is supplied to and discharged from each hydraulic cylinder 3 by storing oil in the accumulator 22.

以下、左前輪、右前輪、左後輪、右後輪の構成は同一で
あるので、左前輪側のみを説明し、他はその説明を省略
する。つまり、左前輪側配管23PFには上記比例流量
制御弁9が介設される。該比例流量制御弁9は、全ボー
トを閉じる停止位置と、左前輪側配管23FFを開く供
給位置と、左前輪側配管23PFの液圧シリンダ3側を
リターン配管32に連通ずる排出位置との三位置を有す
ると共に、圧力補償弁9aを内蔵し、該圧力補償弁9a
により上記供給位置及び排出位置の二位置にて液圧シリ
ンダ3の液圧室3C内の液圧を所定値に保持する。
Hereinafter, since the configurations of the left front wheel, right front wheel, left rear wheel, and right rear wheel are the same, only the left front wheel will be described, and the description of the others will be omitted. That is, the proportional flow rate control valve 9 is interposed in the left front wheel side pipe 23PF. The proportional flow rate control valve 9 has three positions: a stop position where all boats are closed, a supply position where the left front wheel side pipe 23FF is opened, and a discharge position where the hydraulic cylinder 3 side of the left front wheel side pipe 23PF is communicated with the return pipe 32. It has a built-in pressure compensation valve 9a, and the pressure compensation valve 9a
Accordingly, the hydraulic pressure in the hydraulic chamber 3C of the hydraulic cylinder 3 is maintained at a predetermined value at the two positions, the supply position and the discharge position.

加えて、上記比例流量制御弁9の液圧シリンダ3側には
、左前輪側配管231”Pを開閉するパイロット圧応動
型の開閉弁33が介設される。該開閉弁33は、比例流
量制御弁9の浦ポンプ8側の左前輪側配管23PFの液
圧を導く電磁弁34の開時にその液圧がパイロット圧と
して導入され、このパイロット圧が所定値以上の時に開
作動して左前輪側配管23PPを開き、比例流量制御弁
9による液圧シリンダ3への液圧の給排制御を可能とす
る機能を有する。
In addition, a pilot pressure-responsive on-off valve 33 that opens and closes the left front wheel side piping 231''P is interposed on the hydraulic cylinder 3 side of the proportional flow control valve 9. The on-off valve 33 controls the proportional flow rate. When the solenoid valve 34 that guides the hydraulic pressure of the left front wheel side piping 23PF on the Ura pump 8 side of the control valve 9 is opened, the hydraulic pressure is introduced as a pilot pressure, and when this pilot pressure is equal to or higher than a predetermined value, it opens and operates to control the left front wheel. It has a function of opening the side pipe 23PP and allowing the proportional flow rate control valve 9 to control supply and discharge of hydraulic pressure to the hydraulic cylinder 3.

尚、図中、35は液圧シリンダ3の液圧室3Cの液圧の
異常上昇時に開作動してその液圧をリターン配管32に
戻すリリーフ弁である。また、36は油圧ポンプ8の吐
出管8aのアキュムレータ22近傍に接続されたイグニ
ッションキ一連動弁であって、イグニッションオフ時に
開制御されてアキュムレータ22の蓄浦をタンク29に
戻し、高圧状態を解除する機能を有する。37は油ポン
プ8の油吐出圧の異常上昇時にその浦をタンク29に戻
して降圧するポンプ内リリーフ弁、38はリターン配管
32に接続されたリターンアキュムレータであって、液
圧シリンダ3からの油の排圧時に蓄圧作用を行うもので
ある。
In the figure, numeral 35 is a relief valve that opens when the hydraulic pressure in the hydraulic chamber 3C of the hydraulic cylinder 3 abnormally increases and returns the hydraulic pressure to the return pipe 32. Further, 36 is an ignition key linked valve connected to the vicinity of the accumulator 22 of the discharge pipe 8a of the hydraulic pump 8, and is controlled to open when the ignition is turned off to return the reservoir of the accumulator 22 to the tank 29 and release the high pressure state. It has the function of Reference numeral 37 designates a relief valve within the pump that returns the oil discharge pressure of the oil pump 8 to the tank 29 to lower the pressure when the oil discharge pressure of the oil pump 8 rises abnormally; It performs a pressure accumulating effect when the pressure is discharged.

