JPH02140577A - Cold storage refrigerator - Google Patents

Cold storage refrigerator

Info

Publication number
JPH02140577A
JPH02140577A JP29425388A JP29425388A JPH02140577A JP H02140577 A JPH02140577 A JP H02140577A JP 29425388 A JP29425388 A JP 29425388A JP 29425388 A JP29425388 A JP 29425388A JP H02140577 A JPH02140577 A JP H02140577A
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigerator
signal
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29425388A
Other languages
Japanese (ja)
Inventor
Nobuaki Arakawa
展昭 荒川
Kenichi Iizuka
健一 飯塚
Makoto Ishii
誠 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29425388A priority Critical patent/JPH02140577A/en
Publication of JPH02140577A publication Critical patent/JPH02140577A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/123Sensors measuring the inside temperature more than one sensor measuring the inside temperature in a compartment

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To perform variable control of the rotation speed of a compressor motor in a refrigerating cycle by a method wherein wiring, resistances and semiconductors, except energy accumulation passive elements having so large capacity that it is impossible to integrate them into an integrated circuit, are integrated into a monolithic integrated circuit which is formed on a substrate together with a signal control circuit that controls the rotating speed of the compressor motor according to changes in the temperature in a compartment. CONSTITUTION:A power transformer 1, a compressor temperature detector 4 of a signal controller 48 are enclosed in a metallic box 10. A power source line 51 that connects to a commercial power source, and a signal line 52 that connects to a microcomputer 8 of the signal controller 48 are output as outside connection lines. The signal line 51 outputs a speed instruction and a start instruction of a compressor motor 2 by which rotation speed control is carried out so as to increase the rotating speed of the compressor motor 2 when the temperature in a compartment increases, and to reduce it when the temperature in the compartment decreases. In case the capacity of the signal controller 48 is small, it can be enclosed in the metallic box 10 as it can be integrated into a monolithic integrated circuit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は冷蔵庫の運転制御装置に係り、特に冷凍サイク
ルの圧縮機用電動機の回転数を可変制御するものに好適
な冷却装置の制御装置及び実装方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a refrigerator operation control device, and particularly to a cooling device control device and a device suitable for variable control of the rotation speed of a compressor motor in a refrigeration cycle. It concerns the implementation method.

[従来の技術] 従来の冷蔵庫においては、圧縮機駆動用として一般に一
定回転数のみを発生する誘導電動機を使用しているため
、温度負荷に応じた冷却能力が得られず、該温度負荷が
大きい場合は目標温度に到達する時間が長くなりなかな
か冷えない。逆に温度負荷が小さい場合は、必要以上の
冷却能力により目標温度からアンダーシュートして頻繁
に断続運転を繰り返し、温度の変化幅が大きくなったり
、無、駄に電力を消費していた。これを改善するために
、特開昭61−070:163号で開示している様な圧
縮機回転数を制御し得る駆動回路を備え、温度負荷が人
の時は圧縮機器の回転数を最大とし、温度負荷が小の時
は温度負荷に応じた小回転数に制御するものが出現した
[Prior art] Conventional refrigerators generally use an induction motor that generates only a constant number of rotations to drive the compressor, so it is not possible to obtain a cooling capacity that corresponds to the temperature load, and the temperature load is large. In this case, it takes a long time to reach the target temperature, making it difficult to cool down. On the other hand, when the temperature load is small, the cooling capacity exceeds the required level, resulting in undershoot from the target temperature and frequent intermittent operation, resulting in large temperature fluctuations and wasted power consumption. In order to improve this, a drive circuit that can control the compressor rotation speed as disclosed in Japanese Patent Application Laid-Open No. 61-070:163 is provided, and when the temperature load is human, the rotation speed of the compression equipment is maximized. When the temperature load is small, a system has emerged that controls the rotation speed to a small level according to the temperature load.

この圧縮機用電動機の制御回路は、商用電源を整流後、
トランジスタを用いたブリッジ形インバータで構成され
、該トランジスタは、マイコンにより転流信号が印加さ
れ、圧縮機内電動機の回転数を制御する。これらの制御
回路は従来、個別部品の半導体素子で配線基板上に構成
されていた。
The control circuit for this compressor motor rectifies the commercial power supply,
It is composed of a bridge type inverter using transistors, and a commutation signal is applied to the transistors by a microcomputer to control the rotation speed of the motor in the compressor. Conventionally, these control circuits have been constructed using individual semiconductor elements on a wiring board.

[発明が解決しようとする課題] この配線基板回路は商用電源を取扱う所謂電力型の回路
であるので比較的大型で又放熱も考慮しなければならな
いと云う第1の課題があった。
[Problems to be Solved by the Invention] The first problem is that this wiring board circuit is a so-called power type circuit that handles commercial power, so it is relatively large and heat radiation must be taken into consideration.

そして、特開昭61−213592号に記載の様に、圧
縮機回転数を制御し得るこの制御回路は冷蔵庫上面に配
置し、冷蔵庫下部にある圧縮機とは複数の配線を介して
接続されていた。
As described in Japanese Patent Application Laid-Open No. 61-213592, this control circuit that can control the rotation speed of the compressor is placed on the top of the refrigerator, and is connected to the compressor located at the bottom of the refrigerator via multiple wires. Ta.

従って配線の接続作業が複雑化するとともに配線間の相
互インダクタンス及び浮遊容量のため、雑音が大きくな
る第2の問題があった。
Therefore, there is a second problem in that the wiring connection work becomes complicated and noise increases due to the mutual inductance and stray capacitance between the wirings.

