JPH0214093B2 - - Google Patents
Info
- Publication number
- JPH0214093B2 JPH0214093B2 JP60071537A JP7153785A JPH0214093B2 JP H0214093 B2 JPH0214093 B2 JP H0214093B2 JP 60071537 A JP60071537 A JP 60071537A JP 7153785 A JP7153785 A JP 7153785A JP H0214093 B2 JPH0214093 B2 JP H0214093B2
- Authority
- JP
- Japan
- Prior art keywords
- dispersion
- light
- compound
- container
- sample cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000006185 dispersion Substances 0.000 claims description 68
- 150000001875 compounds Chemical class 0.000 claims description 20
- 239000002612 dispersion medium Substances 0.000 claims description 12
- 230000004907 flux Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 25
- 239000000049 pigment Substances 0.000 description 19
- 239000000203 mixture Substances 0.000 description 12
- 239000003973 paint Substances 0.000 description 7
- 238000004062 sedimentation Methods 0.000 description 6
- 239000005357 flat glass Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/213—Measuring of the properties of the mixtures, e.g. temperature, density or colour
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Accessories For Mixers (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
この発明は、ビヒクル等の分散媒中に、顔料粒
子等の分散質を分散させる分散装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a dispersion device for dispersing dispersoids such as pigment particles in a dispersion medium such as a vehicle.
液体である分散媒中に、この分散媒と互いに溶
解し合わない材質からなる分散質を混合して分散
状態とする分散工程が、種々の産業において活用
されている。塗料工業においても、顔料粒子等の
分散質を、分散媒である樹脂溶液等のビヒクル中
に分散させ懸濁液とする工程が重要となつてい
る。
A dispersion process in which a dispersoid made of a material that does not dissolve in each other with a dispersion medium is mixed into a liquid dispersion medium to form a dispersed state is utilized in various industries. In the paint industry as well, the process of dispersing dispersoids such as pigment particles into a suspension by dispersing them in a vehicle such as a resin solution serving as a dispersion medium has become important.
塗料製造に使用される分散装置の一例を、第3
図に示す。 An example of the dispersion equipment used for paint production is shown in Part 3.
As shown in the figure.
分散媒2であるビヒクルと分散質3である顔料
粒子は、予備混合機1内に入れられて混合され、
予備混合状態となる。予備混合が完了したビヒク
ルと顔料粒子の配合物4は、ガラスビース等を媒
体とする媒体型分散機5の容器6中に送られ、容
器6中に設けられた分散手段7によつて分散が開
始される。分散媒2中に分散質3が均一に分散さ
れ、配合物4が懸濁状態になつたことが確認され
ると、分散が終了される。懸濁液となつた配合物
は、ポンプ8により容器5から次の工程へ送り出
され、種々の工程を経て、塗料化される。 A vehicle, which is a dispersion medium 2, and pigment particles, which are a dispersoid 3, are placed in a premixer 1 and mixed,
It will be in a pre-mixed state. The mixture 4 of vehicle and pigment particles that has been premixed is sent into a container 6 of a media-type dispersion machine 5 using glass beads or the like as a medium, and is dispersed by a dispersion means 7 provided in the container 6. Begins. When it is confirmed that the dispersoid 3 is uniformly dispersed in the dispersion medium 2 and the compound 4 is in a suspended state, the dispersion is terminated. The mixture that has become a suspension is sent out from the container 5 to the next step by a pump 8, and is made into a paint through various steps.
塗料製造においては、分散工程での顔料粒子の
分散状態が、製造される塗料の品質を大きく左右
するため、この工程における顔料粒子の分散状態
をオンラインで即時的に測定し、分散操作にフイ
ードバツクし、顔料粒子の分散状態を均質に管理
することが重要である。 In paint manufacturing, the dispersion state of pigment particles in the dispersion process greatly influences the quality of the produced paint, so the dispersion state of pigment particles in this process can be measured instantly online to provide feedback to the dispersion operation. It is important to uniformly control the dispersion state of pigment particles.
