JPH02140636A - Backscattering light measuring instrument - Google Patents

Backscattering light measuring instrument

Info

Publication number
JPH02140636A
JPH02140636A JP29413288A JP29413288A JPH02140636A JP H02140636 A JPH02140636 A JP H02140636A JP 29413288 A JP29413288 A JP 29413288A JP 29413288 A JP29413288 A JP 29413288A JP H02140636 A JPH02140636 A JP H02140636A
Authority
JP
Japan
Prior art keywords
light
output
optical
measured
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29413288A
Other languages
Japanese (ja)
Inventor
Kazumasa Takada
和正 高田
Juichi Noda
野田 寿一
Masaru Kobayashi
勝 小林
Naoya Uchida
内田 直也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29413288A priority Critical patent/JPH02140636A/en
Publication of JPH02140636A publication Critical patent/JPH02140636A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To attain measurement with high accuracy a backscattering light generated in an optical waveguide by supplying an output of a photodetector to a signal processing part through a differential amplifier. CONSTITUTION:Photodetectors 7, 10 are provided on each of tails T1, T2, and a differential amplifier 11 is provided as a processing means for negating each other the same phase components included in the outputs of the detectors 7, 10. Also, the detector 7 is arranged in the emission end of the tail T1 of a fiber type photocoupler 2, and the detector 10 is arranged in the multiplexed light emission end of a fiber type photocoupler 9. Moreover, the coupler 9 is provided on the tale T2, the emitted light of a light source 1 is coupled to the coupler 2, and also, a multiplexed light from the coupler 2 is emitted to the other tail. Subsequently, the outputs of the detector 7, 10 are supplied to a signal processing part 8 through the amplifier 11. In this state, by subtracting that which is obtained by doubling an output deltaIC2 of the detector 10 from an output deltaIC1 of the detector 7 by the amplifier 11, an intensity noise is erased. In such a manner, a value for showing the relative electric field amplitude of a back Rayleigh scattering light can be measured by a high signal-to-noise ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は先導波路の不連続点の探索に利用する。[Detailed description of the invention] [Industrial application field] The present invention is used to search for discontinuities in a leading wavepath.

特に、光導波路内で生じる後方散乱光を1mm以下の空
間分解能で高精度に測定する装置に関する。
In particular, the present invention relates to a device that highly accurately measures backscattered light generated within an optical waveguide with a spatial resolution of 1 mm or less.

本発明は、先導波路内で生じた後方散乱光に参照光を合
波させてその合波光を測定する後方散乱光測定装置にお
いて、二つの位置で合波光を独立に測定してその出力に
含まれる同相成分を互いに打ち消すことにより、光源か
らの出射光の光強度変動によって生じる信号対雑音比の
劣化を改善するものである。
The present invention provides a backscattered light measurement device that combines a reference light with a reference light generated in a leading waveguide and measures the combined light, in which the combined light is measured independently at two positions and included in the output. By canceling out the in-phase components of the light source, deterioration in the signal-to-noise ratio caused by fluctuations in the light intensity of the light emitted from the light source is improved.

〔従来の技術〕[Conventional technology]

第4図は従来例の後方散乱光測定装置を示すブロック構
成図である。
FIG. 4 is a block diagram showing a conventional backscattered light measuring device.

光源1の出射光は、ファイバ形光結合器2により二つの
光束に分岐される。光源1としては、例えば高輝度発光
ダイオード(S L DSsuperlumi−nes
cent diode)が用いられる。分岐された一方
の光束は、ファイバ形光結合器2の一方の出射端から出
射され、対物レンズ3により平行ビームとなる。この平
行ビームは、移動台5に設けられた可動全反射鏡4で反
射した後、再び対物レンズ3を介してファイバ形光結合
器2に入射する。この光束が参照光として使用される。
The light emitted from the light source 1 is split into two light beams by a fiber type optical coupler 2. As the light source 1, for example, a high brightness light emitting diode (SLDSsuperlumi-nes) is used.
cent diode) is used. One of the branched light beams is emitted from one output end of the fiber-type optical coupler 2, and is turned into a parallel beam by the objective lens 3. This parallel beam is reflected by a movable total reflection mirror 4 provided on a movable table 5, and then enters the fiber optical coupler 2 via the objective lens 3 again. This light beam is used as a reference light.

