JPH02140640A - Backscattering light measuring instrument - Google Patents

Backscattering light measuring instrument

Info

Publication number
JPH02140640A
JPH02140640A JP29413688A JP29413688A JPH02140640A JP H02140640 A JPH02140640 A JP H02140640A JP 29413688 A JP29413688 A JP 29413688A JP 29413688 A JP29413688 A JP 29413688A JP H02140640 A JPH02140640 A JP H02140640A
Authority
JP
Japan
Prior art keywords
light
measured
optical
path length
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29413688A
Other languages
Japanese (ja)
Other versions
JP2726882B2 (en
Inventor
Kazumasa Takada
和正 高田
Juichi Noda
野田 寿一
Masaru Kobayashi
勝 小林
Naoya Uchida
内田 直也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29413688A priority Critical patent/JP2726882B2/en
Publication of JPH02140640A publication Critical patent/JPH02140640A/en
Application granted granted Critical
Publication of JP2726882B2 publication Critical patent/JP2726882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To attain measurement of the backscattering light generated in the inside with regard to an optical waveguide of arbitrary length by providing a total reflection mirror and an angle control part. CONSTITUTION:An emitted light from a light source 1 is divided into two by a fiber type photocoupler 2, and one of them becomes parallel beams by an objective lens 11, reflected by total reflection mirrors 4, 12 - 14 and follows the same path and made incident on the coupler 2 again. Also, the reflecting direction of the reflecting mirror 4 is set to the direction of the reflecting mirror 12, and set so that the reflecting mirror 12 reflects an incident light in the incident direction. In this case, the optical path length of the reflecting mirror 4 and 12 is set to (l), and when both arms of a Michelson interferometer coincide with each other, the refractive index is denoted as (n), and a backscattering light in a position of l/n in an optical waveguide to be measured 3 can be attained. Also, a position of a prism 7 and an angle of the reflecting mirrors 12 - 15 are set by controlling a moving table 10 and angle control parts 16 - 19 from a signal processing part 15. In such a manner, the backscattering light generated in different points in the optical waveguide 3 can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導波路の障害点の探索に利用する。[Detailed description of the invention] [Industrial application field] The present invention is used to search for failure points in optical waveguides.

特に、光導波路内で生じる後方散乱光を高精度で測定す
る装置に関する。
In particular, the present invention relates to a device that measures backscattered light generated within an optical waveguide with high precision.

本発明は、先導波路内で生じた後方散乱光に参照光を干
渉させることにより後方散乱光を測定する装置において
、参照光の光路に複数の反射鏡を配置して反射光路長を
制御することにより、長尺の光導波路について測定可能
とするものである。
The present invention provides an apparatus for measuring backscattered light by interfering a reference light with backscattered light generated in a leading waveguide, in which a plurality of reflecting mirrors are arranged in the optical path of the reference light to control the length of the reflected optical path. This makes it possible to measure long optical waveguides.

〔従来の技術〕[Conventional technology]

第4図は従来例後方散乱光測定装置の構成を示す。 FIG. 4 shows the configuration of a conventional backscattered light measuring device.

光源1からの出射光は、ファイバ形光結合器2により二
つに分割される。分割された一方は、全反射鏡4により
反射され、これが参照光として利用される。分割された
他方は、被測定光導波路3に入射する。被測定先導波路
3内で生じた後方散乱光は、再びファイバ形光結合器2
に入射し、先の参照光と合波される。この合波光はレン
ズ5により平行ビームとなり、ビームスプリッタ6およ
びプリズム7.8により構成されるマイケルソン干渉計
に入射する。
The light emitted from the light source 1 is split into two by a fiber type optical coupler 2. One of the divided beams is reflected by a total reflection mirror 4, and is used as a reference beam. The other divided part enters the optical waveguide 3 to be measured. The backscattered light generated within the guided waveguide 3 to be measured is returned to the fiber type optical coupler 2.
and is combined with the previous reference light. This combined light is turned into a parallel beam by a lens 5, and enters a Michelson interferometer constituted by a beam splitter 6 and a prism 7.8.

マイケルソン干渉計の入射光は、その一部がビームスプ
リッタ6を透過し、プリズム8で反射する。ビームスプ
リッタ6で反射された光は、プリズム7で反射し、プリ
ズム8で反射された光と合波され、光検出器9に入射す
る。
Part of the incident light of the Michelson interferometer passes through the beam splitter 6 and is reflected by the prism 8. The light reflected by the beam splitter 6 is reflected by the prism 7 , is combined with the light reflected by the prism 8 , and enters the photodetector 9 .

