JPH02140696A - Hydraulic control unit of control rod driving mechanism - Google Patents

Hydraulic control unit of control rod driving mechanism

Info

Publication number
JPH02140696A
JPH02140696A JP63293556A JP29355688A JPH02140696A JP H02140696 A JPH02140696 A JP H02140696A JP 63293556 A JP63293556 A JP 63293556A JP 29355688 A JP29355688 A JP 29355688A JP H02140696 A JPH02140696 A JP H02140696A
Authority
JP
Japan
Prior art keywords
pressure
control rod
piping
reactor
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63293556A
Other languages
Japanese (ja)
Inventor
Yukio Watabe
幸夫 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63293556A priority Critical patent/JPH02140696A/en
Publication of JPH02140696A publication Critical patent/JPH02140696A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To insert a control rod at the same inserting speed as that of a scram time at the time of rated operation even at the time of nuclear reactor scram in the case of low hydraulic pressure in a pressure vessel by providing a flow rate control unit between a scram valve and a housing of a control rod driving mechanism. CONSTITUTION:A piping 28 is divided into two in an installation position of a flow rate control unit 40, a tube end of a piping 28a of a housing 6 side of divided control rod driving mechanisms becomes a cylindrical shape expanded and opened gradually toward a piping 28b, and a housing 40a of the unit 40 is formed. In this state, when a nuclear reactor scram state is generated at the time of rated operation in which pressure of a reactor pressure vessel 1 is high, high pressure water from an accumulator 31 flows into the housing 6 of the control rod driving mechanism 4 at a set flow velocity, and the whole insertion of the control rod is executed in a set time. Also, when pressure of the pressure vessel is low, since a cross sectional area of a passage is decreased, comparing with that of the piping 28, the inflow of high pressure water of a high speed and a large quantum caused by differential pressure of hydraulic pressure in the accumulator 31 and pressure in the pressure vessel 1 does not occur, and the whole insertion of the control rod is executed in a roughly set time.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は沸騰水型原子炉における制御棒駆動機構の水圧
制御ユニットに係る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a hydraulic control unit for a control rod drive mechanism in a boiling water nuclear reactor.

(従来の技術) 第2図は沸騰水型原子炉の概略構成を概念的に示す縦断
面図である。この図において、原子炉圧力容器1内には
炉心2が収容され、炉心出力を調整する制御棒3は圧力
容器1の下部から炉心2に対して挿抜される。制御棒3
はその下方に位置する制御棒駆動機構4によって駆動さ
れ、案内管5に案内されて上下動される。なお、図中6
は制御棒駆動機構5を収納するハウジングで、圧力容器
1の底面に溶接固着されている。
(Prior Art) FIG. 2 is a vertical cross-sectional view conceptually showing the schematic configuration of a boiling water nuclear reactor. In this figure, a reactor core 2 is housed in a reactor pressure vessel 1, and control rods 3 for adjusting the core output are inserted into and removed from the reactor core 2 from the lower part of the pressure vessel 1. control rod 3
is driven by a control rod drive mechanism 4 located below, and guided by a guide tube 5 to move up and down. In addition, 6 in the figure
is a housing that houses the control rod drive mechanism 5, and is fixed to the bottom of the pressure vessel 1 by welding.

第3図に電動機駆動方式の制御棒駆動機構4の一例を縦
断して示す、この図において、電動機11の回転は軸1
2を回転させ、この回転は軸12の先端のキーを介して
接続部材13に伝達され、接続部材13の回転はスプラ
イン結合により接続部材14に伝達される。接続部材1
4上面中央には長尺のねじ軸15の下端が固着されてい
る。このねじ軸の上端には軸受16が設けられ、ねじ軸
15下部に螺合したナット17上面にその下端を当接さ
せ、この図には図示しない水圧制御ユニットと連繋作動
する中空のピストン18内を摺動し得るようにしである
。前記ナツト17およびピストン18の局面には、後述
するチューブ20内周面に接するそれぞれ4箇のローラ
19が円周方向に等配して設けられ、前記ナツト17お
よびピストン18を同心的に包囲するチューブ20内に
は、前記4箇のローラ19の中の隣接する2箇にはさま
れる位置に、前記ナツト17.ピストン18の移動スト
ロークに相当する長さの横断面が扇の地紙、即ち同心の
大小2箇の円弧の両端をそれ等の円弧の径で結んだ円弧
帯状の軸方向のプレート21が装着されている。このプ
レート21によってナツト17、ピストン18のそれ等
の軸を中心とする回転は抑止されている。
FIG. 3 shows a longitudinal section of an example of the control rod drive mechanism 4 of the electric motor drive type. In this figure, the rotation of the electric motor 11 is caused by the shaft 1
2 is rotated, and this rotation is transmitted to the connecting member 13 via the key at the tip of the shaft 12, and the rotation of the connecting member 13 is transmitted to the connecting member 14 through the spline connection. Connection member 1
4, the lower end of a long screw shaft 15 is fixed to the center of the upper surface. A bearing 16 is provided at the upper end of this screw shaft, and its lower end is brought into contact with the upper surface of a nut 17 screwed into the lower part of the screw shaft 15, and inside a hollow piston 18 that operates in conjunction with a water pressure control unit not shown in this figure. It is designed so that it can be slid. On the surfaces of the nut 17 and the piston 18, four rollers 19 are provided, which are in contact with the inner circumferential surface of a tube 20, which will be described later, and are equally spaced in the circumferential direction, concentrically surrounding the nut 17 and the piston 18. Inside the tube 20, the nut 17. An axial plate 21 in the form of a circular arc strip, which has a fan-shaped cross section with a length corresponding to the movement stroke of the piston 18, that is, two concentric large and small arcs connecting both ends of the arcs with the diameters of those arcs, is attached. ing. This plate 21 prevents the nut 17 and piston 18 from rotating about their respective axes.

この図において、22はヘッドを示し、このヘッドとピ
ストン18に可摺動に係合したスリーブ23との間には
、ばね24が介在されている。また、28は制御捧緊急
挿入時作動用の配管、29はこの配管に設けたボール逆
止弁をそれZれ示している。
In this figure, 22 indicates a head, and a spring 24 is interposed between this head and a sleeve 23 that is slidably engaged with the piston 18. Further, 28 indicates a control piping for actuation during emergency insertion, and 29 indicates a ball check valve provided in this piping.

上記構成の制御棒駆動機構においては、前記のようにナ
ツト17.ピストン18のそれ等の軸を中心とする回動
は抑止されているので、電動機11によってねじ軸15
が回転された時、前記ナツト17およびその上面に当接
しているピストン18は軸方向の移動のみを許容され、
ピストン18と結合している制御棒は上下動されること
となる。
In the control rod drive mechanism having the above configuration, the nut 17. Since rotation of the piston 18 about these axes is suppressed, the screw shaft 15 is rotated by the electric motor 11.
When rotated, the nut 17 and the piston 18 in contact with its upper surface are allowed to move only in the axial direction,
The control rod connected to the piston 18 will be moved up and down.

原子炉の平常運転時には第2図に示した制御棒駆動機構
4は、上記の制御棒操作によって炉出力の調整を行うも
のである。
During normal operation of the nuclear reactor, the control rod drive mechanism 4 shown in FIG. 2 adjusts the reactor output through the control rod operations described above.

而して、制御棒の緊急挿入が必要となった場合に作動す
るものとして、第2図、第3@と同一部分には同一符号
を付した第4図に模式的に示す制御棒緊急挿入機構が設
けられている。すなわち、第3図に28で示されハウジ
ング6に開口し、ハウジング6への開口部近傍にボール
逆止弁29を具えた配管は、水圧制御ユニット30に接
続されている。水圧制御ユニット30はアキュムレータ
31、加圧用容器32を具えこれ等両者間は配管33で
連通されている。なお、加圧用容器32内には高圧の窒
素ガスが充填されている。また、前記配管28はスクラ
ム弁34を介して前記アキュムレータ31に接続され、
前記スクラム弁34とアキュムレータ31との間にはポ
ンプ36の吐出口からの配管35が接続されている。な
お、図中31aはアキュムレータ31内のフローティン
グピストンを示している。
Therefore, the control rod emergency insertion is schematically shown in Fig. 4, in which the same parts as in Figs. 2 and 3 are given the same reference numerals, as those that operate when emergency control rod insertion is required. A mechanism is provided. That is, a piping shown at 28 in FIG. 3 that opens into the housing 6 and is provided with a ball check valve 29 near the opening to the housing 6 is connected to the water pressure control unit 30. The water pressure control unit 30 includes an accumulator 31 and a pressurizing container 32, which are communicated through a pipe 33. Note that the pressurizing container 32 is filled with high-pressure nitrogen gas. Further, the piping 28 is connected to the accumulator 31 via a scram valve 34,
A pipe 35 from a discharge port of a pump 36 is connected between the scram valve 34 and the accumulator 31. Note that 31a in the figure indicates a floating piston within the accumulator 31.