分岐された他方の光束は、被測定光導波路6に入射する
。この光束により、被測定光導波路6内で後方散乱光が
発生する。被測定光導波路6の各点で生じた後方散乱光
は、再びファイバ形光結合器2に入射し、上述の参照光
と合波される。この合波光を光検出器7により検出する
。信号処理部8は、光検出器7の出力により、被測定光
導波路6内で生じる後方散乱光の強度を求める。
The other branched beam enters the optical waveguide 6 to be measured. This light flux generates backscattered light within the optical waveguide 6 to be measured. The backscattered light generated at each point of the optical waveguide 6 to be measured enters the fiber optical coupler 2 again and is combined with the above-mentioned reference light. This combined light is detected by a photodetector 7. The signal processing unit 8 determines the intensity of backscattered light generated within the optical waveguide 6 to be measured based on the output of the photodetector 7.

可動全反射鏡4を移動させると、参照光の光路長が変化
するため、後方散乱光に対する遅延時間が変化する。こ
れを利用して、被測定光導波路6内の各点を可動全反射
鏡4の位置に対応させ、それぞれの点で生じる後方散乱
光の強度を求めることができる。
When the movable total reflection mirror 4 is moved, the optical path length of the reference light changes, so the delay time for the backscattered light changes. Using this, each point in the optical waveguide 6 to be measured can be made to correspond to the position of the movable total reflection mirror 4, and the intensity of the backscattered light generated at each point can be determined.

可動全反射鏡4の移動による遅延時間の変化量をr、こ
の遅延時間の変化量に対応する被測定光導波路6内の位
置を2とすると、光検出器7の出力は、 I(r) =c  (1+r(2) cos(2πνo
t))−・・・・(1) で表される。ここで、Cは光強度に比例した定数、r’
 (z)は被測定光導波路6内の点2で生じる後方散乱
光の光電場に比例する無次元の値(r(Z)”が相対光
強度を表す)、ν。は可動全反射鏡4の移動にともなっ
て生じるビート周波数である。
Assuming that the amount of change in delay time due to the movement of movable total reflection mirror 4 is r, and the position in optical waveguide 6 to be measured corresponding to this amount of change in delay time is 2, the output of photodetector 7 is I(r) =c (1+r(2) cos(2πνo
t))-...(1) It is expressed as follows. Here, C is a constant proportional to the light intensity, r'
(z) is a dimensionless value proportional to the optical electric field of the backscattered light generated at point 2 in the optical waveguide 6 to be measured (r(Z)'' represents the relative light intensity), and ν is the movable total reflection mirror 4 This is the beat frequency that occurs as the .

したがって、光検出器7の出力に含まれる交流成分の振
幅値を測定することによりr’ (z)の値を求めるこ
とができ、被測定光導波路6で生じる後方散乱光の強度
分布を求めることができる。
Therefore, by measuring the amplitude value of the AC component included in the output of the photodetector 7, the value of r' (z) can be determined, and the intensity distribution of the backscattered light generated in the optical waveguide 6 to be measured can be determined. Can be done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、r (z)の値は通常10−6程度と1に比較
して非常に小さく、光源の出射光の光強度変化によって
生じる雑音に隠されてしまう欠点がある。これを詳しく
説明すると、帯域幅δνで(1)式のビート信号を測定
すると、検波信号は、 δI=c(r’(z)+ηδν)    ・ −・−(
2)となる。ここで、ηは単位帯域幅、単位光パワーあ
たりの相対雑音量であり、光強度雑音を特徴づける量で
ある。
However, the value of r (z) is usually about 10 -6, which is very small compared to 1, and has the disadvantage that it is hidden by noise caused by changes in the light intensity of the light emitted from the light source. To explain this in detail, when the beat signal of equation (1) is measured with a bandwidth δν, the detected signal is δI=c(r'(z)+ηδν) ・ −・−(
2). Here, η is the relative noise amount per unit bandwidth and unit optical power, and is an amount that characterizes optical intensity noise.

このため、従来の装置では高い信号対雑音比で後方散乱
光を測定することができない欠点があった。
For this reason, conventional devices have the disadvantage of not being able to measure backscattered light with a high signal-to-noise ratio.