また能力制御の出来るこの種冷蔵庫は、圧縮機駆動用に
回転数を連続的に可変速制御できる電動機を使用してい
るので、目標温度と実際の温度との差を温度負荷として
検出する回路手段と急速冷凍指令手段を設け、温度負荷
が大きい場合は急速冷凍指令により圧縮機を最高回転数
に冷却能力を増大し、温度負荷が小さい場合は温度負荷
検出手段により、該温度負荷に応じた回転数に制御して
適正な冷却能力を得ている。
In addition, this type of refrigerator that can control capacity uses an electric motor that can continuously control the rotation speed to drive the compressor, so there is a circuit that detects the difference between the target temperature and the actual temperature as a temperature load. When the temperature load is large, the quick freezing command increases the cooling capacity of the compressor to the maximum rotation speed, and when the temperature load is small, the temperature load detection means increases the cooling capacity according to the temperature load. Appropriate cooling capacity is obtained by controlling the number of

しかしながら、実際の冷蔵庫は、第8図に示す様に冷凍
室38や冷蔵室39以外にチルド保存室41や氷温保存
水40及び野菜室42など貯蔵温度を種々指定する食品
が増え、かつ、これらの貯蔵室は、1つの圧縮機3で冷
凍サイクル44内の冷媒を循環させ、冷凍室のファンモ
ータ43にて矢印の冷気47を各1佇蔵室に送っている
、従って各貯蔵室は、冷気の通風路でつながっており、
ダンパ46等で各貯蔵室の温度を制御している。そのた
め、各貯蔵室の温度は希望する温度に対し3℃程度の温
度幅をもっているばかりでなく、また、扉の開閉を行っ
た際に庫内温度が上昇し、設定温度に安定するまでに時
間を要するため、食品の保存に支障があった。また、野
菜室に保存しである野菜のにおいが冷凍室まで到り、氷
に野菜のにおいがつくという欠点もあった。さらに除霜
においては、圧縮機用電動機の回転数によって蒸発器へ
の着霜スピードも変化するため、所定運転時間当りの着
霜量も一定とはかぎらないが、一番のポイントは、野菜
室の湿気が冷気の通風路から冷蔵庫全体に行き渡り、着
霜しやすいという第3の課題があった。
However, as shown in FIG. 8, in actual refrigerators, in addition to the freezing compartment 38 and the refrigerator compartment 39, there are an increasing number of foods that have various storage temperatures specified, such as a chilled storage compartment 41, frozen storage water 40, and vegetable compartment 42. In these storage compartments, one compressor 3 circulates the refrigerant in a refrigeration cycle 44, and a fan motor 43 in the freezer compartment sends cold air 47 as indicated by the arrow to each storage compartment.Therefore, each storage compartment , are connected by a cold air ventilation path,
The temperature of each storage chamber is controlled by a damper 46 or the like. Therefore, the temperature in each storage room not only has a temperature range of about 3℃ relative to the desired temperature, but also when the door is opened and closed, the internal temperature rises, and it takes a long time to stabilize at the set temperature. This caused problems in food preservation. Another drawback was that the odor of vegetables stored in the vegetable compartment reached the freezer compartment, resulting in the odor of vegetables being attached to the ice. Furthermore, when defrosting, the speed of frosting on the evaporator changes depending on the rotation speed of the compressor motor, so the amount of frosting per given operating time is not always constant. The third problem was that the moisture spread throughout the refrigerator from the cold air ventilation ducts, making it easy for frost to form.

[課題を解決するための手段] 上記課題の第1は商用電源を駆動源とした圧縮機用電力
変換部の集積回路化が出来ない容量の大きいエネルギー
蓄積骨!’/J素子を除いた配線、抵抗、半導体部をモ
ノリシック集積回路化し、庫内温度の変化により圧縮機
用電動機の回転数の制御を行う信号制御部と共に回路基
板に形成する。このモノリシック集積回路は誘電体分離
法により、高耐圧化された特殊な集積回路であるが、近
年この技術が確立されてきている。この誘電体分離技術
は、pn接合分離技術に比へて素子間がvI誘電体より
完全に絶縁分離出来、電圧を上げてもラッチアップFT
1.象が発生しないため1本発明による商用電源を体動
源とした数100Vの圧縮機用電動機の電力変換部に好
適である。従って該電力変換部の基板面積を大幅に縮小
出来、該信号制御部といっしょにもしくは、該電力変換
部単体で回路基板に形成し回路の小形化を図り、該基板
を小形の金属箱に収容する事により解決した。
[Means for Solving the Problems] The first of the above problems is the large capacity energy storage structure that cannot be integrated into an integrated circuit for the power converter for a compressor using a commercial power source as a drive source! The wiring, resistor, and semiconductor section excluding the '/J element are made into a monolithic integrated circuit, and formed on a circuit board together with a signal control section that controls the rotation speed of the compressor motor according to changes in the temperature inside the refrigerator. This monolithic integrated circuit is a special integrated circuit that has a high breakdown voltage using dielectric isolation, and this technology has been established in recent years. Compared to pn junction isolation technology, this dielectric isolation technology allows for more complete isolation between elements using the vI dielectric, and even when the voltage is increased, latch-up FT
1. This invention is suitable for the power conversion section of a compressor motor of several hundreds of volts using a commercial power source as a body motion source. Therefore, the board area of the power conversion section can be significantly reduced, and the power conversion section can be formed on a circuit board together with the signal control section or alone to reduce the size of the circuit, and the board can be housed in a small metal box. It was resolved by doing this.

尚、該電力慄動部をモノシリツク化する際においては、
数mm角のチップにパワー半導体素子を構成するため、
素子の損失をできるだけ少なくし、発熱をおさえる技術
が必要である。また、パワー半導体素子の効率を向上さ
せるため、MO3F[ETやIC;BT等の素子が使用
されるが、これらの素子を駆動させるための電源が必要
となる。従って、チップ内の回路で電源を作り、外部か
らの供給電源を少なくすることも必要である。
In addition, when converting the power oscillating part into a monolithic structure,
In order to configure a power semiconductor element on a chip of several mm square,
Technology is needed to minimize element loss and suppress heat generation. Further, in order to improve the efficiency of power semiconductor elements, elements such as MO3F[ET, IC; BT, etc. are used, but a power source is required to drive these elements. Therefore, it is necessary to generate power using a circuit within the chip and reduce the amount of power supplied from the outside.

この制御装置は、圧縮機用電動機の巻線と接続されるが
、この巻線は圧縮機の密閉端子を介して外部である該制
御装置と接続される。そこで該圧縮機の密閉端子に該制
御装置をプラグインタイブで直接取り付けられる様に該
制御装置の収納された金属箱にも端子を設ける。従って
従来複数の配線で該圧縮機と該制御装置を接続していた
が、この配線が排除出来る。
This control device is connected to a winding of a compressor motor, and this winding is connected to the external control device via a sealed terminal of the compressor. Therefore, a terminal is also provided in the metal box in which the control device is housed so that the control device can be directly attached to the sealed terminal of the compressor with a plug-in type. Therefore, conventionally the compressor and the control device were connected by a plurality of wires, but this wire can be eliminated.