而して5通常は前記スクラム弁34は閉状態にあり、ポ
ンプ36から配管35を介してアキュムレータ31に印
加された高圧水は、フローティングピストン31aを圧
下して前記加圧用容器32内の窒素ガス圧と平衡を保っ
ている。
5 Normally, the scram valve 34 is in a closed state, and the high-pressure water applied to the accumulator 31 from the pump 36 via the piping 35 depresses the floating piston 31a and releases nitrogen gas in the pressurizing container 32. Maintains pressure and equilibrium.

上記構成の制御棒緊急挿入機構においては、原子炉の異
常によりスクラム信号が発せられるとスクラム弁34が
開放され、配管28内にはアキュムレータ31の高圧水
が流入する。これにより、加圧用容器32内の高圧窒素
ガスの圧力とアキュムレータ31内の高圧水の圧力との
平衡が崩れ、フローティングピストン31aは一挙に前
記ガス圧によって押し上げられ、アキュムレータ31内
の大量の高圧水が一挙に配管28を通じてハウジング6
内に流入する。ボール逆止弁29は開放されハウジング
6内に前記高圧水が流入し、第3図に示したピストン1
8を急速に押し上げる。制御棒駆動機構4においては、
第3図に示したようにピストン18の上昇ストローク終
端部での減速を行うばね24、前記ストローク終端近傍
でピストン18と一体化して移動することとなりピスト
ン18と協働してばね24を圧縮するスリーブ23、前
記ばね力に抗するヘッド22が設けられているから、前
記ピストン18の急上昇によって制御棒の炉心2への緊
急挿入がなされることとなる6上記構成の制御棒緊急挿
入機構において、上記緊急挿入の際の制御棒挿入位置と
加圧用容器32内の窒素圧との関係は、第5図に模式的
に示されている。この図には、初期条件において加圧用
容器32内の窒素圧は、定格運転時の原子炉圧力容器内
水圧約’l0kg/dに打ち勝ってピストン18を上昇
させるに足る圧力(約130 kg/cd)に保持され
、制御棒の挿入が進むに従い前記窒素圧は次第に低下す
ることが示されている。而して、制御棒が全挿入され、
前記窒素圧が最低値となった場合であっても、原子炉圧
力容器内の圧力よりも高い圧力を保持するように設定さ
れている。
In the control rod emergency insertion mechanism configured as described above, when a scram signal is issued due to an abnormality in the reactor, the scram valve 34 is opened and high pressure water from the accumulator 31 flows into the pipe 28. As a result, the balance between the pressure of high-pressure nitrogen gas in the pressurizing container 32 and the pressure of high-pressure water in the accumulator 31 is disrupted, and the floating piston 31a is pushed up at once by the gas pressure, causing a large amount of high-pressure water in the accumulator 31 to be pushed up. housing 6 through piping 28 all at once.
flow inside. The ball check valve 29 is opened and the high pressure water flows into the housing 6, causing the piston 1 shown in FIG.
8 rapidly. In the control rod drive mechanism 4,
As shown in FIG. 3, a spring 24 that decelerates the piston 18 at the end of its upward stroke moves integrally with the piston 18 near the end of the stroke, working together with the piston 18 to compress the spring 24. Since the sleeve 23 and the head 22 that resist the spring force are provided, emergency insertion of the control rod into the reactor core 2 is performed by the rapid movement of the piston 18.6 In the control rod emergency insertion mechanism having the above configuration, The relationship between the control rod insertion position and the nitrogen pressure in the pressurizing container 32 during the emergency insertion is schematically shown in FIG. This figure shows that under initial conditions, the nitrogen pressure in the pressurizing vessel 32 is sufficient to overcome the water pressure in the reactor pressure vessel at rated operation, approximately 10 kg/d, and raise the piston 18 (approximately 130 kg/cd). ), and the nitrogen pressure is shown to gradually decrease as the control rod is inserted. Then, the control rod is fully inserted,
Even when the nitrogen pressure reaches its lowest value, it is set to maintain a pressure higher than the pressure inside the reactor pressure vessel.

(発明が解決しようとする課題) しかしながら、原子炉スクラムが発生する状態はその定
格運転時にのみ限定されるものではなく、原子炉圧力容
器内水圧が低下した状態(例えば大気圧程度)で前記の
状態が発生した場合に対処することも考慮しなければな
らない。
(Problem to be Solved by the Invention) However, the state in which a reactor scram occurs is not limited to only during its rated operation, but also when the water pressure inside the reactor pressure vessel is reduced (for example, to about atmospheric pressure). You must also consider what to do if the situation occurs.

第6図は、前記のように原子炉圧力容器内の水圧が約7
0kg/adの状態で安全に作動するように設計された
水圧制御ユニットにおいて、原子炉圧力容器内圧力が変
化した際の制御棒全挿入に至までの時間の変化を模式的
に示している。この図においてtsは挿入時間の基準値
であり、制御棒は1、時間内に全挿入されなければなら
ない、定格運転時の原子炉圧力容器内圧力70kg/c
jにおいての全挿入時間がt2であり、上記水圧制御ユ
ニット30の設定はこの時間t2が時間ts以下で多少
の余裕を見た値としである。
Figure 6 shows that, as mentioned above, the water pressure inside the reactor pressure vessel is approximately 7.
In a water pressure control unit designed to operate safely at 0 kg/ad, this diagram schematically shows changes in the time required to fully insert the control rods when the pressure inside the reactor pressure vessel changes. In this figure, ts is the reference value for insertion time, and the control rods must be fully inserted within 1 hour.The pressure inside the reactor pressure vessel during rated operation is 70 kg/c.
The total insertion time at point j is t2, and the setting of the water pressure control unit 30 is such that this time t2 is less than or equal to time ts, allowing for some margin.

上記のように設定された水圧制御ユニット3゜において
、原子炉圧力容器内の水圧が例えば大気圧程度に低下し
ている場合の制御棒全挿入時間は。
In the water pressure control unit 3° set as described above, the total insertion time of the control rods when the water pressure in the reactor pressure vessel has decreased to about atmospheric pressure, for example.

第6図に示すようにtよよりかなり小さな時間t4とな
る。これは、第5図に斜線を施して示したように水圧制
御ユニット30のエネルギが過剰となり、制御棒挿入速
度が増加することによる。
As shown in FIG. 6, the time t4 is much smaller than t. This is because the energy of the hydraulic control unit 30 becomes excessive, as shown by hatching in FIG. 5, and the control rod insertion speed increases.

前記のように制御棒全挿入位置すなわちピストン18の
ストローク終端近傍においては、それ等に減速が加わり
全挿入とともにそれ等は停止されるが、原子炉圧力容器
内水圧が低く制御棒挿入速度が大である場合には、前記
の減速(換言すれば加速度)が大きく制御棒駆動機構そ
の他に悪影響をおよぼす。
As mentioned above, at the control rod fully inserted position, that is, near the end of the stroke of the piston 18, the control rods are decelerated and stopped when fully inserted, but the water pressure inside the reactor pressure vessel is low and the control rod insertion speed is high. In this case, the deceleration (in other words, the acceleration) described above will have a large adverse effect on the control rod drive mechanism and others.

本発明は上記の事情に基づきなされたもので、原子炉圧
力容器内水圧が低い場合の原子炉スクラム時であっても
、原子炉定格運転時における原子炉スクラム時とほぼ同
様の挿入速度で制御棒の挿入を行うことができる制御棒
駆動機構の水圧制御ユニット提供することを目的として
いる。
The present invention has been made based on the above circumstances, and even during reactor scram when the water pressure inside the reactor pressure vessel is low, the insertion speed is controlled at almost the same speed as during reactor scram during rated reactor operation. It is an object of the present invention to provide a hydraulic control unit for a control rod drive mechanism that allows insertion of rods.

[発明の構成] (課題を解決するための手段) 本発明の制御棒駆動機構の水圧制御ユニットは、フロー
ティングピストンを具えたアキュムレータと、このアキ
ュムレータの前記フローティングピストン下面にに高圧
のガス圧を印加する加圧用容器と、前記アキュムレータ
の前記フローティングピストン上方の空間と制御棒駆動
機構のハウジングとを接続する配管と、この配管に設け
られ原子炉スクラム状態発生時に開放されるスクラム弁
と、前記配管の前記アキュムレータとスクラム弁との間
に吐出口を連通させアキュムレータに高圧水を印加する
ポンプとを有するものにおいて、前記配管の前記スクラ
ム弁と前記制御棒駆動機構のハウジングとの間に、原子
炉圧力容器内の圧力が原子炉定格運転時の圧力である時
は配管の流路断面積を本来の大きさに保持し、定格運転
時のそれより低い場合には前記配管の流路断面積を制限
する流量制御ユニットを設けたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The hydraulic control unit of the control rod drive mechanism of the present invention includes an accumulator having a floating piston and applying high gas pressure to the lower surface of the floating piston of this accumulator. a pressurizing vessel for pressurization, a pipe connecting the space above the floating piston of the accumulator and the housing of the control rod drive mechanism, a scram valve provided in this pipe and opened when a reactor scram state occurs, and and a pump that communicates a discharge port between the accumulator and the scram valve and applies high-pressure water to the accumulator, the reactor pressure When the pressure inside the vessel is at the pressure at the reactor's rated operation, the cross-sectional area of the piping is maintained at its original size, and when it is lower than that at the rated operation, the cross-sectional area of the piping is restricted. The present invention is characterized by being equipped with a flow rate control unit.