本発明は、以上の問題点を解決し、光源の光強度変動に
基づく強度雑音による信号対雑音比の劣化を改善し、先
導波路内で生じる後方散乱光を高精度に測定できる後方
散乱光測定装置を提供することを目的とする。
The present invention solves the above problems, improves the deterioration of the signal-to-noise ratio due to intensity noise due to light intensity fluctuations of the light source, and backscattered light measurement that enables highly accurate measurement of backscattered light generated in a leading waveguide. The purpose is to provide equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の後方散乱光測定装置は、後方散乱光と参照光と
が複数の方向に合波され、光検出器が複数の方向の二つ
の方向についてそれぞれ設けられ、信号処理手段に、こ
の二つの光検出器の出力に含まれる同相成分を互いに打
ち消す処理手段を備えたことを特徴とする。
In the backscattered light measurement device of the present invention, the backscattered light and the reference light are multiplexed in a plurality of directions, a photodetector is provided in each of two of the plurality of directions, and the signal processing means is configured to combine the two directions. The present invention is characterized by comprising processing means for mutually canceling in-phase components included in the output of the photodetector.

〔作 用〕[For production]

後方散乱光と参照光とを合波するときに合波光が複数の
方向に出射されることを利用し、その少なくとも二つの
方向の出射光を検出する。この検出出力の同相成分を打
ち消すと、強度雑音の影響が除去され、信号対雑音比が
改善される。
By utilizing the fact that the combined light is emitted in a plurality of directions when the backscattered light and the reference light are combined, the emitted light in at least two directions is detected. By canceling the in-phase component of this detection output, the influence of intensity noise is removed and the signal-to-noise ratio is improved.

〔実施例〕〔Example〕

第1図は本発明第一実施例後方散乱光測定装置のブロッ
ク構成図である。
FIG. 1 is a block diagram of a backscattered light measuring device according to a first embodiment of the present invention.

この装置は、光源1を備え、この光源1の出射光を被測
定光導波路6に入射する入射手段、出射光から参照光を
分岐する光分岐手段および参照光を被測定光導波路6の
入射端に現れる後方散乱光に合波する光合波手段として
ファイバ形光結合器2を備え、後方散乱光と参照光との
光路長差を変化させる光路長差制御手段として対物レン
ズ3および移動台5に設けられた可動全反射鏡4を備え
、ファイバ形光結合器2の出力光を検出する光検出器7
.10を備え、この光検出器7.10の出力から被測定
光導波路6の長手方向における後方散乱光の強度分布を
求める信号処理手段として差動増幅器11および信号処
理部8を備える。
This device includes a light source 1, an input means for inputting light emitted from the light source 1 into an optical waveguide to be measured 6, an optical branching means for branching a reference light from the output light, and an input end of the optical waveguide to be measured 6 for introducing the reference light. A fiber-type optical coupler 2 is provided as an optical multiplexing means for combining the backscattered light appearing in the backscattered light. A photodetector 7 that includes a movable total reflection mirror 4 and detects the output light of the fiber type optical coupler 2.
.. 10, and includes a differential amplifier 11 and a signal processing unit 8 as signal processing means for determining the intensity distribution of backscattered light in the longitudinal direction of the optical waveguide 6 to be measured from the output of the photodetector 7.10.

ファイバ形光結合器2は2人力2出力の構造であり、光
源1から第一のテールT+ に入射した光を第三のテー
ルT3および第四のテールT、から出射するとともに、
第三のテールT3に入射した光と第四のテールT4に入
射した光とを合波して第一のテールT、と第二のテール
T2とから出射する。
The fiber type optical coupler 2 has a two-power, two-output structure, and emits the light incident on the first tail T+ from the light source 1 from the third tail T3 and the fourth tail T.
The light incident on the third tail T3 and the light incident on the fourth tail T4 are combined and emitted from the first tail T and second tail T2.

ここで本実施例の特徴とするところは、光検出器7.1
0が二つのテールT、 、T2のそれぞれについて設け
られ、二つの光検出器7.10の出力に含まれる同相成
分を互いに打ち消す処理手段として差動増幅器11を備
えたことにある。
Here, the feature of this embodiment is that the photodetector 7.1
0 is provided for each of the two tails T, , T2, and a differential amplifier 11 is provided as a processing means for mutually canceling the in-phase components contained in the outputs of the two photodetectors 7.10.