また、圧縮機の温度検出においては、該制御装置内に温
度検出器を備え、該制御装置を直接圧縮(幾に取り付け
たことにより、この温度検出器が圧縮機自体の温度を直
11fllることになり、従来使用していたサーミスタ
等険出素子までの配線が不用になり、上記第2の課題が
M、/1′1する。
In addition, when detecting the temperature of the compressor, a temperature detector is provided in the control device, and the control device is attached to the compressor directly, so that the temperature sensor directly detects the temperature of the compressor itself. This eliminates the need for wiring to exposed elements such as thermistors, which were conventionally used, and the second problem mentioned above is reduced to M,/1'1.

また、貯蔵室において、設定温度に対して実際の温度は
±2℃程度の温度幅があり、また扉の開閉により庫内温
度が上昇し設定温度に安定するのに時間がかかるといっ
た問題については、各貯蔵室もしくは、比較的庫内温度
が等しい貯蔵室ごとに独立させ、各々の貯蔵室毎に小形
圧縮機を備え、独立に温度制御を行うことにより、各貯
蔵室の温度コントロールが容易となる。この際、該制御
装置は、該圧縮機と対に各貯蔵室ごとに設けても良いし
、該制御装置を1つで各貯蔵室に備えられた該圧縮機を
制御しても良い。尚、圧縮機の小形化に伴い、圧縮機用
電動機を高速化し出力を増加させる。
In addition, in the storage room, the actual temperature has a temperature range of about ±2℃ compared to the set temperature, and the internal temperature rises when the door is opened and closed, and it takes time to stabilize at the set temperature. By making each storage room or storage room with a relatively equal internal temperature independent, each storage room is equipped with a small compressor, and the temperature is controlled independently, making it easy to control the temperature of each storage room. Become. At this time, the control device may be provided in each storage chamber in pairs with the compressor, or one control device may control the compressor provided in each storage chamber. As the compressor becomes smaller, the speed of the compressor motor is increased to increase the output.

また、冷凍室の氷に野菜のにおいがつく問題については
、野菜室のみ独立させ、冷凍室と完全に遮断して温度制
御することにより達成出来る。各貯蔵室に備えられた蒸
発器の着霜についても、前述した様に野菜室のみ独立さ
せて温度制御することにより、野菜室の湿気が他の貯蔵
室に移動しないため、蒸発器の着霜が少なくなり、除霜
時間が短、1111iされる。以上により第3の課題も
解消出来る。
Furthermore, the problem of vegetable odor on the ice in the freezer compartment can be solved by making the vegetable compartment independent and completely shutting it off from the freezer compartment to control the temperature. As for frosting on the evaporator installed in each storage room, as mentioned above, by controlling the temperature of only the vegetable compartment independently, the moisture in the vegetable compartment does not move to other storage rooms, so frosting on the evaporator does not occur. is reduced, and the defrosting time is shortened to 1111i. The third problem can also be solved by the above.

[目   的] 本発明升目的は上記第1、第2、第3の課題を解消しつ
つ多室形冷蔵庫を提供するにある。
[Objective] The object of the present invention is to provide a multi-chamber refrigerator while solving the first, second, and third problems mentioned above.

[作   用] 本発明に於いては先づ商用電源を駆動源とした圧縮機用
電力変換部の集積回路化が出来ない容量の大きいエネル
ギー蓄積受動素子を除いた配線、抵抗、半導体部を誘電
体分離法によりモノリシック集積回路化し、基板面積を
大幅に縮小して回路の小形化を図る。また、冷蔵庫にお
いては、圧縮機用可変速駆動電動機の最大回転数を増加
させることにより、圧縮機をより小形化するため省スペ
ースの冷却駆動装置となり、各々独立した11?蔵室に
圧縮機と該電力変換部及び該信号制御部を夫々備え得る
。この様にして各々のIt?蔵室を独立に温度制御出来
るため、貯蔵室の温度コントロールが容易となり、また
扉の開閉時に庫内温度が上昇しても、各貯蔵室ごとに圧
縮機が能力可変を行うため、設定温度に早く安定する。
[Function] In the present invention, first, the wiring, resistors, and semiconductor parts, except for the large-capacity energy storage passive elements that cannot be integrated into an integrated circuit, of the power conversion section for a compressor that uses a commercial power source as a drive source, are dielectrically connected. By using the body separation method to create a monolithic integrated circuit, we can significantly reduce the board area and miniaturize the circuit. In addition, in refrigerators, by increasing the maximum rotation speed of the variable speed drive motor for the compressor, the compressor can be made more compact, resulting in a space-saving cooling drive device, each with an independent 11? The storage room may be provided with a compressor, the power converter, and the signal controller, respectively. In this way each It? Since the temperature of each storage room can be controlled independently, it is easy to control the temperature of the storage room.Also, even if the temperature inside the storage room rises when the door is opened or closed, the compressor capacity of each storage room is varied, so the temperature will not reach the set temperature. Stabilize quickly.

このため、食品の品質保存が向上する。Therefore, the quality preservation of food is improved.

また、野菜室のみ独立させて温度制御することにより、
野菜室の湿気が他のfl?蔵室に移動しないため、蒸発
器の若霜が少なくなる。又冷凍室の氷にも野菜室及び他
の貯蔵室のにおいがうつらず味覚の良い氷を作ることが
出来る。
In addition, by controlling the temperature of the vegetable compartment independently,
Is the humidity in the vegetable room from another fl? Since it does not move to the storage room, there is less young frost in the evaporator. Moreover, the ice in the freezer compartment does not carry odors from the vegetable compartment or other storage compartments, making it possible to make ice with a good taste.

また本発明に於いては上記モノリシック化した集積回路
は金属ケースに収納し該ケースを圧縮機ケースに直接ピ
ン接続乃至はプラグイン接続で取り付けた事により、金
属ケース温度が圧縮機ケース温度として測り得るので圧
縮機用側温サーミスタをケース外に引き出す必要がなく
、且つ集積回路と圧縮機との接続配線も全くシールドさ
れた中でなされるのでノイズを取り込むおそれを皆無と
なし得る。
Furthermore, in the present invention, the monolithic integrated circuit is housed in a metal case, and the case is attached to the compressor case by direct pin connection or plug-in connection, so that the metal case temperature can be measured as the compressor case temperature. Therefore, there is no need to pull out the compressor side temperature thermistor outside the case, and since the connection wiring between the integrated circuit and the compressor is completely shielded, there is no risk of introducing noise.

この効果は前記独立多室型冷蔵庫に於いては特に有効で
ある。何となれば多数の圧縮機に対する多数の信号制御
回路が同一の冷蔵庫内に接近配置されろ事になるので信
号配線間の干渉が起るからである。
This effect is particularly effective in the independent multi-chamber refrigerator. This is because a large number of signal control circuits for a large number of compressors are placed close to each other in the same refrigerator, causing interference between signal wirings.