(作用) 上記構成の本発明制御棒駆動機構の水圧制御ユニットに
おいては、原子炉圧力容器内の圧力が高い定格運転時に
原子炉スクラム状態が発生すれば、アキュムレータから
の高圧水は設定流速で制御棒駆動機構のハウジング内に
流入し、設定した時間で制御棒の全挿入を行う、また、
原子炉圧力容器内の圧力が低い場合には流路断面積が配
管のそれよりも減少させられているため、アキュムレー
タ内水圧と原子炉圧力容器内の差圧による高速、大量の
高圧水の流入はなく、はぼ設定時間において制御棒の全
挿入を果すことができる。
(Function) In the water pressure control unit of the control rod drive mechanism of the present invention having the above configuration, if a reactor scram condition occurs during rated operation when the pressure inside the reactor pressure vessel is high, the high pressure water from the accumulator is controlled at the set flow rate. flows into the housing of the rod drive mechanism and performs full insertion of the control rod at a set time;
When the pressure inside the reactor pressure vessel is low, the cross-sectional area of the flow path is smaller than that of the piping, so a high-speed, large amount of high-pressure water flows in due to the differential pressure between the water pressure inside the accumulator and the reactor pressure vessel. Full insertion of the control rod can be accomplished within a set time.

(実施例) 第1図Aは本発明一実施例の原子炉定格運転時の縦断面
図、第1図Bはその原子炉圧力容器内水圧低下時の縦断
面図、第1図Cは前記実施例の第1図C−C線における
横断面図である。本発明の流量制御ユニットは配管28
のスクラム弁34と制御棒駆動機構のハウジング6との
間に設置される。第1図A、第1図BにおいてAはスク
ラム弁側を、Bは制御棒駆動機構のハウジング側をそれ
ぞれ示している。配管28は流量制御ユニット40の設
置位置で二分され、分割された制御棒駆動機構のハウジ
ング6側の配管28aの管端は、スクラム弁34側の配
管28bに向けて次第に拡開する円錐状とされ、流量制
御ユニット40のハウジング40aを形成している。こ
のハウジングと配管28bとはフランジによって結合さ
れているが、これ等のフランジ間には皿ばね41の周縁
部が気密に挟着されている。この皿ばね41の上面すな
わち制御棒駆動機構のハウジング6側の面には、上端に
流量制御ユニット40のハウジングbえたリング42が
同心的に取り付けられている。
(Example) FIG. 1A is a longitudinal cross-sectional view of an embodiment of the present invention during rated operation of the reactor, FIG. FIG. 1 is a cross-sectional view taken along line C-C in FIG. 1 of the embodiment. The flow rate control unit of the present invention has the piping 28
is installed between the scram valve 34 and the housing 6 of the control rod drive mechanism. In FIGS. 1A and 1B, A indicates the scram valve side, and B indicates the housing side of the control rod drive mechanism, respectively. The pipe 28 is divided into two at the installation position of the flow control unit 40, and the pipe end of the pipe 28a on the housing 6 side of the divided control rod drive mechanism has a conical shape that gradually expands toward the pipe 28b on the scram valve 34 side. and forms a housing 40a of the flow rate control unit 40. The housing and the pipe 28b are connected by flanges, and the peripheral edge of the disc spring 41 is airtightly sandwiched between these flanges. On the upper surface of the disc spring 41, that is, on the surface on the side of the housing 6 of the control rod drive mechanism, a ring 42, which is attached to the upper end of the housing of the flow control unit 40, is concentrically attached.