光検出器7はファイバ形光結合器2の第一のテールT1
の出射端に配置され、光検出器10はファイバ形光結合
器9の合波光出射端に配置される。
The photodetector 7 is connected to the first tail T1 of the fiber optic coupler 2.
The photodetector 10 is arranged at the output end of the combined light of the fiber type optical coupler 9.

第二のテールT2にはファイバ形光結合器9が設けられ
、光源1の出射光をファイバ形光結合器2に結合すると
ともに、ファイバ形光結合器2からの合波光を他のテー
ルに出射する。
A fiber type optical coupler 9 is provided in the second tail T2, which couples the light emitted from the light source 1 to the fiber type optical coupler 2, and outputs the combined light from the fiber type optical coupler 2 to another tail. do.

光検出器7.10の出力は差動増幅器11を介して信号
処理部8に供給される。
The output of the photodetector 7.10 is supplied to the signal processing unit 8 via the differential amplifier 11.

光検出器7.10の検出出力は、それぞれ、)c、=(
、(1+r’(Z)cos(2yrνot))Icz=
 C2(1−T’(z) cos(2rr va’t>
)となる。このため、中心周波数ν。、帯域幅δνのフ
ィルタを通過する信号は、 δJc、= C+ (r’(z) cos(2πνat
)+K(t)δν) δIe2= C2(−r’cos(2π°ν。t )+
K(t)δν) となる。ここでK (t)は強度雑音による係数であり
、その二重平均平方根がηに等しい。
The detection outputs of photodetector 7.10 are respectively)c,=(
, (1+r'(Z)cos(2yrνot))Icz=
C2(1-T'(z) cos(2rr va't>
). Therefore, the center frequency ν. , a signal passing through a filter with bandwidth δν is δJc, = C+ (r'(z) cos(2πνat
)+K(t)δν) δIe2=C2(-r'cos(2π°ν.t)+
K(t)δν). Here, K (t) is a coefficient due to intensity noise, and its double mean square root is equal to η.

ここで、光検出器10に入射する合波光は、ファイバ形
光結合器9で三方されているため、C2= 1/2CI である。そこで、差動増幅器11により、光検出器7の
出力δI clから光検出器10の出力δIe2を二倍
したものを減算すると、 δL+  2δIc2= 2 c r r’(z) c
os(2rr vo t )となり、強度雑音の項K 
(t)δνが消去される。
Here, since the combined light incident on the photodetector 10 is split into three directions by the fiber type optical coupler 9, C2=1/2CI. Therefore, by subtracting twice the output δIe2 of the photodetector 10 from the output δIcl of the photodetector 7 using the differential amplifier 11, δL+ 2δIc2=2 c r r'(z) c
os(2rr vo t ), and the intensity noise term K
(t) δν is eliminated.

このようにして、後方レーリ散乱光の相対電場振幅を示
すr’ (z)の値を高い信号対雑音比で測定できる。
In this way, the value of r' (z), which indicates the relative electric field amplitude of the backward Rayleigh scattered light, can be measured with a high signal-to-noise ratio.

実験では、従来例装置に比較して信号対雑音比が2桁改
善された。
In experiments, the signal-to-noise ratio was improved by two orders of magnitude compared to the conventional device.

第2図は本発明第二実施例後方散乱光測定装置のブロッ
ク構成図を示す。
FIG. 2 shows a block diagram of a backscattered light measuring device according to a second embodiment of the present invention.

この実施例装置は、光源1を備え、この光源1の出射光
を被測定光導波路6に入射する入射手段、出射光から参
照光を分岐する光分岐手段および参照光を被測定光導波
路60入射端に現れる後方散乱光に合波する光合波手段
として3人力3出力のファイバ形光結合器12を備え、
後方散乱光と参照光との光路長差を変化させる光路長差
制御手段として対物レンズ3および移動台5に設けられ
た可動全反射鏡4を備え、ファイバ形光結合器12の出
力光を検出する光検出器7.10を備え、この光検出器
7.10の出力から被測定光導波路6の各点における後
方散乱光の強度を求める信号処理手段として差動増幅器
11および信号処理部8を備える。
This embodiment device includes a light source 1, an input means for inputting light emitted from the light source 1 into an optical waveguide to be measured 6, an optical branching means for branching a reference light from the output light, and an optical branching means for inputting the reference light into an optical waveguide to be measured 60. A fiber-type optical coupler 12 with three power outputs is provided as an optical multiplexing means for multiplexing the backscattered light appearing at the end,
An objective lens 3 and a movable total reflection mirror 4 provided on a movable table 5 are provided as optical path length difference control means for changing the optical path length difference between the backscattered light and the reference light, and the output light of the fiber type optical coupler 12 is detected. A differential amplifier 11 and a signal processing unit 8 are provided as signal processing means for determining the intensity of backscattered light at each point of the optical waveguide 6 to be measured from the output of the photodetector 7.10. Be prepared.

ファイバ形光結合器12は、光源1の出射光がテールT
。から入射し、この光をテールT3 、T4およびT、
に出射する。さらに、テールT3に入射した参照光とテ
ールT5に入射した被測定光導波路6の後方散乱光とを
合波し、テールT、およびテールT2に出射する。
The fiber type optical coupler 12 has a tail T
. The light enters the tails T3, T4 and T,
emitted to. Further, the reference light that has entered the tail T3 and the backscattered light of the optical waveguide 6 to be measured that has entered the tail T5 are combined and output to the tail T and the tail T2.

ここで本実施例の特徴とするところは、光検出器7.1
0がテールT+ 、T2の出射端にそれぞれ設けられ、
信号処理手段に二つの光検出器7.10の出力に含まれ
る同相成分を互いに打ち消す処理手段として差動増幅器
11を備えたことにある。
Here, the feature of this embodiment is that the photodetector 7.1
0 are provided at the output ends of the tails T+ and T2, respectively,
The signal processing means includes a differential amplifier 11 as a processing means for canceling out common-mode components contained in the outputs of the two photodetectors 7.10.

差動増幅器11は二つの光検出器7.10の出力の差を
求め、信号処理部8はその値を処理する。
The differential amplifier 11 determines the difference between the outputs of the two photodetectors 7.10, and the signal processing unit 8 processes the value.

本実施例により、第一実施例と同じく信号対雑音比が2
桁改善される。また、光学系が第一実施例に比較して単
純となる。
According to this embodiment, the signal-to-noise ratio is 2 as in the first embodiment.
Improved by orders of magnitude. Furthermore, the optical system is simpler than that of the first embodiment.

第3図は本発明第三実施例後方散乱光測定装置のブロッ
ク構成図を示す。
FIG. 3 shows a block diagram of a backscattered light measuring device according to a third embodiment of the present invention.

この実施例装置は、光源1を備え、この光源1の出射光
を被測定光導波路6に入射する入射手段および出射光か
ら参照光を分岐する光分岐手段としてファイバ形光結合
器2および固定全反射鏡4′を備え、参照光を被測定光
導波路6の入射端に現れる後方散乱光に合波する光合波
手段としてビームスプリッタ13を備え、後方散乱光と
参照光との光路長差を変化させる光路長差制御手段とし
て固定プリズム15および移動台16上に設けられた可
動プリズム14を備え、ファイバ形光結合器12の出力
光を検出する光検出器7.10を備え、この光検出器7
.10の出力から被測定光導波路6の各点における後方
散乱光の強度を求める信号処理手段として差動増幅器1
1および信号処理部8を備える。
This embodiment device includes a light source 1, and a fiber-type optical coupler 2 and a fixed optical fiber as an input means for inputting light emitted from the light source 1 into an optical waveguide 6 to be measured and as an optical branching means for branching a reference light from the emitted light. A reflector 4' is provided, and a beam splitter 13 is provided as an optical combining means for combining the reference light with the backscattered light appearing at the input end of the optical waveguide 6 to be measured, and the optical path length difference between the backscattered light and the reference light is changed. A fixed prism 15 and a movable prism 14 provided on a movable stage 16 are provided as optical path length difference control means, and a photodetector 7.10 for detecting the output light of the fiber type optical coupler 12 is provided. 7
.. A differential amplifier 1 is used as a signal processing means for determining the intensity of backscattered light at each point of the optical waveguide 6 to be measured from the output of the differential amplifier 1.
1 and a signal processing section 8.

ファイバ形光結合器2は、光源lの出射光を分岐して固
定全反射鏡4′と被測定光導波路6とに入射する。固定
全反射鏡4′により反射された参照光と、被測定光導波
路6内の発生した後方散乱光とは、ファイバ形光結合器
2により合波される。
The fiber type optical coupler 2 branches the emitted light from the light source 1 and makes it incident on the fixed total reflection mirror 4' and the optical waveguide 6 to be measured. The reference light reflected by the fixed total reflection mirror 4' and the backscattered light generated in the optical waveguide 6 to be measured are combined by the fiber type optical coupler 2.

ビームスプリッタ13、可動プリズム14および固定プ
リズム15はバルク形マイケルソン干渉計を構成する。
Beam splitter 13, movable prism 14, and fixed prism 15 constitute a bulk Michelson interferometer.

ファイバ形光結合器2の出射光は、対物レンズにより平
行ビームとなり、ビームスプリッタ13に入射する。こ
の入射光は、ビームスプリッタ13により二つに分岐し
、可動プリズム14と固定プリズム15とでそれぞれ折
り返されたて再び合波する。合波光は二つの方向に出射
される。
The light emitted from the fiber-type optical coupler 2 is converted into a parallel beam by an objective lens, and enters a beam splitter 13 . This incident light is split into two by a beam splitter 13, folded back by a movable prism 14 and a fixed prism 15, and then combined again. The combined light is emitted in two directions.

ここで本実施例の特徴とするところは、光検出器7.1
0がビームスプリッタ13の二つの出射方向についてそ
れぞれ設けられ、信号処理手段に、この二つの光検出器
7.10の出力に含まれる同相成分を互いに打ち消す処
理手段を備えたことにある。
Here, the feature of this embodiment is that the photodetector 7.1
0 is provided for each of the two emission directions of the beam splitter 13, and the signal processing means is provided with a processing means for mutually canceling the in-phase components contained in the outputs of the two photodetectors 7.10.

被測定光導波路6の後方散乱光と参照光とは、ファイバ
形光結合器2により一度合波される。この合波光をビー
ムスプリッタ13で分岐すると、双方に後方散乱光の成
分が含まれる。しかし、その強度が参照光に比較して十
分に小さいため、可動プリズム14側に分岐された光を
参照光として使用できる。このとき光検出器7.10の
出力は、(3)式においてC,=02とした場合と同等
である。このため、差動増幅器11により両出力の差を
とることにより、強度雑音を低減できる。
The backscattered light of the optical waveguide 6 to be measured and the reference light are once combined by the fiber type optical coupler 2. When this combined light is split by the beam splitter 13, both components contain backscattered light components. However, since its intensity is sufficiently lower than that of the reference light, the light branched toward the movable prism 14 can be used as the reference light. At this time, the output of the photodetector 7.10 is equivalent to the case where C,=02 in equation (3). Therefore, by taking the difference between the two outputs using the differential amplifier 11, intensity noise can be reduced.

この実施例ではさらに、ファイバ形光結合器2の出射端
にファイバ形位相変調器17を設け、これにより参照光
を位相変調する。ファイバ形位相変調器17は光ファイ
バをPZT円筒形電歪振動子に巻きつけた構造をもつ。
In this embodiment, a fiber type phase modulator 17 is further provided at the output end of the fiber type optical coupler 2, thereby phase modulating the reference light. The fiber phase modulator 17 has a structure in which an optical fiber is wound around a PZT cylindrical electrostrictive vibrator.

このファイバ形位相変調器17に交流電圧を加えること
により、ファイバ内を伝撤する参照光を位相変調する。
By applying an alternating current voltage to this fiber type phase modulator 17, the reference light traveling within the fiber is phase modulated.

このとき、可動プリズム14の移動とともに生じる干渉
強度信号のうち、ファイバ形位相変調器17の駆動周波
数成分のみを検波する。これにより、第一実施例および
第二実施例と同様に、参照光と被測定光導波路6内の各
点で生じた後方散乱光との干渉成分のみを抽出すること
ができる。
At this time, only the driving frequency component of the fiber phase modulator 17 is detected among the interference intensity signals generated as the movable prism 14 moves. Thereby, as in the first and second embodiments, only the interference component between the reference light and the backscattered light generated at each point in the optical waveguide 6 to be measured can be extracted.