[実 施 例コ 以下、本発明の一実施例を図により説明する。[Implementation example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は冷蔵庫及び圧縮機駆動用制御回路の4W成を示
す。圧縮機用電力変換部1は、力率改善用リアクタ13
、整流回路6、平滑コンデンサ14、インバータ部5、
電流検出抵抗55、及び制御回路7から成り、信号制御
部48は、マイコン8゜庫内温度検出器49、圧縮機温
度検出器4、及びマイコン制御回路54から、構成され
る。ここで個々の回路について詳細に説明する。整流回
路6はダイオード15〜18で構成され、商用電源12
を整流し、インバータ部5は還流ダイオード19〜24
とトランジスタ25〜30で電圧形ブリッジ結線になっ
ており、圧縮813の駆動用電動機2に接続される。制
御回路7はインバータ部5をドライブするパワートラン
ジスタや、過電流や温度から素子を保護する回路であり
、マイコン8と信号線により接続されている。マイコン
制御回路54は、マイコン8を制御するための回路であ
る。
FIG. 1 shows a 4W configuration of a control circuit for driving a refrigerator and a compressor. The compressor power conversion unit 1 includes a power factor improvement reactor 13
, rectifier circuit 6, smoothing capacitor 14, inverter section 5,
The signal control unit 48 is composed of a current detection resistor 55 and a control circuit 7 , and a microcomputer 8° internal temperature detector 49 , a compressor temperature detector 4 , and a microcomputer control circuit 54 . Here, individual circuits will be explained in detail. The rectifier circuit 6 is composed of diodes 15 to 18, and is connected to a commercial power supply 12.
The inverter section 5 has freewheeling diodes 19 to 24.
and transistors 25 to 30 form a voltage bridge connection, and are connected to the drive motor 2 of the compression 813. The control circuit 7 is a power transistor that drives the inverter section 5 and a circuit that protects the elements from overcurrent and temperature, and is connected to the microcomputer 8 by a signal line. The microcomputer control circuit 54 is a circuit for controlling the microcomputer 8.

上記回路の中で誘電体分離法によりモノリシック集積回
路化出来る素子は、整流回路6、インバータ部5、電流
検出抵抗55.及び制御回路7である。力率改善用リア
クタ13や、平滑コンデンサ14は、容量の大きいエネ
ルギー素子であるため、モノリシック隼積回路化が困難
である。また。
In the above circuit, the elements that can be monolithically integrated using the dielectric separation method are the rectifier circuit 6, the inverter section 5, the current detection resistor 55. and a control circuit 7. Since the power factor improvement reactor 13 and the smoothing capacitor 14 are energy elements with a large capacity, it is difficult to form them into a monolithic circuit. Also.

整流回路6は単に電流を整流するだけであるので、容量
によってモノシリツク集積回路の面積が増えるため、集
積化しない方が良い場合もある。本発明の一実施例では
、電力変換部のみをモノリシック化しているが、一般に
マイコン8が使用されている信号制御部についても、容
量が小さければモノリシック化が可能である。
Since the rectifier circuit 6 simply rectifies current, the area of the monolithic integrated circuit increases depending on the capacitance, so it may be better not to integrate it. In one embodiment of the present invention, only the power conversion section is made monolithic, but the signal control section, which generally uses the microcomputer 8, can also be made monolithic if its capacity is small.

ここで誘電体分離法について若干説明しておく。Here, we will briefly explain the dielectric separation method.

最近、大電流を扱える出力素子と、これを邸動制御する
回路、更に電流、電圧に対する保護機能回路等をモノリ
シック化したパワーICの開発が進められている。従来
のpn接合による分離技術は。
Recently, the development of power ICs has been progressing in which monolithic output elements capable of handling large currents, circuits for controlling the operation of the output elements, and protection function circuits for currents and voltages are integrated. Conventional isolation technology using pn junctions.

電圧を増加させていくとランチアップ現象が発生し、通
常100■以上では信頼性が確保出来なかった。そこで
誘電体分離技術により素T間の良好な絶蒜分菊を行い、
耐圧を数100v以上確保させ、商用電源でも使用可能
となった。
As the voltage was increased, a launch-up phenomenon occurred, and reliability could not normally be ensured above 100 µ. Therefore, we used dielectric separation technology to create a good separation between the element Ts.
Withstand voltage of several hundred volts or more, it can be used even with commercial power supply.

第2図に誘電体分は基板の集積回路断面図を示す。これ
は基板中の多結晶シリコン31中に縦形のパワー素子3
2や、ディジタル回路33及び、駆動回路34を形成し
、アルミ配線36で素子間を接続する。これらの回路と
多結晶シリコン31の間及び回路間に誘電体の酸化ケイ
素35で分踵され素子間の耐圧を確保している。
FIG. 2 shows a sectional view of the integrated circuit of the dielectric substrate. This is a vertical power element 3 in a polycrystalline silicon 31 in a substrate.
2, a digital circuit 33, and a drive circuit 34 are formed, and the elements are connected with aluminum wiring 36. Dielectric silicon oxide 35 is provided between these circuits and the polycrystalline silicon 31 and between the circuits to ensure breakdown voltage between the elements.

第3図は圧縮機と圧縮機用電力変換部を収容した金属箱
の接続図、第4図は上記接続部を拡大したものである。
FIG. 3 is a connection diagram of a metal box housing a compressor and a power converter for the compressor, and FIG. 4 is an enlarged view of the connection section.

この金属箱10には電力変換部と信号制御部の圧縮機温
度検出器4とが収納されている。外部接続線としては、
商用電源12と接続する電源線路51と、信号制御部の
マイコン8と接続する信号線52が出力される。この信
号線52からは、庫内温度の変化により該温度が上昇し
た時は圧縮機用電動機2の回転数を増加し、庫内温度が
下降した時は該電動機2の回転数を減少させる様に回転
数の制御を行う速度指令及び、該電動機2の始動指令が
入力される。この際、信号制御部48も容量が小さい場
合にはモノリシック隼積回路化か出来るため、金属箱1
0内に収納することが可能である。
This metal box 10 houses a power conversion section and a compressor temperature detector 4 as a signal control section. As an external connection line,
A power line 51 connected to the commercial power source 12 and a signal line 52 connected to the microcomputer 8 of the signal control section are output. From this signal line 52, the number of revolutions of the compressor motor 2 is increased when the temperature inside the refrigerator increases and the number of revolutions of the motor 2 is decreased when the temperature inside the refrigerator decreases. A speed command for controlling the rotation speed and a starting command for the electric motor 2 are input. At this time, if the signal control unit 48 has a small capacity, it can be made into a monolithic circuit, so the metal box 1
It is possible to store it within 0.

一般に圧縮機3内の電動機2の巻線9は、電力変換部と
電気的に接続されているため、圧縮機3の端部に設けら
れた密閉端子ピン11で引出されている。従って第4図
に示す様に金属箱10には圧縮機3の密閉端子ピン11
とプラグイン可能にレセプタクル端子11’を設けるこ
とにより該電力変換部を直接接続出来る。
Generally, the winding 9 of the electric motor 2 in the compressor 3 is electrically connected to a power converter, so it is pulled out by a sealed terminal pin 11 provided at an end of the compressor 3. Therefore, as shown in FIG.
By providing a receptacle terminal 11' that can be plugged in, the power converter can be directly connected.

また、圧縮機3の温度が上昇しすぎない采に従来はサー
ミスタ等の検出素子を圧縮機3に貼付は温度を検出して
いるが、圧縮機3に圧縮機温度検出器4を内蔵した熱伝
達の良い金属箱10が直接接触されるため、該金属箱1
0と圧縮機3とは等価な温度となり、圧縮機からサーミ
スタリード線を引き廻すことなく圧縮機の温度が検出出
来る。
In addition, conventionally, a detecting element such as a thermistor is pasted to the compressor 3 to detect the temperature, but the compressor 3 has a built-in compressor temperature detector 4 to prevent the temperature of the compressor 3 from rising too much. Since the metal box 10 with good transmission is in direct contact, the metal box 1
0 and the temperature of the compressor 3 are equivalent, and the temperature of the compressor can be detected without running a thermistor lead wire from the compressor.

この構成によれば、金属箱10内にサーミスタが収納せ
られるのでサーミスタを放射ノイズから防護する効果が
ある。ただし1本発明においては、電力変換部は圧縮I
a3と常に等価な温度になるため、金属箱10内の素子
の保護のため温度がある程度上昇した場合、圧縮機用電
動機2の回転数を減少させ、圧縮機温度を下げるといっ
たシステム保護が必要となる。また、他の保護方法とし
ては、圧縮機温度がある程度上昇した場合、圧縮機3の
横に取り付けであるファンモータを駆動させ、圧縮機3
並びに金属箱10を冷却する方法もある。
According to this configuration, since the thermistor is housed in the metal box 10, it is effective to protect the thermistor from radiation noise. However, in the present invention, the power conversion section is
Since the temperature is always equivalent to a3, if the temperature rises to a certain extent to protect the elements inside the metal box 10, it is necessary to protect the system by reducing the rotation speed of the compressor motor 2 and lowering the compressor temperature. Become. Another protection method is to drive a fan motor installed next to the compressor 3 when the compressor temperature rises to a certain extent.
There is also a method of cooling the metal box 10.

本発明に於ける圧縮機3は従来型より比較的小形化が要
求される。そのため従来型の一定速誘導電動機は用いず
、圧縮機用電動機2をインバータ制御し高速化し出力を
増加する。
The compressor 3 in the present invention is required to be relatively smaller than the conventional type. Therefore, a conventional constant-speed induction motor is not used, and the compressor motor 2 is controlled by an inverter to increase the speed and output.

第5図(、)は温度領域の異なる3つの貯蔵室を熱的に
絶縁し、各貯蔵室背面に冷凍サイクルの蒸発器44を備
え、当該貯蔵室外部に凝縮機53と圧縮機3を備え、当
該圧縮機3には電力変換部1と圧、縮機温度検出器4を
内蔵した金属箱10をプラグイン接続した冷蔵庫の構造
図を示す。尚、第5図(b)はその制御システ11図を
示す。独立した3つの貯ノ1&室の内訳は冷凍室38と
野菜室42及び冷蔵室39とてあり、夫々の外部に凝縮
機53と圧縮機温度検出器4を含めた電力変換部1を配
置し、付加的なチルド室41と氷臥室40は冷蔵室39
の冷気をダンパ46により温度制御することとした。独
立した該貯蔵室には各々庫内温度検出器49が備えてあ
り、この庫内の温度指令は共通の信号制御部48のマイ
コン8を介して夫々の電力変換部】に指令を伝達し、各
貯蔵室の温度と1投定温度との差に応じた回転数で夫々
の圧縮機3を制御する。この際、1個の信号制御部48
で各貯′A!i室の温度検出器49の指令を受は複数の
電力変換部1を制御し圧縮機3を駆動しているが、該信
号制御部48も複数とし、電力変換部1と対に設けるこ
とも可能である。尚、野菜室は、他の貯蔵室に比へ、設
定温度が高いため、蒸発器44の変わりに直冷板45を
用いてもよい。付は加えておくが、冷凍室38.冷蔵室
39及び野菜室42が分離可能であることは]うまでも
ない。
Figure 5 (,) shows three storage compartments with different temperature ranges thermally insulated, each storage compartment equipped with an evaporator 44 of the refrigeration cycle on the back, and a condenser 53 and a compressor 3 outside the storage compartment. , a structural diagram of a refrigerator is shown in which a metal box 10 containing a power converter 1 and a pressure and compressor temperature detector 4 is plug-in connected to the compressor 3. Incidentally, FIG. 5(b) shows an 11 diagram of the control system. The three independent storage compartments include a freezer compartment 38, a vegetable compartment 42, and a refrigerator compartment 39, and a power converter unit 1 including a condenser 53 and a compressor temperature detector 4 is placed outside each compartment. , the additional chilled compartment 41 and iced compartment 40 are the refrigerated compartment 39
The temperature of the cold air is controlled by a damper 46. Each of the independent storage compartments is equipped with an internal temperature detector 49, and the internal temperature command is transmitted to each power conversion unit via the microcomputer 8 of the common signal control unit 48. Each compressor 3 is controlled at a rotation speed according to the difference between the temperature of each storage chamber and the one-shot temperature. At this time, one signal control unit 48
So each savings'A! The signal controller 48 receives a command from the temperature detector 49 in the i-room and controls the plurality of power converters 1 to drive the compressor 3, but the signal controllers 48 may also be plural and provided in pairs with the power converter 1. It is possible. Note that since the vegetable compartment has a higher set temperature than other storage compartments, a direct cooling plate 45 may be used instead of the evaporator 44. I would like to add that the freezer compartment is 38. It goes without saying that the refrigerator compartment 39 and the vegetable compartment 42 can be separated.

第6図(、)は独立した貯蔵室に夫々蒸発器44を備え
、多岐弁56を制御する冷蔵庫の構造図を示す。第6図
(b)はそのシステ11制御図を示す。
FIG. 6(,) shows a structural diagram of a refrigerator in which independent storage compartments are each equipped with an evaporator 44 and a manifold valve 56 is controlled. FIG. 6(b) shows a control diagram of the system 11.

各貯蔵室に配置された蒸発圏44と、複数個の該蒸発器
44に対し1個の凝縮器5コ3と、圧縮機3とを備え、
蒸発器44と圧縮機3との各流路間に多岐弁を設け、該
多岐弁56を制御することにより蒸発器44の温度を変
化させ、各貯蔵室の温度制御を行う。
Equipped with an evaporation zone 44 disposed in each storage room, one condenser 5 3 for each of the plurality of evaporators 44, and a compressor 3,
A manifold valve is provided between each flow path of the evaporator 44 and the compressor 3, and by controlling the manifold valve 56, the temperature of the evaporator 44 is changed and the temperature of each storage chamber is controlled.

尚、貯蔵室を熱的に絶縁せず従来のダンパ4Gで温度制
御する冷蔵庫にモノリシック化した電力変換部1と小形
圧縮機3を備え、電動機2を回転数制御して庫内温度を
制御することも可能である。
The refrigerator, which does not thermally insulate the storage compartment and whose temperature is controlled using a conventional damper 4G, is equipped with a monolithic power converter 1 and a small compressor 3, and controls the rotation speed of the electric motor 2 to control the temperature inside the refrigerator. It is also possible.

第7図(a)は第5図(a)と同様に独立した貯蔵室の
外部に夫々小形可変速圧縮機3と凝縮機53を備え、ス
イッチにより、該圧縮機3を切り替える冷蔵庫の構造を
示す。第7図(b)はその制御システ11図を示す。1
個の該電力変換部1と1個の該信号制御部48により、
独立した冷凍室38と野菜室42と冷蔵室39に備えら
れた圧縮機3を各々切り替えて温度制御する。各1貯蔵
室に備えである温度検出器49により各貯蔵室の温度を
検出し信号制御部48のマイコン8に指令し、マイコン
8は各貯蔵室に備えられたどの圧縮機3を駆動するかを
選択し、電力変換部1を駆動させる。この際、圧縮機用
電動機が直流機の場合、回転子の位置を検出しなければ
ならないため、マイコン8にフィードバックをかけなけ
ればならない。従って、各貯蔵室に備えである圧縮機3
を同時には駆動出来ない。そこで、各貯蔵室の温度検出
器49の指令をマイコン8が受け、どのJt?蔵室が設
定温度との差が大きいか判断し、駆動すべき圧縮機を選
択し、スイッチ50等で各貯蔵室の圧縮機3を切り替え
る。この場合、各貯蔵室に備えられた圧縮機3は切り替
えて駆動されるため、圧縮機3が停止すると庫内温度が
上昇してしまう。従って、温度コントロールに幅を持た
せて、指定温度帯に入る様マイコン8でコントロールす
る。
FIG. 7(a) shows the structure of a refrigerator that is equipped with a small variable speed compressor 3 and a condenser 53 outside independent storage compartments, and the compressors 3 are switched by a switch, similar to FIG. 5(a). show. FIG. 7(b) shows an 11 diagram of the control system. 1
The power conversion units 1 and the signal control unit 48 provide
The temperature is controlled by switching the compressors 3 provided in the independent freezer compartment 38, vegetable compartment 42, and refrigerator compartment 39, respectively. The temperature detector 49 provided in each storage compartment detects the temperature of each storage compartment and sends a command to the microcomputer 8 of the signal control unit 48, and the microcomputer 8 determines which compressor 3 provided in each storage compartment is to be driven. is selected, and the power converter 1 is driven. At this time, if the compressor motor is a DC motor, the position of the rotor must be detected, so feedback must be given to the microcomputer 8. Therefore, each storage room is equipped with a compressor 3.
cannot be driven at the same time. Therefore, the microcomputer 8 receives the command from the temperature detector 49 of each storage room, and determines which Jt? It is determined whether the temperature of the storage room is significantly different from the set temperature, the compressor to be driven is selected, and the compressor 3 of each storage room is switched using the switch 50 or the like. In this case, since the compressor 3 provided in each storage room is switched and driven, when the compressor 3 stops, the temperature inside the refrigerator increases. Therefore, the temperature control is controlled by the microcomputer 8 so that the temperature is within the designated temperature range.

圧縮機用電動機が交流機の場合は、回転子が固定子の回
転磁界に誘導されて回転するため、マイコン8へのフィ
ードバックは不要である。従って各貯蔵室の圧縮機3を
同時に駆動させることが出来る。ただし、圧縮機3を同
時に駆動させると、電力変換部の容量は増加する。従っ
て、駆動素子の容量は大きなものが必要になる。尚、電
動機が交流機の場合でもスイッチ50等で各貯蔵室の圧
縮機3を切り替えて運転することも可能である。
If the compressor motor is an alternating current machine, the rotor rotates by being guided by the rotating magnetic field of the stator, so feedback to the microcomputer 8 is not necessary. Therefore, the compressors 3 in each storage chamber can be driven simultaneously. However, if the compressor 3 is driven at the same time, the capacity of the power converter increases. Therefore, the drive element needs to have a large capacity. Incidentally, even when the electric motor is an alternating current machine, it is also possible to operate the compressor 3 in each storage chamber by switching over it using the switch 50 or the like.

[発明の効果コ 本発明によれば、圧縮機駆動用制御回路の電力変換部及
び/或いは圧縮fi電動機用の信号制御部をI/C化し
、制御回路が長さ100mm、幅5、0 mm、高さ3
0mm程度に、小形化出来る。また、回転数制御可能な
電動機を内蔵した小形圧縮機とこのI/C回路とをプラ
グインタイブで一体接続し、省スペースの冷却系を作り
、各1貯蔵室を独立に温度制御する。その結果、各貯蔵
室の温度コントロール幅を±1℃以下に抑えることで食
品の品質向上を得ることが出来る。また、野菜室のにお
いが冷凍室の氷にうつらず、味覚の良い氷を作ることが
出来る。また5着霜についても、独立に貯蔵室を設ける
ことにより、野菜室の湿気が他の貯蔵室に入らないため
、着霜しにくくなり、従来冷蔵庫の10分の1程度の時
間で除霜が可能である。
[Effects of the Invention] According to the present invention, the power conversion section of the compressor drive control circuit and/or the signal control section for the compression fi motor is integrated into an I/C, and the control circuit has a length of 100 mm and a width of 5.0 mm. , height 3
It can be downsized to about 0mm. In addition, a compact compressor with a built-in electric motor whose rotation speed can be controlled and this I/C circuit are connected together in a plug-in type to create a space-saving cooling system and independently control the temperature of each storage compartment. As a result, the quality of food can be improved by suppressing the temperature control range of each storage compartment to ±1°C or less. In addition, the odor from the vegetable compartment is not transferred to the ice in the freezer compartment, making it possible to make ice with a good taste. Regarding frost formation, by providing an independent storage room, moisture in the vegetable compartment does not enter other storage compartments, making it difficult for frost to form, and defrosting can be done in about one-tenth the time of a conventional refrigerator. It is possible.

又、冷蔵庫は一般にその稼動を止める様な故障が許され
ないが1本発明冷蔵庫によれば、全貯蔵室が同時に使用
不能になるおそれはまづあり得ず。
Furthermore, although refrigerators generally cannot tolerate malfunctions that would stop their operation, with the refrigerator of the present invention, there is no possibility that all storage compartments will become unusable at the same time.

たとえ故障しても回路がプラグインタイブで接続されて
いるから、修理上甚だ便利である。
Even if it breaks down, the circuit is connected in a plug-in type, making it extremely convenient for repairs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である圧縮機駆動用制御回路
、第2図は本発明実施に用いる誘電体分離基板の集積回
路断面図、第3図は圧縮機筐体と圧縮機用電力変換部を
収容した金属箱との接続図、第4図はその接続部の拡大
図、第5図(a)は独立した貯蔵置去々の外部に圧縮機
と共通の電力変換部を配置した冷蔵庫の断面図、第5図
(b)はそのシステム制御図、第6図(、)は独立した
貯蔵室に蒸発器を備え多岐弁56により制御する冷蔵庫
の断面図、第6図(b)はそのシステ15制御図、第7
図(0)は、独立した貯蔵置去々の外部に圧縮機を配置
し、1個の電力変換部と、1晶1の信号制御部により、
圧縮機を切り替えて制御する冷蔵庫の断面図、第7図(
b)はそのシステム制御図、第8図(zl)は従来の冷
蔵庫の断面図、第8図(b)はそのシステム制御図を示
す。 ■・・・電力変換部 3・・・圧縮機 5・・・インバータ部 7・・・制御回路 8・・マイクロコンピュータ 9・・・接続線 11・・・端子 12・・・商用電源 13・・・力率改首用リアクタ 15〜18・・・ダイオード 19〜24・・・還流ダイオード 25〜30・・・ト
ランジスタ31・・・多結晶シリコン   32・・・
パワー素子33・・・ディジタル回路   34・・・
駆動回路2・可変速電動機 4・・・温度検出HH 6・・・整流回路 10・・・金属箱 11’ ・・・端子・ 14・・・平滑コンデンサ 35・・誘電体 37・・・ヒートシンク 39・・冷蔵室 ■・・チルド室 43・・ファンモータ 45・・直冷板 47・・冷気 49・・・温度検出器 51・・パワー線 53・・凝縮器、 55・・・電流映出抵抗 36・・・アルミ配線 38・・冷凍室 40・・氷温室 42・・・野菜室 44・・・蒸発器 46・・・ダンパ 48・・・信号制御部 50・・切り替えスイッチ 52・・・信号線 54・・・マイコン制御部 56・多岐弁 第5図(α) 第5図(b) b
Fig. 1 is a compressor drive control circuit that is an embodiment of the present invention, Fig. 2 is a cross-sectional view of an integrated circuit of a dielectric isolation substrate used to implement the present invention, and Fig. 3 is a compressor casing and a compressor drive control circuit. Connection diagram with the metal box housing the power converter, Figure 4 is an enlarged view of the connection, and Figure 5 (a) shows the power converter and common power converter located outside the independent storage space. 5(b) is a system control diagram thereof. FIG. 6(a) is a sectional view of a refrigerator equipped with an evaporator in an independent storage chamber and controlled by a manifold valve 56. ) is the system 15 control diagram, No. 7
In Figure (0), the compressor is placed outside of each independent storage unit, and one power converter and one crystal one signal control unit are used.
Cross-sectional view of a refrigerator that switches and controls the compressor, Figure 7 (
Fig. 8(b) shows a system control diagram thereof, Fig. 8(zl) shows a sectional view of a conventional refrigerator, and Fig. 8(b) shows its system control diagram. ■...Power conversion unit 3...Compressor 5...Inverter unit 7...Control circuit 8...Microcomputer 9...Connection line 11...Terminal 12...Commercial power supply 13... - Power factor correction reactors 15-18...Diodes 19-24...Freewheeling diodes 25-30...Transistors 31...Polycrystalline silicon 32...
Power element 33...Digital circuit 34...
Drive circuit 2, variable speed motor 4...temperature detection HH 6...rectifier circuit 10...metal box 11'...terminal 14...smoothing capacitor 35...dielectric 37...heat sink 39 ... Refrigerator room ■ ... Chilled room 43 ... Fan motor 45 ... Direct cooling plate 47 ... Cold air 49 ... Temperature detector 51 ... Power line 53 ... Condenser, 55 ... Current projection resistor 36...Aluminum wiring 38...Freezer compartment 40...Ice greenhouse 42...Vegetable compartment 44...Evaporator 46...Damper 48...Signal control unit 50...Switch switch 52...Signal Line 54...Microcomputer control unit 56/manifold valve Fig. 5 (α) Fig. 5 (b) b

Claims (1)

【特許請求の範囲】 1 庫内負荷の変化により庫内温度が上昇した時は、冷
凍サイクルに接続された圧縮機用電動機の回転数を増加
する信号を発生し、庫内温度が下降した時は、該回転数
を減少する信号を発生する様にした信号制御部と、商用
電源を一旦直流に交換した後、あるいは直接に周波数変
換する圧縮機用電動機の電力変換部とから成る制御装置
を備えた冷蔵庫において、該圧縮機用電動機の電力変換
部の構成部品を実質上モノリシック集積回路化し、該電
力変換部と上記信号制御部とを回路基板に形成すること
を特徴とした冷蔵庫。 2 請求項1記載の冷蔵庫において、温度領域の異なる
複数の貯蔵室を熱的に絶縁し、各貯蔵室に冷凍サイクル
の蒸発器を備え、該各貯蔵室外部に夫々凝縮機と圧縮機
を備え、該圧縮機には該電力変換部を接続し、該貯蔵室
の庫内温度検出器と、信号制御部とにより、負荷に応じ
た圧縮機の回転数制御信号を出力して、該電力変換部に
伝送し、圧縮機の回転数を変化させ各貯蔵室の温度を独
立に制御することを特徴とした冷蔵庫。 3 請求項2記載の冷蔵庫において、該電力変換部と髄
信号制御部を回路基板上に配置し、金属箱に収納し、こ
れをプラグイン形式で該圧縮機と接続することを特徴と
した冷蔵庫。 4 請求項2記載の冷蔵庫において、各貯蔵室外部に夫
々凝縮機と圧縮機を備え、1個の該電力変換部と1個の
該信号制御部により、各貯蔵室の庫内温度検出器の出力
に応じて複数の上記圧縮機をスイッチにより切り替えて
駆動させることを特徴とした冷蔵庫載制御方法。 5 請求項4項記載の冷蔵庫において、1個の該電力変
換部で複数の該圧縮機を同時に駆動させることを特徴と
した冷蔵庫の制御方法。 6 請求項3記載の冷蔵庫において、複数個の各貯蔵室
に1つづつ配置された複数個の蒸発器と1個の凝縮器と
圧縮機を備え、各蒸発器と圧縮機のサイクル間に多岐弁
を設け、各貯蔵室の温度検出器の出力に応じて該多岐弁
を制御することを特徴とした冷蔵庫。 7 請求項3又は6項記載の冷蔵庫において、圧縮機温
度検出器を該電力変換部または該信号制御部に備え、該
圧縮器の温度を直接検出することを特徴とする圧縮器。
[Claims] 1. When the temperature inside the refrigerator rises due to a change in the load inside the refrigerator, a signal is generated to increase the rotation speed of the compressor motor connected to the refrigeration cycle, and when the temperature inside the refrigerator decreases. This is a control device consisting of a signal control unit that generates a signal to reduce the rotational speed, and a power conversion unit for a compressor motor that converts the commercial power supply to direct current or directly converts the frequency. 1. A refrigerator comprising: a component of a power converter of the compressor motor that is substantially integrated into a monolithic circuit, and the power converter and the signal controller are formed on a circuit board. 2. The refrigerator according to claim 1, wherein a plurality of storage compartments having different temperature ranges are thermally insulated, each storage compartment is equipped with an evaporator of a refrigeration cycle, and a condenser and a compressor are respectively provided outside of each storage compartment. , the power converter is connected to the compressor, and the internal temperature detector of the storage room and the signal control unit output a rotation speed control signal of the compressor according to the load, and the power converter is This refrigerator is characterized in that the temperature of each storage compartment is controlled independently by transmitting data to the storage compartment and changing the rotation speed of the compressor. 3. The refrigerator according to claim 2, wherein the power conversion section and the signal control section are arranged on a circuit board, housed in a metal box, and connected to the compressor in a plug-in format. . 4. The refrigerator according to claim 2, wherein a condenser and a compressor are provided outside each storage chamber, and the one power conversion section and the one signal control section control the internal temperature detector of each storage chamber. A refrigerator-mounted control method characterized in that a plurality of the compressors are switched and driven by a switch according to the output. 5. A method for controlling a refrigerator according to claim 4, characterized in that a plurality of the compressors are simultaneously driven by one of the power converters. 6. The refrigerator according to claim 3, comprising a plurality of evaporators, one condenser, and a compressor disposed in each of the plurality of storage compartments, and a plurality of cycles between each evaporator and compressor. A refrigerator comprising a valve and controlling the multi-valve according to the output of a temperature detector in each storage compartment. 7. The refrigerator according to claim 3 or 6, wherein the compressor temperature detector is provided in the power conversion section or the signal control section to directly detect the temperature of the compressor.
JP29425388A 1988-11-21 1988-11-21 Cold storage refrigerator Pending JPH02140577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29425388A JPH02140577A (en) 1988-11-21 1988-11-21 Cold storage refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29425388A JPH02140577A (en) 1988-11-21 1988-11-21 Cold storage refrigerator

Publications (1)

Publication Number Publication Date
JPH02140577A true JPH02140577A (en) 1990-05-30

Family

ID=17805329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29425388A Pending JPH02140577A (en) 1988-11-21 1988-11-21 Cold storage refrigerator

Country Status (1)

Country Link
JP (1) JPH02140577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240373A (en) * 1994-12-10 1996-09-17 Samsung Electronics Co Ltd Refrigerator and its temperature control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240373A (en) * 1994-12-10 1996-09-17 Samsung Electronics Co Ltd Refrigerator and its temperature control method

Similar Documents

Publication Publication Date Title
US5144812A (en) Outdoor fan control for variable speed heat pump
KR100534533B1 (en) A refrigerating apparatus and an inverter device used therein
CA2305647C (en) Modular thermoelectric unit and cooling system using same
JP3086819B2 (en) Motor integrated compressor for air conditioner
JPH05272824A (en) Control device for compressor crankcase heater
US2346837A (en) Refrigerating apparatus
US5845497A (en) Thermoelectric refrigerator with control of power based upon sensed temperature
KR100376902B1 (en) Refrigerator
JP2005257266A (en) Refrigerating apparatus and inverter device used therefor
JPH02140577A (en) Cold storage refrigerator
JP2000320942A (en) Refrigerator
JP2013245904A (en) Refrigerator
EP3141851B1 (en) Refrigerator with selectively activable microprocessor for an inverter compressor
JPH06201244A (en) Cold storage and/or refrigerating equipment for connecting single-phase ac terminal
KR102359565B1 (en) Refrigerator
JP2014142121A (en) Refrigerator
CN108253684A (en) Fresh-keeping device
CN112856898B (en) Refrigerator with a door
CN219318680U (en) Refrigerating apparatus
JP2679469B2 (en) Refrigerator control device
US2312087A (en) Refrigerating apparatus
US3717010A (en) Air conditioner
CN218672805U (en) A kind of refrigerator
JP7305519B2 (en) refrigerator
JP2002090034A (en) Refrigerator