なお、皿ばね41には前記リングの中空部42bに連通
し、中空部の径よりも径の大きな透孔41aが設けられ
ている。また、リング42の直状部の外径は、流量制御
ユニット40のハウジング40aの直状部の内径より十
分に小とし、中空部42bの内径は配管28a、28b
のそれより小としておく。さらに1皿ばね41のリング
42と流量制御ユニット40のハウジング40aとの間
には、複数筒例えば円周方向に等配した4箇の透孔41
bを設け、それ等の透孔の開口面積合計とリング42の
中空部42bの開口面積との和が配管28 (28a、
28b)の開口面積と等しくなるようにしておく。 上
記構成の流量制御ユニット40は次のように作動する。
The disc spring 41 is provided with a through hole 41a that communicates with the hollow portion 42b of the ring and has a diameter larger than that of the hollow portion. The outer diameter of the straight portion of the ring 42 is sufficiently smaller than the inner diameter of the straight portion of the housing 40a of the flow control unit 40, and the inner diameter of the hollow portion 42b is
Let it be smaller than that of . Further, between the ring 42 of the disc spring 41 and the housing 40a of the flow control unit 40, there are a plurality of cylinders, for example, four through holes 41 equally distributed in the circumferential direction.
b, and the sum of the total opening area of these through holes and the opening area of the hollow part 42b of the ring 42 is the piping 28 (28a,
The opening area is made equal to the opening area of 28b). The flow rate control unit 40 having the above configuration operates as follows.

先ず、原子炉が定格運転状態にあり、原子炉圧力容器内
の水圧が規定値にある場合には、皿ばね41は第1図A
に示すように皿ばね41上面には原子炉圧力容器内の高
圧が作用して、はぼ平坦に保持されている。この状態で
原子炉スクラムが発生して、スクラム弁34が開放され
アキュムレータ32から高圧水が配管28a内に進入し
ても、圧力容器内の水圧に抗して配管内を流れなければ
ならないため、その流速は低くリング42に作用する圧
損によるB側への力は皿ばね41の弾性と均衡し1皿ば
ね41は平坦な状態のままに保持され、リング42はそ
のテーパ部42aをハウジング40aのテーパ部内面か
ら離間した状態に維持される。而して、リング42の中
空部42bの開口面積と、透孔41bの開口面積の合計
との和が配管28の開口面積と等しくしであるから、高
圧水の流路開口面積は配管28 (28a、28b)の
それと同一に保たれ、制御棒駆動機構のピストン18は
予め設定した速度で上昇し、制御棒の全挿入は第6図に
示す時間t7においてなされることとなる。
First, when the reactor is in the rated operating state and the water pressure in the reactor pressure vessel is at the specified value, the disc spring 41 is in the state shown in FIG.
As shown in FIG. 2, the high pressure within the reactor pressure vessel acts on the top surface of the disc spring 41, and the top surface is held substantially flat. Even if a reactor scram occurs in this state and the scram valve 34 is opened and high-pressure water enters the pipe 28a from the accumulator 32, it must flow through the pipe against the water pressure in the pressure vessel. The flow velocity is low and the force toward the B side due to the pressure loss acting on the ring 42 is balanced with the elasticity of the disc spring 41, and the disc spring 41 is held in a flat state, and the ring 42 has its tapered part 42a attached to the housing 40a. It is maintained in a state separated from the inner surface of the tapered portion. Since the sum of the opening area of the hollow portion 42b of the ring 42 and the opening area of the through hole 41b is equal to the opening area of the pipe 28, the high-pressure water flow path opening area is 28a, 28b), the piston 18 of the control rod drive mechanism will rise at a preset speed and full insertion of the control rod will occur at time t7 shown in FIG.

一方、圧力容器内の水圧が例えば大気圧程度である時に
原子炉スクラムが発生すると、スクラム弁34の開放に
よって配管28a内に進入した高圧水は、原子炉圧力容
器内が低圧であるため、配管内流速が大きくその圧損に
よりリング42を皿ばね41に抗して押し上げ、上方(
B側)に凸な形状に変形させリング42上端のテーパ部
42aをハウジング40aに圧接させる。これにより、
配管28aへの高圧水の流入開口面積は中空部42bの
開口面積に限定されることになり、これより増加した圧
損によって従来のような流量の増加は防止され、制御棒
の全挿入に至る時間をL2程度に制限することができる
On the other hand, if a reactor scram occurs when the water pressure inside the reactor pressure vessel is, for example, about atmospheric pressure, the high pressure water that has entered into the piping 28a due to the opening of the scram valve 34 will be transferred to the piping because the pressure inside the reactor pressure vessel is low. The internal flow velocity is high and the resulting pressure loss pushes the ring 42 up against the disc spring 41, pushing it upward (
The tapered portion 42a at the upper end of the ring 42 is pressed into contact with the housing 40a. This results in
The opening area for high-pressure water to flow into the pipe 28a is limited to the opening area of the hollow portion 42b, and the increased pressure drop prevents the flow from increasing as in the conventional case, reducing the time it takes to fully insert the control rod. can be limited to about L2.

上記のように本発明の水圧制御ユニットによれば、原子
炉圧力容器内の水圧の高低に無関係にスクラム発生時の
制御棒の全挿入をほぼ一定の速度、時間で行うことがで
きる。
As described above, according to the water pressure control unit of the present invention, control rods can be completely inserted at a substantially constant speed and time when a scram occurs, regardless of the level of water pressure in the reactor pressure vessel.

なお、上記実施例においてはリング42上端とハウジン
グ40aとのシール部を円錐状としであるため、組立の
際の位置決め、シールが容易であり、円錐部間の流速が
大きいのでリング上下端の差圧が大きく、リングの流速
に対する動きを敏感にすることができる。
In the above embodiment, the sealing portion between the upper end of the ring 42 and the housing 40a is conical, which facilitates positioning and sealing during assembly.Since the flow velocity between the conical portions is high, the difference between the upper and lower ends of the ring is reduced. The pressure is large and the ring can be sensitive to flow velocity.

また、本発明は上記実施例に限定されない。例えば水圧
駆動方式の制御棒駆動機構においても前記と同様にして
適用することができる。
Furthermore, the present invention is not limited to the above embodiments. For example, the present invention can also be applied to a hydraulic drive type control rod drive mechanism in the same manner as described above.

[発明の効果コ 上記から明らかなように本発明の制御棒駆動機構の水圧
制御ユニットによれば、原子炉圧力容器内の圧力の高低
に無関係にほぼ一定速度で制御棒の全挿入が可能となる
ので、低炉圧時の原子炉スクラムに際しての制御棒停止
時の衝撃加速度が大幅に緩和され、ピストンまたは制御
棒に作用する荷重も低減されそれ等の構造上、強度上の
信頼性は著しく向上される。
[Effects of the Invention] As is clear from the above, the hydraulic control unit of the control rod drive mechanism of the present invention allows the control rods to be fully inserted at a substantially constant speed regardless of the pressure level in the reactor pressure vessel. As a result, the impact acceleration when the control rods stop during a reactor scram at low reactor pressure is greatly reduced, and the load acting on the pistons or control rods is also reduced, significantly improving their structural and strength reliability. Improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明一実施例の原子炉定格運転時の縦断面
図、第1図Bはその低炉圧のスクラム発生状態における
縦断面図、第1図Cは第1図BのC−C線における横断
面図、第2図は沸騰水型原子炉の概念図、第3図は電動
機駆動方式の制御棒駆動機構の縦断面図、第4図は制御
棒緊急挿入機構の概念図、第5図は前記制御棒緊急挿入
機構の加圧用容器内の圧力と制御棒挿入位置との関係を
示すグラフ、第6図は原子炉圧力容器内圧力と制御棒全
挿入に要する時間との関係を示すグラフである。 1・・・・・・原子炉圧力容器 2・・・・・・炉心 
3・・・・・・制御棒 4・・・・・・制御棒駆動機構
 5・・・・・・案内管 6.40a・・・・・・ハウ
ジング 17・・・・・・ナツト 18・・・・・・ピ
ストン 28.28a、28b、33.35・・・・・
配管 29・・・・・・ボール逆止弁 3o・・・・・
・水圧制御ユニット 31・旧・・アキュムレータ 3
1a・・・・・・フローティングピストン 32・・目
・・加圧用容器 34・・・・・・スクラム弁 36・
旧・・ポンプ 4゜・・・・・・流量制御ユニット 4
1・・・・・・皿ばね 41a、41b・・・・・・透
孔 42・旧・・リング 42a・・目・・テーパ部 
42b・・・・・・中空部
FIG. 1A is a vertical cross-sectional view of an embodiment of the present invention during rated operation of the nuclear reactor, FIG. 1B is a vertical cross-sectional view of the reactor in a scram generation state at low reactor pressure, and FIG. 1C is the C of FIG. 1B. -A cross-sectional view taken along line C, Figure 2 is a conceptual diagram of a boiling water reactor, Figure 3 is a longitudinal sectional view of an electric motor-driven control rod drive mechanism, and Figure 4 is a conceptual diagram of an emergency control rod insertion mechanism. , FIG. 5 is a graph showing the relationship between the pressure inside the pressurizing vessel of the control rod emergency insertion mechanism and the control rod insertion position, and FIG. 6 is a graph showing the relationship between the pressure inside the reactor pressure vessel and the time required to fully insert the control rods. It is a graph showing a relationship. 1...Reactor pressure vessel 2...Reactor core
3... Control rod 4... Control rod drive mechanism 5... Guide tube 6.40a... Housing 17... Nut 18... ...Piston 28.28a, 28b, 33.35...
Piping 29...Ball check valve 3o...
・Water pressure control unit 31・Old...Accumulator 3
1a... Floating piston 32... Pressurizing container 34... Scram valve 36...
Old...Pump 4゜...Flow control unit 4
1... disc spring 41a, 41b... through hole 42... old... ring 42a... eye... taper part
42b...Hollow part