プリズム7は移動台10上をビーム方向に長さlにわた
り移動することができる。また、ファイバ形光結合器2
から全反射鏡4への光路長と、被測定光導波路3への光
路長とは等しく設定されている。したがって、プリズム
7側のアームの長さがプリズム8側のアームの長さより
rだけ長ければ、被測定先導波路3.の入射端からr/
n(nは被測定光導波路3の屈折率)の位置で生じた後
方散乱光を測定できる。
The prism 7 can be moved over a length l on the moving table 10 in the beam direction. In addition, fiber type optical coupler 2
The optical path length from the to the total reflection mirror 4 and the optical path length to the optical waveguide 3 to be measured are set to be equal. Therefore, if the length of the arm on the prism 7 side is longer than the length of the arm on the prism 8 side by r, then the leading waveguide to be measured 3. r/ from the incident end of
Backscattered light generated at a position n (n is the refractive index of the optical waveguide 3 to be measured) can be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、機械的な精度の問題から、移動台によりプリズ
ムを移動させることのできる長さlは通常は20cmが
限度である。このため、被測定光導波路のβ/nより先
の位置については後方散乱光を測定できない欠点があっ
た。
However, due to problems with mechanical accuracy, the length l over which the prism can be moved by the moving table is usually limited to 20 cm. Therefore, there is a drawback that backscattered light cannot be measured at a position beyond β/n of the optical waveguide to be measured.

本発明は、以上の問題点を解決し、測定可能な長さの限
界を取り除いて長尺の先導波路についても後方散乱光を
測定できる装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide an apparatus that can measure backscattered light even for a long leading waveguide by removing the limit on the measurable length.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の後方散乱光測定装置は、後方散乱光と参照光と
の光路長差を変化させるため、一以上の反射手段と、こ
の一以上の反射手段のそれぞれの反射方向を入射方向ま
たは次の反射手段の方向のいずれかに制御して反射光路
長を段階的に制御する角度制御手段とを含むことを特徴
とする。
In order to change the optical path length difference between the backscattered light and the reference light, the backscattered light measuring device of the present invention includes one or more reflecting means, and the reflection direction of each of the one or more reflecting means is changed from the incident direction to the next direction. It is characterized by including an angle control means for controlling the reflection means in any direction to control the reflected optical path length stepwise.

〔作 用〕[For production]

後方散乱光と参照光との光路長差を変化させることによ
り、被測定光導波路内の異なる点で生じる後方散乱光を
測定できる。反射光路長を段階的に制御すると、被測定
光導波路内の測定範囲が段階に変化する。したがって、
反射手段を多数設けることにより、測定可能な範囲を大
幅に拡大できる。
By changing the optical path length difference between the backscattered light and the reference light, backscattered light generated at different points within the optical waveguide to be measured can be measured. When the reflected optical path length is controlled stepwise, the measurement range within the optical waveguide to be measured changes stepwise. therefore,
By providing a large number of reflecting means, the measurable range can be greatly expanded.

〔実施例〕〔Example〕

第1図は本発明実施例後方散乱光測定装置のブロック構
成図である。
FIG. 1 is a block diagram of a backscattered light measuring device according to an embodiment of the present invention.

この装置は、光源1を備え、この光源1の出射光を被測
定光導波路3に入射する入射手段および出射光から参照
光を分岐する光分岐手段としてファイバ形光結合器2を
備え、この参照光を被測定光導波路3の入射端に現れる
後方散乱光に合波する光合波手段としてビームスプリッ
タ6およびプリズム7.8を備え、後方散乱光と参照光
の光路長差を変化させる光路長差制御手段として移動台
10を備え、ビームスプリッタ6の出力光により被測定
先導波路3からの後方散乱光の強度分布を求める信号処
理手段として光検出器9および信号処理部15を備える
This device includes a light source 1, a fiber-type optical coupler 2 as an input means for inputting light emitted from the light source 1 into an optical waveguide 3 to be measured, and an optical branching means for branching a reference light from the emitted light. A beam splitter 6 and a prism 7.8 are provided as optical combining means for combining light with backscattered light appearing at the input end of the optical waveguide 3 to be measured, and an optical path length difference that changes the optical path length difference between the backscattered light and the reference light. A movable table 10 is provided as a control means, and a photodetector 9 and a signal processing section 15 are provided as signal processing means for determining the intensity distribution of backscattered light from the guided waveguide 3 to be measured using the output light of the beam splitter 6.