従来、顔料粒子の分散状態を管理するために、
次の2法が主におこなわれてきた。すなわち、分
散途中の配合物を適時とり出して塗膜を作成し、
この塗膜の性状物性を観察、測定する方法と、と
り出した配合物の粒度を、つぶゲージや顕微鏡に
より、直接観察する方法である。ところが、後者
の方法では、その観察が目視によるものであるた
め充分な再現性が得られず、その測定には塾練を
要する。塗膜を作成する方法においては、容器中
からとり出した配合物を塗膜にするために多くの
工程と時間を必要とする。 Conventionally, in order to control the dispersion state of pigment particles,
The following two methods have been mainly used. In other words, the mixture that is being dispersed is taken out at the appropriate time to create a coating film.
There is a method of observing and measuring the physical properties of this coating film, and a method of directly observing the particle size of the taken out compound using a crush gauge or a microscope. However, in the latter method, sufficient reproducibility cannot be obtained because the observation is done visually, and the measurement requires training. In the method of creating a coating film, many steps and time are required to turn the compound taken out of the container into a coating film.
そこで、近時、この分散状態を数値化し、客観
的に評価するための種々の方法が開発されてい
る。 Therefore, recently, various methods have been developed to quantify and objectively evaluate this dispersion state.
分散状態を数値化する方法としては、例えば、
分散質粒子の分散媒中における沈降作用を応用す
る方法、分散質粒子による電磁波の散乱を測定す
る方法等がある。 For example, as a method to quantify the dispersion state,
There are methods that apply the sedimentation effect of dispersoid particles in a dispersion medium, methods that measure the scattering of electromagnetic waves by dispersoid particles, etc.
沈降作用を応用する方法は、分散質の沈降速度
とその粒度との関係から、分散の状態を算出する
ものであり、沈降の時間をもつて分散状態をあら
わすことができる。電磁波の散乱を利用する方法
は、例えば、光等の電磁波が分散粒子に照射され
たときに、電磁波がこの粒子の大きさに応じた散
乱の状態を示すことを利用したもので、散乱した
電磁波の強度をもつて分散状態をあらわすことが
できる。 In the method of applying sedimentation, the state of dispersion is calculated from the relationship between the sedimentation rate of the dispersoid and its particle size, and the state of dispersion can be expressed by the settling time. A method using scattering of electromagnetic waves utilizes the fact that when electromagnetic waves such as light are irradiated onto dispersed particles, the electromagnetic waves show a scattering state depending on the size of the particles, and the scattered electromagnetic waves The dispersion state can be expressed by the intensity of .
ところが、以上の方法においても、沈降作用を
利用する方法では、顔料粒子が沈降運動をすると
きの顔料粒子同士の相互作用をさけるためにかな
りの希釈が必要であり、さらにこの希釈により顔
料粒子の分散状態が変化してしまう。最近の高い
外観品質を持つ塗料の製造においては、非常に高
度な分散状態が要求され、顔料粒子の沈降を促進
するために遠心力を利用することが必須である。
遠心力を利用した場合でも測定に時間がかかり、
製造工程においてインラインで測定し、工程管理
に利用することは不可能である。また、電磁波の
散乱を利用する方法のうち、光散乱強度分布によ
り粒度を測定する方法は、被測定体粒子が単一ま
たは粒子径が同一でかつ粒子による多重散乱が発
生しない程度に希薄な試料でなければ適用できな
いため、使用できる分散質濃度に限界があり、か
なりの希釈が必要になるので、この希釈により顔
料粒子の分散状態が変化するという問題があり、
やはり製造工程においてインラインで測定し工程
管理に用いることは難しい。 However, even in the above methods, in the method using sedimentation, a considerable amount of dilution is required to avoid interactions between pigment particles when they make a sedimentation motion, and furthermore, this dilution can cause the pigment particles to deteriorate. The dispersion state changes. In recent years, the production of paints with high appearance quality requires a very high degree of dispersion, and it is essential to use centrifugal force to promote sedimentation of pigment particles.
Even when centrifugal force is used, measurement takes time;
It is impossible to measure in-line during the manufacturing process and use it for process control. In addition, among methods that utilize electromagnetic wave scattering, methods that measure particle size using light scattering intensity distribution are used to measure particle size using a sample in which the target particle is single or has the same particle diameter and is dilute enough to prevent multiple scattering by the particles. There is a limit to the dispersoid concentration that can be used, and a considerable amount of dilution is required, which poses the problem that this dilution changes the dispersion state of the pigment particles.
After all, it is difficult to measure in-line during the manufacturing process and use it for process control.
以上のように、従来の分散状態の測定方法は、
いずれも、操作が煩雑で実用性に乏しいため、塗
料の分散工程においては、過去の経験やデータに
もとづいて分散時間を決定しているのが現状であ
り、品質管理や塗料製造の自動化をはかる上でこ
の工程が障害となり、問題となつている。 As mentioned above, the conventional method of measuring the dispersion state is
All of these methods are complicated to operate and have little practicality, so in the paint dispersion process, the dispersion time is currently determined based on past experience and data. This process has become an obstacle and a problem.
この発明は、分散工程中においてインライン
で、即時的かつ簡単に分散状態の測定ができ、し
かも、その結果を分散操作にフイードバツクでき
るため工程を容易に自動化できる分散装置を提供
することを目的としている。
The object of the present invention is to provide a dispersion device that can instantly and easily measure the dispersion state in-line during the dispersion process, and can feed back the results to the dispersion operation, thereby easily automating the process. .
以上の目的を達成するため、この発明は、分散
質および分散媒を含む配合物が収容される容器
と、この容器内の配合物を分散状態にする分散手
段とを備えた分散装置において、前記配合物を、
一旦、容器外に導いた後、再び容器内に戻すため
の循環路がこの容器に設けられており、この循環
路中に、配合物を薄層にする試料セルと、光を発
する光源と、光源からの光を平行光束にして試料
セルに照射する光束調整手段と、試料セルから出
る散乱光の散乱光分布を検出する検出手段と、散
乱光分布により分散状態を代表する特性値を計算
する演算手段とからなる分散状態測定手段を備え
ているとともに同測定手段の測定結果に応じて前
記分散手段の制御が行なわれるようになつている
ことを特徴とする分散装置をその要旨としてい
る。
In order to achieve the above object, the present invention provides a dispersion apparatus comprising a container in which a compound containing a dispersoid and a dispersion medium is housed, and a dispersion means for dispersing the compound in the container. The compound,
The container is provided with a circulation path for once guiding the compound out of the container and returning it into the container, and in this circulation path, a sample cell that forms a thin layer of the compound, a light source that emits light, A luminous flux adjustment means that transforms the light from the light source into a parallel luminous flux and irradiates the sample cell, a detection means that detects the scattered light distribution of the scattered light emitted from the sample cell, and a characteristic value representative of the dispersion state from the scattered light distribution is calculated. The gist of the present invention is a dispersing device characterized in that it is equipped with a dispersion state measuring means consisting of arithmetic means, and the dispersing means is controlled in accordance with the measurement results of the measuring means.
以下にこの発明を、その一実施例をあらわして
いる第1図および第2図にもとづき説明する。 The present invention will be explained below based on FIGS. 1 and 2 showing one embodiment thereof.
予備混合機1内で混合され予備混合状態になつ
たビヒクル等の分散媒2と顔料粒子等の分散質3
との配合物4は、ガラスビーズ等を媒体とする媒
体型分散機5の容器6中に送られ、容器6中に設
けられた分散手段7によつて分散が開始される。 A dispersion medium 2 such as a vehicle and a dispersoid 3 such as pigment particles are mixed in a premixer 1 and brought into a premixed state.
The mixture 4 is sent into a container 6 of a medium-type dispersion machine 5 using glass beads or the like as a medium, and dispersion is started by a dispersion means 7 provided in the container 6.
この発明の分散装置では、分散媒2と分散質3
とを以上のようにあらかじめ混合せず、直接に容
器6中に入れて分散操作をおこなつても、この発
明の目的を達成することはできるが、以上に示し
た実施例のように、分散媒2と分散質3とをあら
かじめ予備混合状態としてから容器6中に入れて
分散操作をおこなつた方が、分散に要する時間は
短くなり、この発明の効果をより向上させること
ができる。この発明の分散装置に使用できる分散
機の構成は以上のような媒体型の分散機に限ら
ず、例えば、各種のバツチ式のミルや高速グライ
ンド分散機であつてもよい。 In the dispersion device of this invention, a dispersion medium 2 and a dispersoid 3
Although it is possible to achieve the object of the present invention even if the components are directly placed in the container 6 without being mixed in advance as described above and the dispersion operation is performed, If the medium 2 and the dispersoid 3 are premixed in advance and then placed in the container 6 and the dispersion operation is performed, the time required for dispersion is shorter and the effects of the present invention can be further improved. The configuration of the dispersing machine that can be used in the dispersing apparatus of the present invention is not limited to the above-mentioned media-type dispersing machine, but may also be, for example, various batch-type mills or high-speed grind dispersing machines.
分散手段7によつて分散操作が続けられている
配合物4は、ポンプ8によつてその一部が容器6
外に取り出され、バルブ9を通つて循環路10内
に送り込まれる。分散機5外部に設けられた分散
状態測定手段11の試料セル12は、バルブ1
3,14,15によつて循環路10と接続されて
おり、これらのバルブを開き、ポンプ16を作動
させることによつて、循環路10内の配合物4は
試料セル12内に送り込まれる。キセノンアーク
ランプ、タングステンランプ、レーザー等からな
る光源17から出た光は、レンズ、反射鏡等によ
つて光フアイバ18の入射部に集光され、この光
フアイバ8内を通つて試料セル12近傍に導か
れ、レンズ等により構成された光束調整手段19
によつて平行光線20とされる。試料セル12の
両側に設けられた平行平板ガラス12aおよび1
2bによつて薄層となつている配合物4に、平行
光線20が、平行平板ガラス12aを通して照射
される。 The mixture 4, which is being dispersed by the dispersing means 7, is partially transferred to the container 6 by the pump 8.
It is taken out and fed into the circulation path 10 through the valve 9. The sample cell 12 of the dispersion state measuring means 11 provided outside the disperser 5 is connected to the valve 1.
By opening these valves and activating the pump 16, the formulation 4 in the circulation path 10 is fed into the sample cell 12. Light emitted from a light source 17 consisting of a xenon arc lamp, a tungsten lamp, a laser, etc. is focused onto the incident part of the optical fiber 18 by a lens, a reflecting mirror, etc., and passes through the optical fiber 8 to the vicinity of the sample cell 12. A luminous flux adjusting means 19 configured by a lens etc.
The rays are made into parallel rays 20 by . Parallel flat glasses 12a and 1 provided on both sides of the sample cell 12
A parallel beam of light 20 is applied to the formulation 4, which is formed into a thin layer by 2b, through a parallel flat glass 12a.
この発明の分散装置では、光源17が光束調整
手段19に直接に光を照射する構造としても良い
が、以上の実施例のように、光源17を分散室外
に設置し、光フアイバ18等の手段によつて光を
光束調整手段19まで導くようにした方が、光源
17が配合物4でよごされることもなく、可燃性
の配合物4と、発火源となりうる光源17とが接
触する機会も減少するため、より安全性が高い。 In the dispersion device of the present invention, the light source 17 may have a structure in which the light beam adjustment means 19 is directly irradiated with light, but as in the above embodiment, the light source 17 is installed outside the dispersion chamber, and a means such as the optical fiber 18 is used. It is better to guide the light to the luminous flux adjustment means 19 by the light source 17, so that the light source 17 is not contaminated with the compound 4, and there is no chance that the flammable compound 4 comes into contact with the light source 17, which can be a source of ignition. It is safer because it decreases.
試料セル12中の試料薄層に照射された平行光
線線20は、試料薄層内の顔料粒子3によつてそ
の一部が散乱され、平行透過光21および散乱光
22となつて平行平板ガラス12bを通り、試料
セル12外に取り出される。 A part of the parallel light ray 20 irradiated onto the sample thin layer in the sample cell 12 is scattered by the pigment particles 3 in the sample thin layer, and becomes parallel transmitted light 21 and scattered light 22, which pass through the parallel flat glass. 12b and is taken out of the sample cell 12.
配合物4中の顔料粒子濃度が低すぎる場合に
は、平行平板ガラス12a、光束調整手段19お
よび光フアイバ18先端を内蔵する筒体23を第
2図において、下方向に移動させて試料セル12
の薄層の厚みを増加させ、散乱光22の強度が受
光素子の分散能以上となるようにする。配合物4
中の顔料粒子濃度が高いために多重散乱が発生し
て平行透過光21が減少し、散乱光22が増大す
る場合や、顔料粒子の光吸収能が高いために全透
過光量が減少する場合には、前記筒体23を第2
図において、上方向に移動させて試料セル12の
薄層の厚みを減少させ、顔料粒子量を減少させて
平行透過光21および散乱光22の強度が測定可
能範囲内になるようにする。試料セル12の薄層
の厚みを減少させても、平行透過光21や散乱光
22の強度が測定可能範囲内に入らない場合に
は、循環路10に設けられた希釈剤の供給手段2
4よりポンプ25を介して循環路10内に希釈剤
を供給し、スタテイツクミキサーなどの混合手段
26により配合物と希釈剤を混合して顔料濃度を
減少させ、測定をおこなう。 If the concentration of pigment particles in the compound 4 is too low, the cylinder 23 containing the parallel plate glass 12a, the luminous flux adjustment means 19, and the tip of the optical fiber 18 is moved downward in FIG.
The thickness of the thin layer is increased so that the intensity of the scattered light 22 exceeds the dispersion ability of the light receiving element. Formulation 4
When the concentration of pigment particles inside is high, multiple scattering occurs and the parallel transmitted light 21 decreases and the scattered light 22 increases, or when the total amount of transmitted light decreases because the pigment particles have a high light absorption ability. The cylindrical body 23 is
In the figure, the sample cell 12 is moved upward to reduce the thickness of the thin layer and reduce the amount of pigment particles so that the intensities of parallel transmitted light 21 and scattered light 22 fall within a measurable range. Even if the thickness of the thin layer of the sample cell 12 is reduced, if the intensity of the parallel transmitted light 21 or the scattered light 22 does not fall within the measurable range, the diluent supply means 2 provided in the circulation path 10
4, the diluent is supplied into the circulation path 10 via the pump 25, and the mixture and the diluent are mixed by a mixing means 26 such as a static mixer to reduce the pigment concentration, and then the measurement is performed.
実施例の分散装置では、試料セルの厚みを変化
させるために、平行平板ガラス12b側のブロツ
クを移動させてもよいが、平行平板ガラス12b
側には光検出のためのセンサが設けられているた
め、これを可動にすると誤動作の原因となり、以
上に示したように、光照射側のブロツクである筒
体23を可動にする方がより望ましい。平行透過
光21および散乱光22は、暗箱27内の検出手
段28表面に設けられた同心円状の受光素子28
a……に入射し、検出手段28は、入射された光
の強度を、平行透過光成分と散乱光成分とに分け
て検出し、電気信号として出力する。検出手段2
8より出力された平行透過光強度および散乱光強
度の電気信号は、それぞれ、信号増巾手段29a
および29bによつて増巾され、演算手段30に
入力される。 In the dispersion device of the embodiment, in order to change the thickness of the sample cell, the block on the side of the parallel flat glass 12b may be moved;
Since a sensor for detecting light is provided on the side, making it movable may cause malfunction.As shown above, it is better to make the cylindrical body 23, which is the block on the light irradiation side, movable. desirable. The parallel transmitted light 21 and the scattered light 22 are transmitted through a concentric light receiving element 28 provided on the surface of the detection means 28 in the dark box 27.
a..., and the detection means 28 detects the intensity of the incident light by dividing it into a parallel transmitted light component and a scattered light component, and outputs the detected light as an electrical signal. Detection means 2
The electrical signals of parallel transmitted light intensity and scattered light intensity outputted from 8 are respectively transmitted to signal amplification means 29a.
and 29b, and input to the calculation means 30.
高濃度懸濁液である配合物の薄層を透過した平
行光束の強度をI2、散乱光の強度をI1としたと
き、両者の比I1/I2が、配合物の分散状態つまり
粒度(平均粒子径)よい対応を示すとことから、
演算手段30は、この比I1/I2を検出することに
よつて分散状態つまり粒度を代表するパラメータ
を算出し、データとして出力する。 When the intensity of the parallel light beam transmitted through a thin layer of the compound, which is a highly concentrated suspension, is I 2 and the intensity of the scattered light is I 1 , the ratio of the two, I 1 /I 2 , is the dispersion state of the compound, or Since the particle size (average particle diameter) shows good correspondence,
By detecting this ratio I 1 /I 2 , the calculating means 30 calculates a parameter representing the dispersion state, that is, the particle size, and outputs it as data.
出力されたデータを自動的に、あるいは、人手
によつて分散機5の操作にフイードバツクし、分
散操作の制御をおこなう。つまり、分散状態測定
手段の測定結果に応じて分散手段の制御が行われ
るようになつているのである。 The output data is fed back to the operation of the dispersion machine 5 automatically or manually to control the dispersion operation. In other words, the dispersion means is controlled in accordance with the measurement results of the dispersion state measuring means.
試料セル12を通過した配合物4は、循環路1
0を通つて分散機5の容器6内に戻され、分散状
態測定手段11の試料セル12には、循環路10
を通つて常に新しい分散状態の配合物4が供給さ
れるようになつており、配合物4の分散操作と分
散状態の測定を即時応答的におこなうことが可能
である。 The compound 4 that has passed through the sample cell 12 is transferred to the circulation path 1
0 and returned into the container 6 of the disperser 5, and the sample cell 12 of the dispersion state measuring means 11 has a circulation path 10.
A new blend 4 in a dispersed state is constantly supplied through the system, and it is possible to perform the dispersion operation of the blend 4 and the measurement of the dispersion state in a real-time manner.
この発明は以上のように構成されており、分散
操作と分散状態の測定が同時におこなわれるよう
になつているため、刻々変化する分散状態を即時
応答的に知ることができ、しかもその結果を容易
に分散操作にフイードバツクできるため、工程や
品質管理を容易に自動化することができる。
This invention is configured as described above, and because the dispersion operation and the measurement of the dispersion state are performed simultaneously, the ever-changing dispersion state can be known in real time, and the results can be easily displayed. Since feedback can be provided to distributed operations, processes and quality control can be easily automated.
第1図はこの発明の一実施例をあらわす概略説
明図、第2図aおよびbはこの発明に使用される
分散状態測定手段の一例をあらわす断面図および
平面図、第3図は従来例をあらわす概略説明図で
ある。
2……分散媒、3……分散質、4……配合物、
6……容器、7……分散状態、10……循環路、
11……分散状態測定手段、12……試料セル、
17……光源、19……光束調整手段、28……
検出手段、30……演算手段。
FIG. 1 is a schematic explanatory diagram showing one embodiment of the present invention, FIGS. 2 a and b are a sectional view and a plan view showing an example of the dispersion state measuring means used in the present invention, and FIG. 3 is a conventional example. FIG. 2...Dispersion medium, 3...Dispersoid, 4...Blend,
6... Container, 7... Dispersion state, 10... Circulation path,
11... Dispersion state measuring means, 12... Sample cell,
17... Light source, 19... Luminous flux adjustment means, 28...
Detection means, 30... Calculation means.
Claims (1)
る容器と、この容器内の配合物を分散状態にする
分散手段とを備えた分散装置において、前記配合
物を、一旦、容器外に導いた後、再び容器内に戻
すための循環路がこの容器に設けられており、こ
の循環路中に、配合物を薄層にする試料セルと、
光を発する光源と、光源からの光を平行光束にし
て試料セルに照射する光束調整手段と、試料セル
から出る散乱光の散乱光分布を検出する検出手段
と、散乱光分布により分散状態を代表する特性値
を計算する演算手段とからなる分散状態測定手段
を備えているとともに同測定手段の測定結果に応
じて前記分散手段の制御が行われるようになつて
いることを特徴とする分散装置。 2 光源と光束調整手段との間が光フアイバで接
続されている特許請求の範囲第1項記載の分散装
置。 3 試料セルによつて形成される薄層の厚みが可
変となつている特許請求の範囲第1項または第2
項記載の分散装置。 4 循環路中に配合物を希釈するための希釈剤の
供給手段が設けられている特許請求の範囲第1項
から第3項までのいずれかに記載の分散装置。 5 循環路が循環用配管と循環用ポンプとを備え
たものである特許請求の範囲第1項から第4項ま
でのいずれかに記載の分散装置。[Scope of Claims] 1. In a dispersion device comprising a container in which a compound containing a dispersoid and a dispersion medium is housed, and a dispersion means for dispersing the compound in the container, the compound is once dispersed. , the container is provided with a circulation path for guiding the compound out of the container and then returning it into the container, and in this circulation path, a sample cell for forming a thin layer of the compound;
A light source that emits light, a light flux adjustment means that converts the light from the light source into a parallel light flux and irradiates it onto the sample cell, a detection means that detects the scattered light distribution of the scattered light emitted from the sample cell, and the scattered light distribution represents the dispersion state. What is claimed is: 1. A dispersion device comprising: a dispersion state measuring means comprising a calculation means for calculating a characteristic value, and said dispersion means is controlled in accordance with a measurement result of said measuring means. 2. The dispersion device according to claim 1, wherein the light source and the light flux adjusting means are connected by an optical fiber. 3. Claim 1 or 2, in which the thickness of the thin layer formed by the sample cell is variable.
Dispersion device as described in section. 4. The dispersion device according to any one of claims 1 to 3, wherein a diluent supply means for diluting the compound is provided in the circulation path. 5. The dispersion device according to any one of claims 1 to 4, wherein the circulation path includes a circulation pipe and a circulation pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60071537A JPS61230727A (en) | 1985-04-03 | 1985-04-03 | Dispersing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60071537A JPS61230727A (en) | 1985-04-03 | 1985-04-03 | Dispersing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61230727A JPS61230727A (en) | 1986-10-15 |
JPH0214093B2 true JPH0214093B2 (en) | 1990-04-06 |
Family
ID=13463584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60071537A Granted JPS61230727A (en) | 1985-04-03 | 1985-04-03 | Dispersing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61230727A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE157905T1 (en) * | 1993-06-29 | 1997-09-15 | Pfizer | APPARATUS FOR MIXING AND DETERMINING THE HOMOGENEITY ''ON-LINE'' |
US5946088A (en) * | 1994-05-03 | 1999-08-31 | Pfizer Inc. | Apparatus for mixing and detecting on-line homogeneity |
DE10157435A1 (en) * | 2001-11-23 | 2003-06-05 | Basf Coatings Ag | Process for the production of color pastes |
CN101876139B (en) * | 2010-06-09 | 2011-10-19 | 安徽皖维高新材料股份有限公司 | Device and method for detecting dispersing performance of chemical synthesized short fibers |
-
1985
- 1985-04-03 JP JP60071537A patent/JPS61230727A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61230727A (en) | 1986-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3546566C2 (en) | ||
DE69932289T2 (en) | Sensor and measuring device with its use | |
DE69103783T2 (en) | Method and device for measuring the thickness of a layer. | |
DE69505749T2 (en) | THICKNESS MEASUREMENT METHOD FOR TRANSPARENT MATERIAL | |
DE69211247T2 (en) | ELLIPSOMETER | |
DE2651388A1 (en) | METHOD FOR DETERMINING ANTIGEN-ANTIBODY REACTION OR PROTEIN / PROTEIN REACTION | |
JPH11132851A (en) | Probe of inner color | |
KR20090009253A (en) | Rolling mill for treating viscous masses | |
JP3969408B2 (en) | Defect repair method and defect repair device for liquid crystal display device | |
Fuller | Determination of trace elements in titanium (IV) oxide pigments by atomic-absorption spectrometry using an aqueous slurry technique | |
US20140210946A1 (en) | Non-destructive inspection apparatus and method for toughened composite materials | |
JPH0214093B2 (en) | ||
US2752815A (en) | Determination of butterfat content of milk products | |
DE69418505T2 (en) | Method and apparatus for determining the orientation of paper fibers | |
US3062963A (en) | Method of monitoring colored fluids | |
Schneider et al. | Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces | |
EP3364170B1 (en) | Measuring the concentration of gases in a container | |
DE3016879A1 (en) | METHOD AND DEVICE FOR CONTACTLESS OPTICAL RECEPTION OF ULTRASONIC WAVES | |
DE3319922C2 (en) | ||
DE3719524A1 (en) | METHOD FOR MEASURING THE CONCENTRATION OF SUBSTANCES | |
EP0902269B2 (en) | Method for the determination of the immobilisation of colloid coating dispersions | |
DE102021100321B4 (en) | SPR sensor unit and method for determining the refractive index of a sample medium and measuring device for detecting the density of a measuring medium | |
EP2108939B1 (en) | Method for inspecting the density and/or homogeneity of structural components | |
Bos et al. | Light backscattering as a technique to measure solids particle size and concentration in suspension | |
JP4499416B2 (en) | Manufacturing method of color paste |