次に、コントローラ17による減衰力切換バルブ26の
制御を第3図の制御フローに基いて説明する。
Next, the control of the damping force switching valve 26 by the controller 17 will be explained based on the control flow shown in FIG.

スタートして、ステップS1でイグニッションキーの状
態を入力し、ステップS2でこの0N10FF状態を判
別する。そして、イグニッションオン時には、エンジン
運転時と判断して、更にステップS3でイグニッション
キーのOFF→ONの移行時か否かを判別し、オン状態
の場合には、運転中にあるので、ステップS4で車両の
運転状態に応じて減衰力切換バルブ26を制御し、車両
旋回時には絞位置に切換えてガスばね5及び液圧シリン
ダ3への油の供給、排出量を少なく制限し、サスペンシ
ョン特性可変の制御応答性を高める一方、直進走行時に
は開位置に切換えてバネ定数を低め、乗心地を良好にす
る。
After starting, the state of the ignition key is input in step S1, and the 0N10FF state is determined in step S2. When the ignition is on, it is determined that the engine is running, and in step S3 it is further determined whether or not the ignition key is transitioning from OFF to ON. If the ignition is on, it is in operation, so step S4 is performed. The damping force switching valve 26 is controlled according to the driving condition of the vehicle, and when the vehicle turns, it is switched to the throttle position to limit the amount of oil supplied to and discharged from the gas spring 5 and the hydraulic cylinder 3, thereby controlling the variable suspension characteristics. While increasing responsiveness, the system also switches to the open position when driving straight, lowering the spring constant and improving ride comfort.

而して、ステップS2でイグニッションオフ時が判別さ
れると、運転者の降車や荷物の積載等による車両重量の
変化に対処すべく、ステップS5で減衰力切換バルブ2
6を強制的に絞位置に切換えてバネ定数を高めて、リタ
ーンする。
When it is determined in step S2 that the ignition is off, the damping force switching valve 2 is turned on in step S5 in order to cope with changes in the weight of the vehicle due to the driver getting out of the car, loading luggage, etc.
6 is forcibly switched to the aperture position to increase the spring constant and return.

そして、次の車両の運転時に、ステップS3でイグニッ
ションOFF −ONの移行時が判別されると、運転開
始時と判断して、ステップS6で減衰力切換バルブ26
を強制的に開位置に切換制御した後、ステップS7で全
車輪の減衰力切換バルブ26が開位置にあるか否かを判
別し、全て開位置にある場合には正常時と判断してリタ
ーンするが、少くとも一つが閉位置にある場合には、ス
テップSsで故障時と判断して、走行の停止を促す等の
対処を施す。
Then, when the next time the vehicle is driven, when it is determined in step S3 that the ignition is transitioning from OFF to ON, it is determined that it is time to start driving, and the damping force switching valve 26 is turned on in step S6.
After forcibly switching the damping force switching valves 26 to the open position, it is determined in step S7 whether or not the damping force switching valves 26 of all wheels are in the open position, and if they are all in the open position, it is determined that it is normal and the process returns. However, if at least one of them is in the closed position, it is determined in step Ss that a failure has occurred, and countermeasures are taken, such as prompting the vehicle to stop traveling.

よって、上記第3図の制御フローにおいて、ステップS
 l *  32により、エンジンのイグニッションオ
フ時を検出するオフ時検出手段40を構成している。ま
た、ステップS5により、上記オフ時検出手段40で検
出するイグニッションオフ時に、減衰力切換バルブ(通
路面積、、1.!J整手段)26を強制的に絞位置に切
換制御して、共通連通路4の通路面積を小さくし、バネ
定数を高めるようにした制御手段41を構成している。
Therefore, in the control flow of FIG. 3 above, step S
l*32 constitutes off-state detection means 40 for detecting when the engine ignition is off. Further, in step S5, when the ignition is turned off as detected by the off-time detection means 40, the damping force switching valve (passage area, 1.!J adjustment means) is forcibly switched to the throttle position, and the common communication The control means 41 is configured to reduce the passage area of the passage 4 and increase the spring constant.

したがって、上記実施例においては、イグニッションオ
ンのエンジン運転中では、イグニッションキ一連動弁3
6が閉制御され、油ポンプ8の油がアキュムレータ22
に蓄圧され、この蓄圧値はアンロードリリーフ弁28で
所定圧に保持される。
Therefore, in the above embodiment, when the engine is running with the ignition on, the ignition switch valve 3
6 is controlled to close, and the oil in the oil pump 8 is supplied to the accumulator 22.
This accumulated pressure value is maintained at a predetermined pressure by the unload relief valve 28.

而して、油吐出管8aの液圧が所定圧以上になると、各
パイロット圧応動型の開閉弁33が開作動して前後左右
輪への配管23 F[、〜23RRが開かれる。そして
、この状態で、各比例流量制御弁9の供給位置又は排出
位置への切換制御により、各液圧シリンダ3の液圧室3
cへの液圧の給排が行イ〕れて、各ガスばね5のバネ定
数及び各オリフィス25の絞り抵抗を変化させたと同様
の効果を得て、サスペンション特性を運転状態に合せて
適宜可変にする。また、各液圧シリンダ3の液圧室3c
の重量を制御して、車高が適宜調整される。
When the hydraulic pressure in the oil discharge pipe 8a becomes equal to or higher than a predetermined pressure, each pilot pressure-responsive on-off valve 33 is opened to open the pipes 23F[, -23RR to the front, rear, left and right wheels. In this state, the hydraulic chamber 3 of each hydraulic cylinder 3 is controlled to switch to the supply position or discharge position of each proportional flow control valve 9.
By supplying and discharging hydraulic pressure to and from C), the same effect as changing the spring constant of each gas spring 5 and the throttling resistance of each orifice 25 is obtained, and the suspension characteristics can be changed as appropriate according to the operating condition. Make it. In addition, the hydraulic chamber 3c of each hydraulic cylinder 3
The vehicle height is adjusted appropriately by controlling the weight of the vehicle.

一方、運転を停止しイグニッションキーオフによりエン
ジンが停止すると、イグニッションキー連動弁36が開
制御され、アキュムレータ22内の蓄浦がタンク29に
戻されて蓄圧値が低下する。
On the other hand, when the engine is stopped by stopping the operation and turning off the ignition key, the ignition key interlocking valve 36 is controlled to open, and the accumulated pressure in the accumulator 22 is returned to the tank 29, so that the accumulated pressure value decreases.

それに伴いパイロット圧応動型の開閉弁33が閉作動し
て前後左右輪への配管23 PL〜23RRか閉じられ
る。また、減衰力切換バルブ26が開位置から絞位置に
切換制御され、各共通連通路4の通路面積が小さく絞ら
れる。
Accordingly, the pilot pressure-responsive on-off valve 33 is operated to close, and the pipes 23 PL to 23 RR to the front, rear, left and right wheels are closed. Further, the damping force switching valve 26 is controlled to switch from the open position to the throttle position, and the passage area of each common communication passage 4 is narrowed.

その結果、その後に運転者等が車両から降りたり、荷物
を積載又は取出す場合には、車両重量が変化する分、各
車輪では、ガスばね5FF〜5RRの液圧室5gと液圧
シリンダ3PF〜3RRの液圧室3Cとの間で油が共通
連通路4を介して流通しようとするが、第2〜第4ガス
ばね5b〜5dの浦は上記減衰力切換バルブ26で絞ら
れるので、液圧シリンダ3との間の流通量が制限され、
第1バネ5aのみの油が通常通り流通して、各車輪のガ
スばね5のバネ定数が高まったと同様の状況になる。
As a result, when the driver or the like subsequently gets out of the vehicle or loads or takes out cargo, the weight of the vehicle changes, and each wheel has the hydraulic chamber 5g of the gas spring 5FF to 5RR and the hydraulic cylinder 3PF to Oil tries to flow between the hydraulic pressure chamber 3C of the 3RR and the common communication path 4, but the pressure of the second to fourth gas springs 5b to 5d is throttled by the damping force switching valve 26, so that the oil does not flow. The flow rate between the pressure cylinder 3 and the pressure cylinder 3 is restricted.
A situation similar to that in which oil flows through only the first spring 5a as usual and the spring constant of the gas spring 5 of each wheel increases is obtained.

その結果、車両走行時での液圧の給排制御による良好な
サスペンション特性に加えて、エンジン停止した。停駐
車時でも車両重量の変化時での車高の唐突な変化が防止
されて、降車時や荷物の積載時にも良好なサスペンショ
ン特性が得られる。
As a result, in addition to good suspension characteristics due to hydraulic pressure supply/discharge control while the vehicle was running, the engine stopped. Even when the vehicle is stopped or parked, sudden changes in vehicle height due to changes in vehicle weight are prevented, and good suspension characteristics are obtained even when exiting the vehicle or loading luggage.

しかも、次の乗車時に、イグニッションオンになると、
各減衰力切換バルブ26が絞位置から開位置に切換制御
され、その全てが開位置にない場合には、直ちに故障時
と判断されるので、発進に先立って故障を喚起できる。
Moreover, when you turn on the ignition the next time you get in the car,
Each damping force switching valve 26 is controlled to switch from the throttle position to the open position, and if none of them are in the open position, it is immediately determined that a failure has occurred, so that the failure can be alerted prior to starting.

したがって、故障を知らずに発進した場合での、各車輪
間でバネ定数が異なることに起因する車両の乗心地性や
走行安全性の低下を未然に防止できる効果を奏する。
Therefore, it is possible to prevent the ride comfort and running safety of the vehicle from being deteriorated due to the difference in spring constant between the wheels when the vehicle starts moving without knowing that there is a malfunction.

尚、上記実施例では、減衰力切換バルブ26をイグニッ
ションオフ時に絞位置に切換制御したが、その他、全閉
にするよう構成してもよいのは勿論である。
In the above embodiment, the damping force switching valve 26 is controlled to be switched to the throttle position when the ignition is turned off, but it is of course possible to configure the damping force switching valve 26 to be fully closed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、′W41図は全体概略構
成図、第2図は油圧回路図、第3図は制御フローチャー
ト図である。 3FF〜3RI?・・・液圧シリンダ、3c・・・液圧
室、4・・・共通連通路、5FF〜5RR・・・ガスば
ね、5f・・・ガス室、5g・・・液圧室、9・・・流
量制御弁、17・・・コントローラ、22・・・アキュ
ムレータ、25a〜25d・・・オリフィス、26・・
・減衰力切換バルブ(通路面積調整手段)、33・・・
パイロット応動型開閉弁、40・・・オフ時検出手段、
41・・・制御手段。 ほか2名
The drawings show an embodiment of the present invention, and FIG. 41 is a general schematic diagram, FIG. 2 is a hydraulic circuit diagram, and FIG. 3 is a control flowchart. 3FF~3RI? ... Hydraulic cylinder, 3c... Hydraulic pressure chamber, 4... Common communication path, 5FF-5RR... Gas spring, 5f... Gas chamber, 5g... Hydraulic pressure chamber, 9...・Flow rate control valve, 17... Controller, 22... Accumulator, 25a to 25d... Orifice, 26...
・Damping force switching valve (passage area adjustment means), 33...
Pilot-responsive on-off valve, 40... OFF detection means,
41...Control means. 2 others

Claims (1)

【特許請求の範囲】[Claims] (1)車両の車輪に各々液圧シリンダと、該液圧シリン
ダに連通するガスばねとを備え、上記各車輪の液圧シリ
ンダに液圧を給排することにより車両のサスペンション
特性を可変にする車両のサスペンション装置において、
上記各車輪の液圧シリンダとガスばねとの間の連通路に
配置され、該連通路の通路面積を調整する通路面積調整
手段と、エンジンのイグニッションオフ時を検出するオ
フ時検出手段と、該オフ時検出手段で検出するイグニッ
ションオフ時に上記各連通路の通路面積を小さくするよ
う上記各車輪の通路面積調整手段を制御してバネ定数を
高める制御手段とを備えたことを特徴とする車両のサス
ペンション装置。
(1) Each wheel of the vehicle is provided with a hydraulic cylinder and a gas spring communicating with the hydraulic cylinder, and the suspension characteristics of the vehicle are made variable by supplying and discharging hydraulic pressure to the hydraulic cylinder of each wheel. In vehicle suspension equipment,
a passage area adjusting means arranged in a communication passage between the hydraulic cylinder and the gas spring of each of the wheels and adjusting the passage area of the communication passage; an off-time detection means for detecting when the engine ignition is turned off; and control means for increasing the spring constant by controlling the passage area adjusting means for each wheel so as to reduce the passage area of each communication passage when the ignition is turned off, as detected by the off-time detection means. Suspension device.
JP29572388A 1988-11-22 1988-11-22 Suspension device for vehicle Pending JPH02141319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29572388A JPH02141319A (en) 1988-11-22 1988-11-22 Suspension device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29572388A JPH02141319A (en) 1988-11-22 1988-11-22 Suspension device for vehicle

Publications (1)

Publication Number Publication Date
JPH02141319A true JPH02141319A (en) 1990-05-30

Family

ID=17824333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29572388A Pending JPH02141319A (en) 1988-11-22 1988-11-22 Suspension device for vehicle

Country Status (1)

Country Link
JP (1) JPH02141319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692846A1 (en) * 1992-06-26 1993-12-31 Bosch Gmbh Robert Suspension system for a motor vehicle and method of implementing such a system.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692846A1 (en) * 1992-06-26 1993-12-31 Bosch Gmbh Robert Suspension system for a motor vehicle and method of implementing such a system.

Similar Documents

Publication Publication Date Title
US5013061A (en) Hydraulic circuit for actively controlled automotive suspension system with fail-safe system
US5160161A (en) Working fluid circuit with line pressure control for vehicle active suspension system
JPH01122717A (en) Active suspension device
US4911469A (en) Actively controlled suspension system with improved layout of pressure control valve
JPH06156035A (en) Suspension device for vehicle
EP4171976B1 (en) Active suspension for a vehicle
US5290048A (en) Working fluid circuit for active suspension control system of vehicle
US4982979A (en) Active suspension system with enhanced response characteristics hydraulic circuit
JPH02141319A (en) Suspension device for vehicle
JP2584318B2 (en) Vehicle suspension device
JPH03109119A (en) Suspension controller
JP2524397B2 (en) Active suspension
JP2003285615A (en) Suspension control device
JPH078247Y2 (en) Vehicle height adjustment device
JP2018062217A (en) Suspension system
JPH02158409A (en) Vehicle suspension system
JP2507078Y2 (en) Suspension device
JPH0450019A (en) Vehicle suspension device
JPH0577631A (en) Hydraulic circuit in suspension device
JPH0263911A (en) Oil-hydraulic circuit for active suspension
JPH05178045A (en) Vehicle suspension system
JP2529172Y2 (en) Hydraulic suspension
JPH04100712A (en) Fluid pressure suspension
JPH0332914A (en) Suspension device of vehicle
JPH0263913A (en) Oil-hydraulic circuit for active suspension