ここで本実施例の特徴とするところは、光路長制御手段
にさらに、一以上の反射手段として全反射鏡4.12.
13.14を備え、この一以上の全反射鏡4.12.1
3.14のそれぞれの反射方向を入射方向または次の反
射手段の方向のいずれかに制御して反射光路長を段階的
に制御する角度制御手段として角度制御部16.17.
18.19を備えたことにある。
Here, the feature of this embodiment is that the optical path length control means further includes a total reflection mirror 4.12 as one or more reflection means.
13.14, the one or more total reflection mirrors 4.12.1
Angle control section 16.17.3.14 serves as an angle control means for controlling the reflection direction of each of 16.14 to either the incident direction or the direction of the next reflecting means to control the reflected optical path length stepwise.
18.19.

ファイバ形光結合器2の参照光出射端と全反射鏡4との
間、およびファイバ形光結合器2の合波光出射端とビー
ムスプリッタ60間には、それぞれ対物レンズ11およ
びレンズ5が配置される。
An objective lens 11 and a lens 5 are arranged between the reference light output end of the fiber type optical coupler 2 and the total reflection mirror 4, and between the combined light output end of the fiber type optical coupler 2 and the beam splitter 60, respectively. Ru.

プリズム7の位置および全反射鏡4.12.13.14
の角度は、信号処理部15から移動台10および角度制
御部16.17.18.19を制御することにより設定
される。
Position of prism 7 and total reflection mirror 4.12.13.14
The angle is set by the signal processing unit 15 controlling the movable table 10 and the angle control units 16, 17, 18, and 19.

第2図はそれぞれの全反射鏡4.12.13.14によ
り得られる測定範囲を示す。
FIG. 2 shows the measurement range obtained by each total reflection mirror 4.12.13.14.

光源1からの出射光は、ファイバ形光結合器2により二
つに分割され、その一方は、対物レンズ11により平行
ビームとなり、全反射鏡4.12.13または14で反
射され、同じ経路をたどって再びファイバ形光結合器2
に入射する。
The light emitted from the light source 1 is split into two by the fiber optic coupler 2, one of which is converted into a parallel beam by the objective lens 11, reflected by the total reflection mirror 4, 12, 13 or 14, and sent along the same path. Follow the fiber optic coupler 2 again.
incident on .

全反射鏡4の位置は、参照光がこの全反射鏡4で反射さ
れたときに、その光路長が被測定先導波路3の入射端に
おける反射光の光路長と等しくなるように設定される。
The position of the total reflection mirror 4 is set so that when the reference light is reflected by the total reflection mirror 4, its optical path length is equal to the optical path length of the reflected light at the input end of the leading waveguide 3 to be measured.

したがって、ビームスプリッタ6およびプリズム7.8
によって構成されるマイケルソン干渉計の両アームの光
路長が一致したときに得られる信号は、被測定先導波路
3の入射端における反射を示す。また、移動台10の最
大可動位置β(=20Cm)において得られる信号は、
被測定光導波路3の屈折率をnとして、その入射端から
l / nの位置における後方散乱光の強度を示す。
Therefore, beam splitter 6 and prism 7.8
The signal obtained when the optical path lengths of both arms of the Michelson interferometer configured by the above coincide with each other indicates reflection at the input end of the leading waveguide 3 to be measured. Furthermore, the signal obtained at the maximum movable position β (=20Cm) of the moving table 10 is
Assuming that the refractive index of the optical waveguide 3 to be measured is n, the intensity of backscattered light at a position l/n from the input end is shown.

次に、全反射鏡40反射方向を全反射鏡12の方向とし
、全反射鏡12が入射光を入射方向に反射するように設
定する。ここで、全反射鏡4と全反射鏡12との間の光
路長をlに設定しておく。このときには、マイケルソン
干渉計の両アームが一致したときに、被測定光導波路3
内のI! / nの位置における後方散乱光を測定でき
る。また、移動台10が最大可動位置βに移動したとき
には、f! / n +1! / n = 2 X l
 / nの位置の後方散乱光を測定できる。移動台10
がこの中間の位置にあるときには、それに対応して被測
定先導波路3内の!!/nないし2β/nの間の各点に
おける後方散乱光を測定できる。
Next, the direction of reflection of the total reflection mirror 40 is the direction of the total reflection mirror 12, and the total reflection mirror 12 is set so as to reflect the incident light in the direction of incidence. Here, the optical path length between the total reflection mirror 4 and the total reflection mirror 12 is set to l. At this time, when both arms of the Michelson interferometer match, the optical waveguide to be measured 3
Inner I! / Backscattered light at the position n can be measured. Furthermore, when the movable table 10 moves to the maximum movable position β, f! / n +1! / n = 2 X l
/ Backscattered light at position n can be measured. Mobile platform 10
When is at this intermediate position, correspondingly ! in the leading waveguide 3 to be measured. ! Backscattered light at each point between /n and 2β/n can be measured.