Claims (1)

【特許請求の範囲】[Claims] フローティングピストンを具えたアキュムレータと、こ
のアキュムレータの前記フローティングピストン下面に
に高圧のガス圧を印加する加圧用容器と、前記アキュム
レータの前記フローティングピストン上方の空間と制御
棒駆動機構のハウジングとを接続する配管と、この配管
に設けられ原子炉スクラム状態発生時に開放されるスク
ラム弁と、前記配管の前記アキュムレータとスクラム弁
との間に吐出口を連通させアキュムレータに高圧水を印
加するポンプとを有するものにおいて、前記配管の前部
スクラム弁と前記制御棒駆動機構のハウジングとの間に
、原子炉圧力容器内の圧力が原子炉定格運転時の圧力で
ある時は配管の流路断面積を本来の大きさに保持し、定
格運転時のそれより低い場合には前記配管の流路断面積
を制限する流量制御ユニットを設けたことを特徴とする
制御棒駆動機構の水圧制御ユニット。
an accumulator equipped with a floating piston, a pressurizing container that applies high gas pressure to the lower surface of the floating piston of the accumulator, and piping that connects a space above the floating piston of the accumulator and a housing of a control rod drive mechanism. and a scram valve that is provided in the piping and is opened when a reactor scram state occurs, and a pump that communicates a discharge port between the accumulator of the piping and the scram valve and applies high-pressure water to the accumulator. , between the front scram valve of the piping and the housing of the control rod drive mechanism, when the pressure inside the reactor pressure vessel is the pressure at the reactor rated operation, the cross-sectional area of the piping is increased to its original size. A hydraulic control unit for a control rod drive mechanism, characterized in that a flow rate control unit is provided to maintain the flow rate at a constant flow rate and to limit a flow passage cross-sectional area of the piping when the flow rate is lower than that during rated operation.
JP63293556A 1988-11-22 1988-11-22 Hydraulic control unit of control rod driving mechanism Pending JPH02140696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63293556A JPH02140696A (en) 1988-11-22 1988-11-22 Hydraulic control unit of control rod driving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63293556A JPH02140696A (en) 1988-11-22 1988-11-22 Hydraulic control unit of control rod driving mechanism

Publications (1)

Publication Number Publication Date
JPH02140696A true JPH02140696A (en) 1990-05-30

Family

ID=17796276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293556A Pending JPH02140696A (en) 1988-11-22 1988-11-22 Hydraulic control unit of control rod driving mechanism

Country Status (1)

Country Link
JP (1) JPH02140696A (en)

Similar Documents

Publication Publication Date Title
US3134394A (en) Check valves
US5104091A (en) Spring assisted ball valve
US5351714A (en) Safety valve for high-pressure pumps, high-pressure water-jet machines and the like
EP1785634A2 (en) Valve actuator assembly
US3428090A (en) Shut-off valve
JP5285963B2 (en) Fluid pressure cylinder
US4041845A (en) Hydraulic elevator apparatus
JPH02140696A (en) Hydraulic control unit of control rod driving mechanism
CN210153220U (en) Pressurizing pilot type high-temperature high-pressure labyrinth valve
FI79395C (en) Pressure reducing valve.
JP2000227102A (en) Relief valve
US4151979A (en) Diaphragm valve having a Belleville-spring assembly
CN105422537B (en) Pressure-increasing overflow valve
CN113309897B (en) Case buffer structure
US2831492A (en) Rupture disc safety valve
CN2626646Y (en) Cylinder pushing hydraulic screw press
CN217539159U (en) Balance valve
CN116753208A (en) Explosion-proof buffering hydraulic cylinder
US11572963B2 (en) Pneumatic-hydraulic control valve
CN214248423U (en) Helium pressure reducing valve
CN212225652U (en) Ultrahigh pressure proportional unloading valve
JP2549309Y2 (en) Relief valve
JPH0789157B2 (en) Control rod drive
CN105840115A (en) Locking mechanism for connecting intelligent drilling tool and pushing wing
JPH08179075A (en) Control rod driving mechanism