実験では、第一実施例および第二実施例と同じく信号対
雑音比が2桁改善された。また、第一実施例および第二
実施例では、ファイノく形光結合器を用いるための光強
度の損失や、二つの出力の直流成分が必ずしも同一の値
とならないことがあった。これに対して本実施例の場合
には、マイケルソン干渉計から自然に得られる二つの出
力を使用するため、余分な損失がなく、しかも測定系が
単純となる利点がある。
In the experiment, the signal-to-noise ratio was improved by two orders of magnitude as in the first and second embodiments. Furthermore, in the first embodiment and the second embodiment, there is a loss in optical intensity due to the use of the Phino rectangular optical coupler, and the DC components of the two outputs may not necessarily have the same value. On the other hand, in the case of this embodiment, since two outputs naturally obtained from the Michelson interferometer are used, there is no extra loss and there is an advantage that the measurement system is simple.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の後方散乱光測定装置は、
光導波路内で生じた後方散乱光の光強度を測定する場合
の主要雑音源である光源出射光の光強度雑音を従来に比
較して2桁以上低減できる。
As explained above, the backscattered light measuring device of the present invention includes:
The light intensity noise of light emitted from a light source, which is a main noise source when measuring the light intensity of backscattered light generated within an optical waveguide, can be reduced by more than two orders of magnitude compared to the conventional method.

したがって、方向散乱光の強度分布を高い信号対雑音比
で測定できる効果がある。
Therefore, there is an effect that the intensity distribution of directionally scattered light can be measured with a high signal-to-noise ratio.

本発明の後方散乱光測定装置は、光集積回路その他の先
導波路の障害点や散乱点その他・の不連続点の探索に用
いて、その位置を非常に精密に探索できる効果がある。
The backscattered light measuring device of the present invention can be used to search for discontinuous points such as failure points, scattering points, etc. in optical integrated circuits and other leading waveguides, and has the effect of being able to search for their positions very precisely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第一実施例後方散乱光測定装置のブロッ
ク構成図。 第2図は本発明第二実施例後方散乱光測定装置のブロッ
ク構成図。 第3図は本発明第三実施例後方散乱光測定装置のブロッ
ク構成図。 第4図は従来例後方散乱光測定装置のブロック構成図。 1・・・光源、2.9.12・・・ファイバ形光結合器
、3・・・対物レンズ、4・・・可動全反射鏡、4′・
・・固定全反射鏡、5.16・・・移動台、6・・・被
測定光導波路、7.10・・・光検出器、8・・・信号
処理部、11・・・差動増幅器、13・・・ビームスプ
リフタ、14・・・可動プリズム、15・・・固定プリ
ズム、17・・・ファイバ形位相変調器。 忽二芙砧例 ′If:J2  図 ノ5−−−3宍5]コ万十pり 肩 1 図
FIG. 1 is a block diagram of a backscattered light measuring device according to a first embodiment of the present invention. FIG. 2 is a block diagram of a backscattered light measuring device according to a second embodiment of the present invention. FIG. 3 is a block diagram of a backscattered light measuring device according to a third embodiment of the present invention. FIG. 4 is a block diagram of a conventional backscattered light measuring device. 1... Light source, 2.9.12... Fiber type optical coupler, 3... Objective lens, 4... Movable total reflection mirror, 4'.
... Fixed total reflection mirror, 5.16... Moving table, 6... Optical waveguide to be measured, 7.10... Photodetector, 8... Signal processing unit, 11... Differential amplifier , 13... Beam splitter, 14... Movable prism, 15... Fixed prism, 17... Fiber type phase modulator. If: J2 Figure No. 5 --- 3 Figure 5] Komanju poop shoulder 1

Claims (1)

【特許請求の範囲】 1、光源と、 この光源の出射光を被測定光導波路に入射する入射手段
と、 前記出射光から参照光を分岐する光分岐手段と、この参
照光を前記被測定光導波路の入射端に現れる後方散乱光
に合波する光合波手段と、 前記後方散乱光と前記参照光との光路長差を変化させる
光路長差制御手段と、 前記光合波手段の出力光を検出する光検出器と、この光
検出器の出力から前記被測定光導波路の長手方向におけ
る後方散乱光の強度分布を求める信号処理手段と を備えた後方散乱光測定装置において、 前記光合波手段は複数の方向に合波光を出射する構造で
あり、 前記光検出器は前記複数の方向の二つの方向についてそ
れぞれ設けられ、 前記信号処理手段はこの二つの光検出器の出力に含まれ
る同相成分を互いに打ち消す処理手段を含む ことを特徴とする後方散乱光測定装置。
[Scope of Claims] 1. A light source, an input means for inputting light emitted from the light source into the optical waveguide to be measured, an optical branching means for branching a reference light from the emitted light, and a light branching means for branching the reference light from the output light to the optical waveguide to be measured. Optical multiplexing means for multiplexing backscattered light appearing at the input end of a wavepath; Optical path length difference control means for changing the optical path length difference between the backscattered light and the reference light; and Detecting the output light of the optical multiplexing means. A backscattered light measuring device comprising: a photodetector for detecting a signal; and a signal processing means for determining the intensity distribution of backscattered light in the longitudinal direction of the optical waveguide to be measured from the output of the photodetector, wherein the plurality of optical multiplexing means The structure is such that the combined light is emitted in a direction, the photodetectors are provided in two of the plurality of directions, and the signal processing means converts the in-phase components included in the outputs of the two photodetectors to each other. A backscattered light measuring device comprising a canceling processing means.
JP29413288A 1988-11-21 1988-11-21 Backscattering light measuring instrument Pending JPH02140636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29413288A JPH02140636A (en) 1988-11-21 1988-11-21 Backscattering light measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29413288A JPH02140636A (en) 1988-11-21 1988-11-21 Backscattering light measuring instrument

Publications (1)

Publication Number Publication Date
JPH02140636A true JPH02140636A (en) 1990-05-30

Family

ID=17803715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29413288A Pending JPH02140636A (en) 1988-11-21 1988-11-21 Backscattering light measuring instrument

Country Status (1)

Country Link
JP (1) JPH02140636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043069A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
WO1998043068A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
WO2004079313A1 (en) * 1993-11-17 2004-09-16 Isao Tokumoto Michelson interferometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186830A (en) * 1985-02-08 1986-08-20 エステイーシー・ピーエルシー Coherent homodyne reflectometer
JPS63196829A (en) * 1987-02-10 1988-08-15 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for searching fault point of light waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186830A (en) * 1985-02-08 1986-08-20 エステイーシー・ピーエルシー Coherent homodyne reflectometer
JPS63196829A (en) * 1987-02-10 1988-08-15 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for searching fault point of light waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079313A1 (en) * 1993-11-17 2004-09-16 Isao Tokumoto Michelson interferometer
WO1998043069A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
WO1998043068A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
US6198540B1 (en) 1997-03-26 2001-03-06 Kowa Company, Ltd. Optical coherence tomography have plural reference beams of differing modulations

Similar Documents

Publication Publication Date Title
US4799797A (en) Coherence multiplexing of optical sensors
US9976843B2 (en) Multiscale distance measurement with frequency combs
US5293215A (en) Device for interferometric detection of surface structures
JPH01503172A (en) Method and apparatus for two-wavelength interferometry with optical heterodyning and use for position or distance measurement
KR910000604B1 (en) Improved fiber optical sensor for detecting very small displacements of a surface
JPH09257415A (en) Optical fiber sensor
US11714167B2 (en) LIDAR adapter for use with LIDAR chip
JPH03180704A (en) Laser interference gauge
EP1785691A2 (en) Interferometry system
JPH02140636A (en) Backscattering light measuring instrument
US4491413A (en) Fiber optic gyroscope with alternating output signal
JPH07120211A (en) Interference length measuring instrument
JPH0695114B2 (en) Voltage detector
JP2726881B2 (en) Backscattered light measurement device
US5196695A (en) Fiber-optic sensor having near-field and remote-field signals
JP6204272B2 (en) Distance measuring device
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
CA2552465C (en) Optical apparatus and method for distance measuring
JP3111333B2 (en) Light source means
RU2117252C1 (en) Device measuring total vector of angular velocity of moving object
JPH02140639A (en) Backscattering light measuring instrument
JPH05264687A (en) Optical magnetic field sensor
JP2012018156A (en) Surface shape measurement apparatus and surface shape measurement method
JPH01313703A (en) Disturbance elimination type heterodyne interference method optical fiber sensor
JPH01320489A (en) Method and instrument for measuring distance