以下同様にして、被測定先導波路3の測定可能範囲を増
加させることができる。
In the same manner, the measurable range of the leading waveguide 3 to be measured can be increased.

全反射鏡4.12.13.14による光路長変更の動作
を第3図に示す。
FIG. 3 shows the operation of changing the optical path length by the total reflection mirror 4.12.13.14.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の後方散乱光測定装置は、
任意の長さの先導波路についてその内部で生じる後方孜
乱光を測定できる。本発明は、光集積回路その他におけ
る導波路長が長い回路について、障害点を高精度に探索
できる効果がある。
As explained above, the backscattered light measuring device of the present invention includes:
It is possible to measure the back scattering light generated inside a leading waveguide of arbitrary length. INDUSTRIAL APPLICABILITY The present invention has the advantage of being able to search for fault points with high precision in optical integrated circuits and other circuits with long waveguide lengths.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例後方散乱光測定装置の構成を示す
図。 第2図は測定範囲を示す図。 第3図は全反射鏡による光路長変更を示す図。 第4図は従来例後方散乱光測定装置の構成を示す図。 1・・・光源、2・・・ファイバ形光結合器、3・・・
被測定先導波路、4.12.13.14・・・全反射鏡
、5・・・レンズ、6・・・ビームスプリッタ、7.8
・・・プリズム、9・・・光検出器、10・・・移動台
、11・・・対物レンズ、15・・・信号処理部、16
.17.18.19・・・角度制御部。 特許出願人 日本電信電話株式会社 代理人 弁理士 井 出 直 孝 ?I’11  回 間隔 測定範匠 菖 2 ロ (Q) 光路長の変更 烹 3 回
FIG. 1 is a diagram showing the configuration of a backscattered light measuring device according to an embodiment of the present invention. FIG. 2 is a diagram showing the measurement range. FIG. 3 is a diagram showing optical path length change using a total reflection mirror. FIG. 4 is a diagram showing the configuration of a conventional backscattered light measuring device. 1... Light source, 2... Fiber type optical coupler, 3...
Leading wavepath to be measured, 4.12.13.14... Total reflection mirror, 5... Lens, 6... Beam splitter, 7.8
... Prism, 9... Photodetector, 10... Moving table, 11... Objective lens, 15... Signal processing section, 16
.. 17.18.19... Angle control section. Patent applicant: Nippon Telegraph and Telephone Corporation Representative: Patent attorney Naotaka Ide? I'11 Interval measurement interval 2 B (Q) Optical path length change 3 times

Claims (1)

【特許請求の範囲】 1、光源と、 この光源の出射光を被測定光導波路に入射する入射手段
と、 前記出射光から参照光を分岐する光分岐手段と、この参
照光を前記被測定光導波路の入射端に現れる後方散乱光
に合波する光合波手段と、 前記後方散乱光と前記参照光の光路長差を変化させる光
路長差制御手段と、 前記光合波手段の出力光から前記被測定光導波路の長手
方向における後方散乱光の強度分布を求める信号処理手
段と を備えた後方散乱光測定装置において、 前記光路長差制御手段は、一以上の反射手段と、この一
以上の反射手段のそれぞれの反射方向を入射方向または
次の反射手段の方向のいずれかに制御して反射光路長を
段階的に制御する角度制御手段とを含む ことを特徴とする後方散乱光測定装置。
[Scope of Claims] 1. A light source, an input means for inputting light emitted from the light source into the optical waveguide to be measured, an optical branching means for branching a reference light from the emitted light, and a light branching means for branching the reference light from the output light to the optical waveguide to be measured. an optical multiplexing means for combining backscattered light appearing at an input end of a wave path; an optical path length difference control means for changing an optical path length difference between the backscattered light and the reference light; In a backscattered light measuring device comprising a signal processing means for determining the intensity distribution of backscattered light in the longitudinal direction of a measurement optical waveguide, the optical path length difference control means includes one or more reflecting means and the one or more reflecting means. A backscattered light measuring device comprising: an angle control means for controlling the reflection direction of each of the above to either the incident direction or the direction of the next reflecting means to control the reflected optical path length stepwise.
JP29413688A 1988-11-21 1988-11-21 Backscattered light measurement device Expired - Fee Related JP2726882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29413688A JP2726882B2 (en) 1988-11-21 1988-11-21 Backscattered light measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29413688A JP2726882B2 (en) 1988-11-21 1988-11-21 Backscattered light measurement device

