JPH02141176A - Picture data compression and expansion device - Google Patents

Picture data compression and expansion device

Info

Publication number
JPH02141176A
JPH02141176A JP29507088A JP29507088A JPH02141176A JP H02141176 A JPH02141176 A JP H02141176A JP 29507088 A JP29507088 A JP 29507088A JP 29507088 A JP29507088 A JP 29507088A JP H02141176 A JPH02141176 A JP H02141176A
Authority
JP
Japan
Prior art keywords
gradation
image
pixel
representing
picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29507088A
Other languages
Japanese (ja)
Inventor
Atsuki Ichinose
一之瀬 敦幾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29507088A priority Critical patent/JPH02141176A/en
Publication of JPH02141176A publication Critical patent/JPH02141176A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the deterioration of a picture by applying compression deciding coefficient of an equation of higher degree so that a data string representing graduation is made nearly coincident with values on a curve represented by the equation of higher degree and applying expansion calculating the coefficients and gradation values from the equation of higher degree representing the curve. CONSTITUTION:Values representing gradation of a picture element 24 at the end of a picture element string 12 and values representing the gradation of the picture element 25 at the end of a picture element string 13 are regarded as values of an element next to the picture element 24 and the picture element strings 12, 13 are treated as data strings representing a series of gradation. Then the coordinate and gradation data of the picture elements on the picture element string 31 are expressed by four values of coefficients A-D of a cubic equation. Thus, the values representing the gradation of a picture are expressed by 4 coefficients A-D. Thus, the picture data is compressed so that the value calculated by an equation of N=4/(number of picture elements of a picture) equal to the compression rate N, where 4 is the number of coefficients in a cubic equation.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、二次元静止画像の画像データの圧縮伸張に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to compression and expansion of image data of two-dimensional still images.

[従来の技術] 従来の画像データ圧縮伸張方法は、Df31pらが提案
(文献:E、J、Delp  and  O,PMit
chell、:”工mage  Oomampress
ion  Using  Block  Trunca
tionOoding”、工EKE  ’TranS、
、00M−27.9 t pI)、1335−1342
 (Sep、1979))シている通り原画像を大きさ
がnXnのブロックに分割し、各ブロック内で画素階調
の平均値Xと標準偏差σを求める。この平均値をしきい
値としてブロック内の各画素値を二値化し、ビットプレ
ーンを作る。圧縮側では、各ブロック毎に、平均値、標
準偏差、ビットプレーンを圧縮データとして確保する。
[Prior art] A conventional image data compression/decompression method was proposed by Df31p et al. (Reference: E, J, Delp and O, PMit
cell, :”engineering Oomampress
ion Using Block Trunca
tionOoding", 工EKE'TranS,
, 00M-27.9 t pI), 1335-1342
(Sep, 1979)) The original image is divided into blocks of size nXn, and the average value X and standard deviation σ of pixel gradation within each block are determined. Using this average value as a threshold, each pixel value within the block is binarized to create a bit plane. On the compression side, the average value, standard deviation, and bit plane are secured as compressed data for each block.

伸張側では、二つの式に従い平均値、標準偏差、ビット
プレーンより各画素の階調を求めていた。
On the decompression side, the gradation of each pixel was determined from the average value, standard deviation, and bit plane according to two formulas.

[発明が解決しようとする課題] しかし、上述の圧縮伸張方法では、ブロック毎に平均値
、標準偏差など求めなければならなく、ブロックを細か
くすればするほど計算量が増大し計算時間を要する。ま
たブロックの大きさの選び方があまり大きいと圧縮前の
画像と伸張した後の画像に大きな違いが生じる。また、
圧縮比もそれ程大きくな(大きくてもせいぜい数十分の
二程度である。また、圧縮後のデータがブロックの大き
さ、平均値、標準偏差などデータの性質が異なったり、
画像一画面のブロックの大きさにより全体のデータの大
きさが異なり、圧縮データを通信による転送する場合の
通信プロトコル(通信データに関する約束)が複雑にな
ったり圧縮データを記憶する場合の記録フォーマットが
複雑になるとい5問題点を有していた。
[Problems to be Solved by the Invention] However, in the above compression/expansion method, the average value, standard deviation, etc. must be determined for each block, and as the blocks are made smaller, the amount of calculation increases and calculation time is required. Furthermore, if the block size is chosen too large, there will be a big difference between the image before compression and the image after expansion. Also,
The compression ratio is not that large (at most, it is only a few tenths of a second).Also, the data after compression may have different characteristics such as block size, average value, standard deviation, etc.
The size of the entire data varies depending on the block size of one image screen, and the communication protocol (commitment regarding communication data) when transmitting compressed data via communication becomes complicated, and the recording format when storing compressed data becomes difficult. When it comes to complexity, there are five problems.

そこで、本発明は、このような問題点を解決するもので
、その目的とするところは、圧縮比率がおおきく、また
圧縮後の画像データを伸張しても画質がほとんど変わら
ない画像データの圧縮伸張方法を提供するところにある
Therefore, the present invention is intended to solve these problems, and its purpose is to compress and expand image data with a high compression ratio and with almost no change in image quality even if the compressed image data is expanded. It's about providing a method.

[課題を解決するための手段] 本発明の画像データ圧縮伸張方法は、二次元画像上にほ
ぼ直行する座標軸を設け、画像上の画素を画像の端から
端にわたる任意座標軸方向の画素列とし、この画素列を
画像の他の座標軸方向の端から端まで設け、任意の画素
列の先頭端画素あるいは終端画素に、前述の画素列に隣
接する画素列の先頭端画素あ、るいは終端画素を続け、
画像の一つながりの階調を表すデータ列を作成する。こ
れにより階調の値を表すデータ列を高次方程式により表
される曲線上の値にほぼ一致するように高次方程式の係
数を定める圧縮と、前述曲線を表す高次方程式の係数と
高次方程式より階調を表す値を算出することによる伸張
とを行うことを特徴とする。
[Means for Solving the Problems] The image data compression/expansion method of the present invention provides a two-dimensional image with a nearly orthogonal coordinate axis, and sets pixels on the image as pixel rows in arbitrary coordinate axis directions extending from one end of the image to the other, This pixel row is provided from end to end in the direction of the other coordinate axes of the image, and the start end pixel or end pixel of the pixel row adjacent to the aforementioned pixel row is placed at the start end pixel or the end pixel of any pixel row. continue,
Create a data string that represents the gradations of a series of images. This allows the data string representing the gradation value to be compressed to determine the coefficients of the higher-order equation so that it almost matches the value on the curve represented by the higher-order equation, and the coefficients of the higher-order equation representing the aforementioned curve and the higher-order It is characterized by performing expansion by calculating values representing gradations from equations.

[作用] 二次元画像を構成している画素の位置の値と画素の階調
の値とは、各々の画素で一対一に対応している。
[Operation] The value of the position of a pixel constituting a two-dimensional image and the value of the gradation of the pixel have a one-to-one correspondence for each pixel.

本発明によれば、二次元画像において、画像上の画素を
画像上の縦方向あるいは横方向に沿った画素の列として
考えることが出来、画像はこの列を幾つも並べることに
より構成されている。
According to the present invention, in a two-dimensional image, pixels on the image can be considered as rows of pixels along the vertical or horizontal direction of the image, and the image is constructed by arranging many of these rows. .

ここで、二つの隣接する列の一方の端たとえば列の終端
画素と他の列の終端画素とを、隣りあうデータと見なし
列をつなげて長い列を作る。これを全ての列に同様に行
うことにより、画像の画素データは一つの長い列にする
ことが出来る。この画素データ列は、各画素の階調を表
す値の列からなり、この値の近傍を通過する高次方程式
で表され・る曲線を求めることが出来る。この列上の階
調を表す値と曲線上の点とがほぼ一致するように曲線を
表す高次方程式の係数を決める。この事により、列上の
画素の諧調を表す値群は曲線上の係数として表すことが
出来る。つまり画像データは、曲線の係数として置き換
えられ、画像上の各画素の階調を表す値の多くのデータ
が、わずかな数の係数として置き換えることが出来る。
Here, one end pixel of two adjacent columns, for example, the end pixel of one column and the end pixel of another column, are regarded as adjacent data, and the columns are connected to form a long column. By doing this for all columns in the same way, the pixel data of the image can be made into one long column. This pixel data string consists of a string of values representing the gradation of each pixel, and it is possible to obtain a curve expressed by a higher-order equation that passes through the vicinity of this value. The coefficients of the higher-order equation representing the curve are determined so that the value representing the gradation on this column almost matches the point on the curve. With this, a group of values representing the gradation of pixels on a column can be expressed as coefficients on a curve. In other words, image data can be replaced as coefficients of a curve, and a large amount of data representing the gradation of each pixel on an image can be replaced as a small number of coefficients.

これにより、画像を表すデータの個数を減らせ画像を圧
縮できる。
This allows the number of data representing an image to be reduced and the image to be compressed.

また、係数で置き換えた圧縮データを、上記と同じ高次
方程式に代入し、画素の階調を表す値を復元することに
より、圧縮前の画像データを伸張することが出来る。
Further, by substituting the compressed data replaced by the coefficients into the same high-order equation as above and restoring the value representing the gradation of the pixel, the image data before compression can be expanded.

[実施例] 第1図は、本発明の実施例における画像表示1図である
。長方形の画面に風景画が表示されているこの画像にお
いて、11を画像原点とし、図に示すような方向にほぼ
直交するY軸、Y軸を定める。
[Example] FIG. 1 is a diagram of an image display in an example of the present invention. In this image in which a landscape painting is displayed on a rectangular screen, 11 is set as the image origin, and the Y-axis and Y-axis are determined to be approximately orthogonal to the direction shown in the figure.

この画像は、多くの画素の集まりにより構成されている
。画素は、X、Y軸方向にそれぞれ数百個から数十個か
らなり、これがマ) IJソックス状並んでおり、また
各々の画素が階調を持つことによって、画像が作られる
This image is composed of a collection of many pixels. Pixels are composed of several hundred to several tens of pixels in each of the X and Y axis directions, and are arranged in a sock-like manner, and each pixel has a gradation, thereby creating an image.

ここで、X軸方向の画素を一つの列として考える。ある
列と隣接する列をそれぞれ画素列12画素列16とする
。第2図に、画素列12と画素列13の終端近くの拡大
図を示す。21.22は画素である。画素列12は、矢
印23の方向に並んだ画素列により構成される。これに
より、画素列は各画素に対応する階調を表す値の列によ
り構成されるデータ列と見なせる。ここで、画素列12
の端の画素240階調を表す値と画素列13の端の画素
250階調を表す値を画素240次の値と見なし、画素
列12と画素列13を一つながりの階調を表す値のデー
タ列として扱う。
Here, pixels in the X-axis direction are considered as one column. A certain column and an adjacent column are respectively referred to as a pixel column 12 and a pixel column 16. FIG. 2 shows an enlarged view near the ends of the pixel rows 12 and 13. 21 and 22 are pixels. The pixel row 12 is composed of pixel rows arranged in the direction of the arrow 23. Thereby, the pixel string can be regarded as a data string composed of a string of values representing the gradation corresponding to each pixel. Here, pixel column 12
The value representing the 240th gradation of the pixel at the end of pixel row 13 and the value representing the 250th gradation of the pixel at the end of pixel column 13 are regarded as the pixel 240th-order value, and the value representing the continuous gradation of pixel row 12 and pixel column 13 is Treated as a data column.

この様に、各画素列の端では、隣接する画素列の先頭画
素同士あ°るいは終端画素同士をつなぎ、画像全体とし
て一つながりのデータ列を作る。このデータ列の例を第
5図31に示す。データの順番は第3図の矢印32に示
すとおりに交互になっている。以上により、一つのデー
タ列51におい(画素の位置とこの画素に対応する階調
を表す値との組を構成できる。
In this way, at the end of each pixel column, the first pixels or the last pixels of adjacent pixel columns are connected to each other, creating a continuous data string for the entire image. An example of this data string is shown in FIG. 531. The order of the data is alternated as shown by arrows 32 in FIG. As described above, one data string 51 can constitute a set of the position of a pixel and a value representing the gradation corresponding to this pixel.

横軸に画素の位置、縦軸に画素の階調を表す値をプロッ
トしたグラフを第4図に示す。ここで、第2図に示した
画素列12の終端画素24と隣接する画素列13の終端
画素25との位置間隔は、画素列12020画素と隣合
う画素22と同じとする。これにより、全画素の間隔は
画素列51に於いては同じとなる。また、画素列12の
終点画素の次の画素として画素列13の終点画素とする
のは、画像に於いては近くの画素の階調は遠(の画素の
階調より変化が少なく連続的であるので9階調を表す値
のデータとしての不連続性が少ない。
FIG. 4 shows a graph in which pixel positions are plotted on the horizontal axis and values representing pixel gradations are plotted on the vertical axis. Here, it is assumed that the positional interval between the end pixel 24 of the pixel row 12 shown in FIG. 2 and the end pixel 25 of the adjacent pixel row 13 is the same as that of the pixel row 12020 and the adjacent pixel 22. As a result, the intervals between all pixels in the pixel column 51 become the same. Also, the reason why the end pixel of pixel row 13 is set as the next pixel after the end pixel of pixel row 12 is because the gradation of nearby pixels in the image has less change and is continuous than the gradation of pixels further away. Therefore, there is little discontinuity in the data of values representing nine gradations.

ここで、第4図に示す画素の位置と、階」5を表す値と
の組に注目する。画素の位置の値をX1階調の値をCと
する。XとCの組が画像を構成している画素数だけ求め
、られる。このXとCの組を高次方程式(3次方程式) c = Ax3+Bx2+Dx+E にて近似すべく、最小自乗法により、6次方程式の係数
A、B、D、Eを求める。第5図に、6次曲線51と座
標値に対応する階調値の点を示す。
Here, attention is paid to the combination of the pixel position shown in FIG. 4 and the value representing the floor "5". Let the value of the pixel position be X1 and the value of gradation be C. As many pairs of X and C as the number of pixels forming the image are obtained. In order to approximate this set of X and C by a higher-order equation (cubic equation) c = Ax3 + Bx2 + Dx + E, coefficients A, B, D, and E of the sixth-order equation are determined by the method of least squares. FIG. 5 shows the hexagonal curve 51 and points of gradation values corresponding to the coordinate values.

画素列31上の画素の座標値と階調データは、3次方程
式とその係数A、B、O,Dという4つの値とにより表
す事が出来る。これにより、画像の階調を表す値は、A
、B、O,Dという4つの係数により表すことが出来る
The coordinate values and gradation data of pixels on the pixel row 31 can be expressed by a cubic equation and its four coefficients A, B, O, and D. As a result, the value representing the gradation of the image is A
, B, O, and D.

これにより、画像データは、次の式により計算される値
が圧縮比Nになるように圧縮される。
Thereby, the image data is compressed so that the value calculated by the following equation becomes the compression ratio N.

N = 4 / (画像全体の画素数)4は3次方程式
の係数の個数。一般に、画像全体の画素数は、数万個か
ら数百万個ある。このため圧縮比Nは万分の−から百万
分の−となる。
N = 4 / (number of pixels in the entire image) 4 is the number of coefficients of the cubic equation. Generally, the number of pixels in the entire image ranges from tens of thousands to several million. Therefore, the compression ratio N becomes - from -10,000 to -1,000,000.

また、画像を復元するためには、係数に、B。Also, in order to restore the image, B is added to the coefficient.

D、Eと3次元方程式0=A°x3−)Bx2+Dx十
Eに画素の位置座標値X1  t X2  + X3X
Qを代入しCI  lC2tcs    ・OHを求め
、画像データとして画素位置X1には階調C0画素位置
x2には階調02等と対応させて、画像を復元させる。
D, E and the three-dimensional equation 0=A°x3-)Bx2+Dx10E, the pixel position coordinate value X1 t
Q is substituted to obtain CI lC2tcs ·OH, and as image data, pixel position X1 is associated with gradation level C0, pixel position x2 is associated with gradation level 02, etc., and the image is restored.

これにより、圧縮された画像が、伸張され原画像に戻る
As a result, the compressed image is decompressed and returned to the original image.

[発明の効果] 以上述べたように本発明によれば、画像データを例えば
6次曲線という高次方程式の係数に置き換えるという簡
単な操作により画像を圧縮できるこの操作の圧縮率は万
分の−から百万分の−と非常に大きく、また画像の劣化
もほとんどなく優れた圧縮方法を提供できた。
[Effects of the Invention] As described above, according to the present invention, an image can be compressed by a simple operation of replacing image data with coefficients of a higher order equation such as a 6th order curve.The compression ratio of this operation is from -10,000 to It was extremely large, measuring 1/1,000,000 parts, and was able to provide an excellent compression method with almost no image deterioration.

また、伸張方法も圧縮方法の逆を行えばよ(、簡単に行
える。
Also, the decompression method can be easily done by performing the opposite of the compression method.

本発明による画仰圧縮、伸張方法を使えば、画像データ
の通信における通信量が大幅に少なくできデータの転送
スピードの向上が出来、また同一回線のデータ転送量が
増やせ、今後の高度情報社会に多いに寄与できる。また
、画像の記憶媒体への記憶量も減らせ現在と同じ容量の
記憶媒体に多くの画像データを記憶でき、情報の記憶容
量の向上に寄与できる。
By using the image compression and decompression method according to the present invention, it is possible to significantly reduce the amount of communication in image data communication, improve the data transfer speed, and increase the amount of data transferred on the same line, making it possible to support the future advanced information society. You can contribute a lot. Furthermore, the amount of image data stored in the storage medium can be reduced, allowing a large amount of image data to be stored in a storage medium with the same capacity as the current one, contributing to an improvement in the storage capacity of information.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例における画像表示図第2図は
、画素列の拡大図 第3図は、画素列図 第4図は、画素の位置と、各画素の階調の関係を示す図 第5図は、5次曲線と、画素の位置と、各画素の階調の
関係を示す図 11・・・・・・・・・画像原点 12.13・・・・・・画素列 21.22,24.25・・・・・・画 素23.32
・・・・・・矢 印 61・・・・・・・・・データ列 51・・・・・・・・・6次曲線 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上柳雅誉(他1名) 第3図 第4−図
FIG. 1 is an image display diagram in an embodiment of the present invention. FIG. 2 is an enlarged view of a pixel row. FIG. 3 is a pixel row diagram. Figure 5 shows the relationship between the quintic curve, the pixel position, and the gradation of each pixel. 21.22, 24.25...Pixel 23.32
・・・・・・Arrow 61・・・・・・・・・Data string 51・・・・・・・・・Sixth order curve or above Applicant Seiko Epson Corporation agent Patent attorney Masayoshi Kamiyanagi (1 other person) ) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  画素の位置情報と前記位置情報に対応する階調情報を
持つ二次元静止画像データ圧縮伸張装置において、二次
元画像上に略直行する座標軸を設け、画像上の画素を画
像の端から端にわたる任意座標軸方向の画素列とし、前
記画素列を画像の他の座標軸方向の端から端まで設ける
手段と、任意の画素列の先頭端画素あるいは終端画素に
、前記画素列に隣接する画素列の先頭端画素あるいは終
端画素を続け、画像の一つながりの階調を表すデータ列
を作成する手段と、前記階調の値を表すデータ列を高次
方程式により表される曲線上の値に略一致するように前
記高次方程式の係数を定める手段による圧縮と、前記曲
線を表す高次方程式の係数と高次方程式より階調を表す
値を算出する手段による伸張とを特徴とする画像データ
圧縮伸張装置。
In a two-dimensional still image data compression/expansion device that has pixel position information and gradation information corresponding to the position information, a coordinate axis that is approximately perpendicular to the two-dimensional image is provided, and pixels on the image can be arbitrarily moved from one end of the image to the other. means for providing a pixel column in the coordinate axis direction, and providing the pixel column from end to end in the other coordinate axis direction of the image; A means for creating a data string representing a series of gradations of an image by continuing pixels or terminal pixels, and a means for creating a data string representing the gradation values so as to substantially match values on a curve expressed by a higher-order equation. An image data compression/expansion apparatus comprising: compression by means of determining coefficients of the higher-order equation; and expansion by means of means for calculating a value representing a gradation from the coefficients of the higher-order equation representing the curve and the higher-order equation.
JP29507088A 1988-11-22 1988-11-22 Picture data compression and expansion device Pending JPH02141176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29507088A JPH02141176A (en) 1988-11-22 1988-11-22 Picture data compression and expansion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29507088A JPH02141176A (en) 1988-11-22 1988-11-22 Picture data compression and expansion device

Publications (1)

Publication Number Publication Date
JPH02141176A true JPH02141176A (en) 1990-05-30

Family

ID=17815928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29507088A Pending JPH02141176A (en) 1988-11-22 1988-11-22 Picture data compression and expansion device

Country Status (1)

Country Link
JP (1) JPH02141176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035728A1 (en) * 1997-12-05 2000-09-13 Force Technology Corp. Continuous gradation compression device and method, continuous gradation expansion device and method, data processor and device and memory medium in which programs for executing the programs
US8098247B2 (en) 2009-09-24 2012-01-17 Crucs Holdings, Llc Systems and methods for geometric data compression and encryption

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035728A1 (en) * 1997-12-05 2000-09-13 Force Technology Corp. Continuous gradation compression device and method, continuous gradation expansion device and method, data processor and device and memory medium in which programs for executing the programs
EP1035728B1 (en) * 1997-12-05 2004-09-08 Force Technology Corp. Continuous gradation compression and expansion of image or acoustics data based on polynomial approximation
US6795581B1 (en) 1997-12-05 2004-09-21 Force Technology Corp. Continuous gradation compression apparatus and method, continuous gradation expansion apparatus and method, data processing apparatus and electron device, and memory medium storing programs for executing said methods
US8098247B2 (en) 2009-09-24 2012-01-17 Crucs Holdings, Llc Systems and methods for geometric data compression and encryption

Similar Documents

Publication Publication Date Title
CN111369681B (en) Three-dimensional model reconstruction method, device, equipment and storage medium
US8649427B2 (en) Image processor, image generator and computer program
CN105100814B (en) Image coding and decoding method and device
CN105933708B (en) A kind of method and apparatus of data compression and decompression
CN106488233A (en) A kind of panoramic video rhombus method of sampling and device
CN106709872B (en) A kind of rapid image ultra-resolution ratio reconstructing method
CN107101641A (en) The method that adaptively tracing point of drawing scale is shown
US20220004840A1 (en) Convolutional neural network-based data processing method and device
CN110708543A (en) Image compression apparatus combining block matching and string matching
KR100573527B1 (en) How to compress and restore graphic images
CN112118449B (en) Method and device for compressing and decompressing image
JPH02141176A (en) Picture data compression and expansion device
CN106954065A (en) Recursive prediction method for compressing image based on gradient orientation histogram
CN115272667B (en) Farmland image segmentation model training method and device, electronic equipment and medium
US7386178B2 (en) Method and apparatus for transforming the dimensions of an image
CN111954000B (en) Lossless compression method for high-speed toll collection picture set
JPH02137476A (en) Image data compressing/expanding method
JP2005045797A (en) Method and apparatus for reducing bandwidth required to transmit image data
JPH1141625A (en) Color moving image data compression method
CN107146269B (en) Image filling method and system
JP2001128182A (en) Image encoding method and computer-readable recording medium storing image encoding program
CN105187794A (en) Video monitoring system and massive-video scheduling method
JP4268706B2 (en) Image creation method
CN115995009A (en) Two-frame image dense matching method based on block area transmission model
CN115511909A (en) Image segmentation method and device