Publications (2)

Publication Number Publication Date
JPH02140640A true JPH02140640A (en) 1990-05-30
JP2726882B2 JP2726882B2 (en) 1998-03-11

Family

ID=17803773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29413688A Expired - Fee Related JP2726882B2 (en) 1988-11-21 1988-11-21 Backscattered light measurement device

Country Status (1)

Country Link
JP (1) JP2726882B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268739A (en) * 1990-12-04 1993-12-07 Cise S.P.A. Laser apparatus for measuring the velocity of a fluid
EP0669525A2 (en) * 1994-02-25 1995-08-30 France Telecom Interferometrical system for detecting and localising reflective defects of light guide structures
US5500733A (en) * 1992-07-27 1996-03-19 France Telecom Interferometric system for the detection and location of reflecting faults of light-guiding structures
WO1998043069A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
WO1998043068A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268739A (en) * 1990-12-04 1993-12-07 Cise S.P.A. Laser apparatus for measuring the velocity of a fluid
US5500733A (en) * 1992-07-27 1996-03-19 France Telecom Interferometric system for the detection and location of reflecting faults of light-guiding structures
EP0669525A2 (en) * 1994-02-25 1995-08-30 France Telecom Interferometrical system for detecting and localising reflective defects of light guide structures
FR2716722A1 (en) * 1994-02-25 1995-09-01 France Telecom Interferometric system for detecting and locating defective reflective structures guiding light.
EP0669525A3 (en) * 1994-02-25 1995-11-08 France Telecom Interferometrical system for detecting and localising reflective defects of light guide structures.
US5615011A (en) * 1994-02-25 1997-03-25 France Telecom Interferometric system for the detection and location of reflector faults of light-guiding structures
WO1998043069A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
WO1998043068A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
US6198540B1 (en) 1997-03-26 2001-03-06 Kowa Company, Ltd. Optical coherence tomography have plural reference beams of differing modulations

Also Published As

Publication number Publication date
JP2726882B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US5293215A (en) Device for interferometric detection of surface structures
EP0793079B1 (en) Fiber coupled interferometric displacement sensor
US4941744A (en) Integrated-photocircuit interferometer
ATE27489T1 (en) FIBER OPTIC MEASUREMENT DEVICE.
JPS6091203A (en) Multispindle measuring instrument
JP2002156206A (en) Interferometer system, interference measuring method, object provision method and object manufacturing method
JPH02236103A (en) Robot terminal working body and integrated optical fiber coupling proximity sensor for tool
US3529894A (en) Interferometer employing a plurality of pairs of interfering beams
JPH02140640A (en) Backscattering light measuring instrument
US7423766B1 (en) Interferometric optical profiler
CN109855530B (en) Interferometer system and method of use thereof
CN108431544A (en) Equipment for measuring phase component parameters and fibre-optical dispersion and the method for measuring phase component parameters and fibre-optical dispersion
JP5542255B2 (en) Optical fiber length expansion / contraction measurement and correction method and apparatus
JP2657018B2 (en) Optical Connector Return Loss Measurement System
KR100470933B1 (en) Phase shifting point diffraction interferometer using angled end-face optical fiber source
WO2019194188A1 (en) Reflected light measurement device
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
JPH11108614A (en) Light-wave interference measuring instrument
US20240302497A1 (en) Data resolution in lidar systems
JP6447986B1 (en) Reflected light measuring device
US20020051598A1 (en) Method and apparatus for maintaining incident optical signal having low degree of polarization in specific state of polarization
US20240264289A1 (en) Data refinement in optical systems
JPH0961298A (en) Low coherence reflectometer
RU2313066C1 (en) Interferometric mode of measuring the thickness and the values of refraction of transparent objects
CN105841720A (en) A fiber white-light interference demodulator using two parallel reflection planes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees