JPH02140172A - Capillary dialysis apparatus - Google Patents

Capillary dialysis apparatus

Info

Publication number
JPH02140172A
JPH02140172A JP1042917A JP4291789A JPH02140172A JP H02140172 A JPH02140172 A JP H02140172A JP 1042917 A JP1042917 A JP 1042917A JP 4291789 A JP4291789 A JP 4291789A JP H02140172 A JPH02140172 A JP H02140172A
Authority
JP
Japan
Prior art keywords
capillaries
capillary
flow
dialysis
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1042917A
Other languages
Japanese (ja)
Other versions
JPH0667405B2 (en
Inventor
Ludwig Weickhardt
ルートヴィヒ・ヴァイクハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secon GmbH
Original Assignee
Secon GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Secon GmbH filed Critical Secon GmbH
Publication of JPH02140172A publication Critical patent/JPH02140172A/en
Publication of JPH0667405B2 publication Critical patent/JPH0667405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/28Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/143Specific spacers on the feed side

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Water Supply & Treatment (AREA)
  • External Artificial Organs (AREA)

Abstract

PURPOSE: To enable to insert different numbers of capillaries corresponding to a step of the volume, by giving twisted thread in parallel to the capillary extending direction, almost uniformly distributing twisted thread across the section of a bundle, and elastically filling the section of a dialyzing room with bundles of capillaries. CONSTITUTION: Blood enters a flow-in room 8 through a connection tube 7, is distributed into capillaries 2 and flows through it. Blood from individual capillaries 2 is collected in a flow-out room 9 and flows out through a connection tube 7. Dialyzate flows in the arrow mark 13 direction through two tubes 11, 12 and blood moves in the arrow mark 14 direction. A twist 15 consisting of fabric thread is arranged between capillaries 2 so as to almost uniformly distributed across the section of an inside room. The twist 15 is not directly contacts with the capillaries 2 but loosely extended to the capillary 2 direction. A twist 15 has the diameter almost matching the outer diameter of an individual capillary 2. Since the mixing rate of twist 15 against the number of capillaries 2 can be freely selected, the volume in different steps is enabled using the size of a single housing.

Description

【発明の詳細な説明】 本発明は概略管状のハウジングと、ハウジング内におい
て両端が取付けられ埋込み材によって相互にまたハウジ
ングから密封され血液の流入室及び流出室が連結された
毛管の束とを有し、透析室における透析物が織地状の撚
糸の配置された毛管の周囲を流れるようにした毛管透析
装置に関するものである。このような毛管透析装置は主
として血液透析装置に用いられる。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a generally tubular housing and a bundle of capillary tubes attached at opposite ends within the housing and connected to blood inflow and outflow chambers sealed from each other and from the housing by an implant. The present invention relates to a capillary dialysis device in which dialysate in a dialysis room flows around capillary tubes in which fabric-like twisted threads are arranged. Such capillary dialysis devices are mainly used in hemodialysis devices.

毛管はその製造により直径が変化し、かくして毛管が束
ねられハウジング内に挿入される際に異なる束の直径と
なる。他方で場合によって同じハウジングに異なる数の
毛管を備えて異なる段階の容量を有する透析装置を与え
ることがなされている。それゆえ−船釣に毛管がハウジ
ング内で横方向に移動でき、一方の側に一体的に圧しつ
けられ、いずれの場合にも変位が一様でなく断面を均一
には充填しないように、ハウジング内にあるときにはよ
り大きくあるときにはより小さいある程度の毛管の間隔
がある。この不規則性により毛管の周囲の透析物の流れ
はまた断面にわたって異なる振舞いをする。このとき透
析物が短絡したにうに急速に流れる箇所があるか、他の
部分は衝撃がわ′ずかであるか全くない。
The capillary tubes vary in diameter due to their manufacture, thus resulting in different bundle diameters when the capillary tubes are bundled and inserted into the housing. On the other hand, it has sometimes been possible to equip the same housing with different numbers of capillaries to provide dialysis devices with different stages of capacity. Therefore - in the boat the capillary can move laterally in the housing and is pressed integrally to one side, so that in each case the displacement is uneven and does not evenly fill the cross section of the housing. There is some degree of capillary spacing that is greater when within and less when present. This irregularity also causes the flow of dialysate around the capillary to behave differently across the cross section. At this time, there are some parts where the dialysate flows rapidly due to short circuits, and other parts have only a small impact or no shock at all.

米国特許第4293418号によれば、個々の毛管また
は数本の毛管を一体的にして周囲に撚糸を巻付けあるい
はループ状に取付けることによってこの問題を解決して
いる。撚糸は螺旋状に巻付けても、あるいは撚り合せ重
ね合せるようにしてもよい。撚糸は個々の毛管の周囲の
スペーサと同等のものとなることを目的としている。こ
の場合にも、スペーサとしての撚糸かある場合には毛管
の壁部に直接当接して支持され、また他の場合には近接
する毛管のスペーサ糸に当接して支持されるので、巻付
けられたて毛管が相互に当接しているときに透析物の流
れの中に不規則性が生ずる。
According to US Pat. No. 4,293,418, this problem is solved by attaching individual capillaries or several capillaries together and wrapping or looping the thread around them. The twisted yarn may be wound spirally or twisted and overlapped. The twist is intended to be equivalent to a spacer around the individual capillaries. In this case too, the spacer threads are supported in some cases directly against the wall of the capillary, and in other cases against the spacer threads of adjacent capillaries, so that they are not wound. Irregularities occur in the flow of dialysate when the vertical capillaries abut each other.

さらにスペーサ撚糸は前後する間隔でだけ有効であり、
毛管の全長にわたって連続的に有効なのではない1.製
造は対応する機械的工程を実施しなcノればならないの
でかなり経費かかかる。しかしながらスペーサ撚糸の重
大な欠点は毛管が透析物で湿潤したときに生ずるその膨
張がその配置によって妨げられることである。織地状糸
を用いる場合、この欠点がかなりな程度まで解消される
。しかしながら異なる段階の容量を与えるために同じハ
ウジング内に異なる数の毛管が整頓状態で収容されるよ
うにして毛管の周囲に巻付けることによりこのようなス
ペーサ糸との適合性を与えることはできない。
Furthermore, the spacer twist is effective only at successive intervals;
1. It is not continuously effective over the entire length of the capillary. The manufacture is quite expensive since corresponding mechanical steps have to be carried out. However, a significant disadvantage of spacer threads is that their arrangement prevents the capillaries from expanding when they become wet with dialysate. When using woven yarns, this drawback is eliminated to a considerable extent. However, compatibility with such spacer threads cannot be provided by wrapping around the capillaries in such a way that different numbers of capillaries are housed in an orderly manner within the same housing to provide different levels of capacity.

ざらに最終的にマット状の構造を形成しそれからそれが
巻上げられるように個々の毛管を相nに間隔をおいて綴
じ合せる方法はすでに知られている。綴じ合せる撚糸は
毛管に対して垂直であり、かくして透析物の流れに対し
ても垂直であり、結局通常は公知のスペーサ撚糸と同じ
ように透析物の流れに対する妨げとなる。この撚糸に空
気泡を付着させて、それが透析装置内に残存して次第に
それ以上の通過を妨げるようにもなる。
Methods are already known in which the individual capillaries are stitched together at intervals in phase n so that a final mat-like structure is formed which is then rolled up. The stitching strands are perpendicular to the capillaries and thus also perpendicular to the flow of dialysate and, like known spacer strands, are usually an impediment to the flow of dialysate. The strands may also attract air bubbles that remain within the dialysis machine and increasingly impede further passage.

他方でループ状の糸、スペーサ糸等、あるいは綴じ合せ
の糸の基本的な欠点は通常糸を有する毛管の外径がこの
糸の分だけ増大して結局ハウジング内により少ない毛管
しか収容できないようになることである。スペーサ糸ま
たは綴じ合せの糸を有する毛管の個々の処理はまた通常
ハウジング内に配置される全ての毛管に関するものであ
る。
On the other hand, the basic disadvantage of looped threads, spacer threads, etc. or stitched threads is that the outer diameter of the capillary containing the thread usually increases by this thread, so that fewer capillaries can be accommodated in the housing. It is what happens. The individual treatment of capillaries with spacer threads or stitching threads also normally concerns all capillaries arranged within the housing.

本発明の基本的な目的は容量の段階に応じて同じハウジ
ング内に異なる数の毛管を挿入することを可能すること
である。それにもかかわらず毛管は通常断面にわたって
整然と均一な状態で分布しでいて、前述のような透析物
の欠点が生じない。
The basic aim of the invention is to make it possible to insert different numbers of capillaries into the same housing depending on the volume level. Nevertheless, the capillaries are usually distributed in an orderly and uniform manner over the cross-section, and the disadvantages of the dialysate described above do not occur.

本発明によれば、これは撚糸が毛管の延びる方向に平行
に毛管の束における個々の毛管に結合せずに付与され、
また毛管の束においてこのような数の撚糸が束の断面に
わたってほぼ均一に分布していて透析室の断面が撚糸を
有する毛管の束により弾性的に充填されるようになるこ
とによって実現されている。撚糸はもはや個々の毛管で
はなく、毛管と、またそれぞれ毛管で充填されていない
透析室の部分とに付与される。従来技術に比較して基本
的に異なるこの目標のために、また詰込みないし充填用
の撚糸としての糸が個々の毛管に直接結合していないの
で、−様なハウジングを用いるにもかかわらず異なる段
階の容量の透析装置を与えるために毛管の数に対する撚
糸の相対的な数が直接変更及び修正される。詰込みの撚
糸は透析室内の不要空間を充填し局所的な流れの抵抗を
選択的に増大させる作用をなす。かくして透析室の断面
が充填され、個々の毛管は補強されたり保護されたりし
ない。詰込み撚糸は確実にある程度の流れの抵抗を有す
る。織地状糸としての形状のために詰込み糸は透析物が
流れて通過できるものである。撚糸は透析物に封止作用
を与えないので、毛管の前作用は失われない。撚糸の弾
性と束におけるその極めて−様な分布のために、透析室
内での毛管の確実で−様な分布がなされる。短絡効果の
ある好ましい流路にならない。良好な透析容量に必要な
短い透析物流路が形成される。詰込み撚糸の弾性はまた
毛管や撚糸の数を変える必要なく毛管の直径等の製造上
の許容差を補償する。このような詰込み撚糸は当然従来
のような個々の毛管の周囲にループ状に取付けたスペー
サ糸より格段に容易に製造され組立てられる。詰込み撚
糸は直接毛管の束を通るように分布できるので、複雑で
面倒な巻付は装置が必要でない。撚糸を1〜2本の毛管
でなく毛管の束に付与することにより毛管と撚糸との間
の所望の混合比が得られるのでこの単純な方法により種
々の容量の透析装置が製造できる。毛管透析装置の容量
の段階においてこれまで知られている帯域幅がより小さ
くなることは当業者には驚くべきことである。管路の帯
域幅は理想的ないし最適の容量の方に変位する。これは
他の点では変わることなく製造されたある段階の容量の
毛管透析装置が相互により接近していて従来可能であっ
たより幅の狭い範囲内により確実に特定の段階の容量が
対応することを意味している。この点に関しより小さい
容量の変化のために使用時の安全性が増大する。毛管の
束にJ3Gノる撚糸の−様な分布は透析装置の製造の際
にも良好な効果を与える。透析室内での束のより一様で
弾性的な分布のために、埋込み材料が挿入される際の遠
心分離工程において束のより良好な集中がなされる。
According to the invention, this means that the strands are applied parallel to the direction of capillary extension without bonding to the individual capillaries in the capillary bundle;
This is also achieved by distributing this number of strands in the capillary bundle almost uniformly over the cross-section of the bundle, such that the cross-section of the dialysis chamber is elastically filled by the capillary bundle with the strands. . The threads are no longer applied to individual capillaries, but to the capillaries and also to the parts of the dialysis chamber that are not filled with capillaries, respectively. Because of this goal, which is fundamentally different compared to the prior art, and because the threads as stuffing or filling strands are not directly bonded to the individual capillaries, the method is different despite using a similar housing. The relative number of strands to the number of capillaries is directly varied and modified to provide a staged capacity dialyzer. The stuffing strands serve to fill unnecessary space within the dialysis chamber and selectively increase local flow resistance. The cross section of the dialysis chamber is thus filled and the individual capillaries are not reinforced or protected. Stuffed yarn certainly has some flow resistance. Due to its shape as a woven thread, the stuffing thread is one through which the dialysate can flow. Since the twisted threads do not provide a sealing effect on the dialysate, the capillary pre-effect is not lost. Due to the elasticity of the threads and their highly uniform distribution in the bundle, a reliable uniform distribution of the capillaries within the dialysis chamber is achieved. This does not result in a desirable flow path with a short-circuiting effect. A short dialysis flow path is created, which is necessary for good dialysis capacity. The elasticity of the stuffed strands also compensates for manufacturing tolerances such as capillary diameter without the need to change the number of capillaries or strands. Such stuffed yarns are of course much easier to manufacture and assemble than conventional spacer yarns looped around individual capillaries. Since the packed yarn can be distributed directly through the capillary bundle, no complicated and cumbersome winding equipment is required. By applying the threads to a bundle of capillaries rather than one or two capillaries, the desired mixing ratio between the capillaries and the threads is obtained, so that dialysis devices of various capacities can be manufactured by this simple method. It is surprising to the person skilled in the art that the previously known bandwidths in the capillary dialysis device capacity step become smaller. The bandwidth of the conduit is shifted towards ideal or optimal capacity. This means that capillary dialysis devices of a given stage volume, manufactured otherwise unchanged, are closer together, ensuring that the volume of a particular stage corresponds more within a narrower range than previously possible. It means. In this regard, safety in use is increased due to smaller volume changes. A similar distribution of the J3G yarns in the capillary bundle also has good effects in the manufacture of dialysis devices. Due to the more uniform and elastic distribution of the bundles within the dialysis chamber, there is a better concentration of the bundles in the centrifugation step when the implant material is inserted.

最終的に比較的小さい容量の、あるいはより少ない毛管
を有する毛管透析装置が製造されるときに廃棄物も減少
する。まさにこの製造法が従来特殊な問題を与えていた
Waste is also reduced when ultimately a capillary dialysis device with a smaller capacity or fewer capillaries is manufactured. It is precisely this manufacturing method that has hitherto presented special problems.

本発明は流れの抵抗と、かくして流量とが流路の直径の
3乗に物理的に依存するために毛管で充填されていない
流路が十分に多数の個々の小さい流路に分割され得ると
いうことに基づいている。
The present invention provides that a channel not filled with capillaries can be divided into a sufficiently large number of individual small channels so that the resistance to flow, and thus the flow rate, physically depends on the cube of the diameter of the channel. It's based on that.

一方で直径10mmの1本の管を通る流れと直径1mm
の100本の管を通る流れとの相対的な流量は相互に管
の直径の3乗の比、すなわち、 D3:d3または1000 : 100 、1:10 
 等になっている。それゆえいまの2つの場合で流れる
面積は等しい大きさであるけれども、直径100mmの
1本の管を通って流れる量の1710だけがより小さい
100mmの流路を通って流れる。この単一の大きい流
路、例えば従来技術による透析装置における短絡路を本
発明による、特に同じ開いた流れ断面を有する対応する
数のより小さい流路に分割するステップにより透析装置
を通って流れる使用されない透析物の量が90%だけ減
少する。これは効率が格段に増大することとなる。これ
はまた伯の点ではパラメータを変化させずに容量の段階
の増大が生ずる理由でもある。
On the other hand, flow through one pipe with a diameter of 10 mm and a pipe with a diameter of 1 mm.
The relative flow rate of the flow through 100 tubes is the ratio of the cube of the tube diameter to each other, i.e. D3:d3 or 1000:100, 1:10
etc. Therefore, although the flow areas in the two cases are of equal size, only 1710 of the amount that flows through one 100 mm diameter tube flows through the smaller 100 mm channel. The use of flowing through a dialysis device by dividing this single large flow path, for example a short circuit path in a dialysis device according to the prior art, into a corresponding number of smaller flow paths, in particular with the same open flow cross-section, according to the invention. The amount of unused dialysate is reduced by 90%. This results in a significant increase in efficiency. This is also the reason why a step increase in capacity occurs without changing the parameters in terms of equations.

撚糸は毛管とほぼ同じ直径とすることができ、あるいは
それより若干直径を小さくすることもできる。かくして
従来の場合とは大きさの程度が異なる撚糸が用いられ、
この場合に毛管の直径に対するループ状の撚糸の直径の
比は約1:10であった。前述の直径は圧縮されていな
い状態での撚糸の直径である。撚糸は毛管より容易に復
元するので束における圧縮は実質的に撚糸によって吸収
されることがわかるはずである。
The strands can be approximately the same diameter as the capillary, or they can be slightly smaller in diameter. Thus, twisting yarns with a different degree of size than in the conventional case are used,
In this case, the ratio of the diameter of the looped yarn to the diameter of the capillary tube was approximately 1:10. The aforementioned diameters are the diameters of the strands in their uncompressed state. It should be appreciated that the compression in the bundle is substantially absorbed by the threads since the threads recover more easily than the capillaries.

容量の段階に応じて約10〜25本の毛管の束に1本ず
つの撚糸が設けられる。この混合比は全く任意であり、
用途に適合させられる。
Depending on the volume level, a bundle of approximately 10 to 25 capillaries is provided with one thread. This mixing ratio is completely arbitrary;
Adapted to the application.

織地状の糸は透析物に対する流れの抵抗が近接する毛管
の流れの抵抗に一致するような多孔度を有する撚糸とし
て用いられる。それゆえ撚糸で流れを遮るのではなく、
ここでまた透析物による毛管の周囲の断面を通る−様な
流れにしようとするものである。撚糸として多繊維材が
用いられるのが好ましいが、縮れた単繊維材を用いても
よい。
The woven threads are used as strands with a porosity such that the flow resistance to the dialysate matches the flow resistance of the adjacent capillaries. Therefore, instead of blocking the flow with twisted yarn,
Here again, the aim is to cause the dialysate to flow through the circumferential cross-section of the capillary tube. Preferably, a multifilament material is used as the twisted yarn, but a crimped monofilament material may also be used.

撚糸の織地状の、開いた構造は重要であり、これは一方
で圧縮されるが、他方で透析物がこれを通って流れるこ
とができる。
The woven, open structure of the threads is important, which on the one hand is compressed, but on the other hand allows the dialysate to flow through it.

本発明をさらに実施例を参照して説明しよう。The invention will now be further explained with reference to examples.

第1図に示される毛管透析装置は管状の断面形状のハウ
ジング1を有し、この中に多数の毛管2の束が配置され
、これは第1図ではかなり拡大して極く少数だcノ示さ
れている。毛管2の束は両端において埋込み材3内に成
形され、この埋込み材は毛管2の束をハウジング1内に
取付けるだけでなく毛管を相互に、またハウジング1の
壁部から密封するものでもある。埋込み材3及び毛管の
端側は面板4となっている。管状のハウジング1の端部
には外側の撚糸5が設けられており、これに図示してい
ないガスケットを介在させてカバー6が螺合している。
The capillary dialysis device shown in FIG. 1 has a housing 1 of tubular cross-section in which a number of bundles of capillary tubes 2 are arranged, which in FIG. It is shown. The bundle of capillary tubes 2 is molded at both ends into an embedding 3 which not only mounts the bundle of capillary tubes 2 into the housing 1 but also seals the capillaries from each other and from the wall of the housing 1. The end sides of the embedded material 3 and the capillary tube form a face plate 4. An outer twisted yarn 5 is provided at the end of the tubular housing 1, and a cover 6 is screwed onto this with a gasket (not shown) interposed therebetween.

カバー6は管路の連結のための連結管7を有している。The cover 6 has a connecting pipe 7 for connecting the pipe lines.

ハウジングの一端に流入室8がこのように形成され、他
端において流出室9が形成される。2つの室8及び9は
基本的に同じ、または同様な形状であるので、毛管が一
方向にもあるいは他の方向にも用いられる。血液は連結
管7を通って流入室8に入り、ここで毛管2に分配され
、これを通って流れることがわかるであろう。個々の毛
管2からの血液は流出室9に集められ、連結管7を通っ
て流出する。
An inlet chamber 8 is thus formed at one end of the housing, and an outlet chamber 9 at the other end. Since the two chambers 8 and 9 are of essentially the same or similar shape, capillaries can be used in one direction or in the other. It will be seen that the blood enters the inflow chamber 8 through the connecting tube 7, where it is distributed into the capillary tube 2 and flows through it. Blood from the individual capillaries 2 is collected in the outflow chamber 9 and flows out through the connecting tube 7.

埋込み材3の間の毛管2の間にある内部空間10は透析
物用のものである。透析物1よ2本の管11及び12を
通って矢印13の方向に流れ、血液は矢印14の方向に
移動する。織地状糸からなる撚糸15が内側室10の断
面にわたって大略−様な分布をなすように毛管2に間に
配置されている。
The internal space 10 between the capillaries 2 between the implants 3 is for the dialysate. The dialysate 1 flows through the two tubes 11 and 12 in the direction of arrow 13, and the blood moves in the direction of arrow 14. Twisted threads 15 of textile-like threads are arranged between the capillary tubes 2 in a roughly -like distribution over the cross-section of the inner chamber 10.

撚糸15は毛管2に直接接合されているのではなく、毛
管2の方向に緩く延びている。撚糸15はほぼ個々の毛
管2の外径に一致する直径を有している。若干直径の小
さい撚糸15を用いることもできる。この撚糸15は織
地状の、弾性材料、あるいは例えば透析物との共存性の
ような他の要件を有する多繊維材からことが重要である
。撚糸15は内側空間10が毛管2で充填されないとき
にその断面を充填するだけではなく、毛管を支持及び固
定し、それによって従来透析物が短絡路として流れたよ
うな不要空間ができるのを回避する。ここでは透析物が
毛管2の面にわたってより一様に分配されるので、容量
の段階における容量の帯域幅が非常に狭くなる。これは
使用時の安全性を高めることになる。毛管2の数に対す
るこのような撚糸15の混合比は自由に選択できるので
、単一のハウジングの大きさを用いて異なる段階の容量
が可能になる。このような使用例を示すと、6000本
の毛管に対して250本の撚糸が設けられる。
The twisted yarn 15 is not directly joined to the capillary tube 2, but extends loosely in the direction of the capillary tube 2. The twisted yarn 15 has a diameter that approximately corresponds to the outer diameter of the individual capillary tube 2 . It is also possible to use twisted yarns 15 with a slightly smaller diameter. It is important that this thread 15 is made of a woven, elastic material or a multifilament material with other requirements, such as compatibility with dialysate. The strands 15 not only fill the cross section of the inner space 10 when it is not filled with capillary tubes 2, but also support and fix the capillary tubes, thereby avoiding the creation of unnecessary spaces where dialysate traditionally flows as a short circuit. do. Since the dialysate is now distributed more uniformly over the surface of the capillary tube 2, the volume bandwidth in the volume stages is much narrower. This will increase safety during use. The mixing ratio of such threads 15 to the number of capillaries 2 can be chosen freely, so that different levels of capacity are possible using a single housing size. In an example of such use, 250 strands are provided for 6000 capillaries.

第3図は従来技術による透析器を概略的に断面で示して
いる。毛管2はハウジング1内で相互に密接して押合っ
ているので、1本の大きい流れの断面16が開いている
か、あるいは形成され、これを通って多量の透析物が短
絡路のように流れることができ、かくして透析器の作用
に対して損失となる。
FIG. 3 schematically shows a dialyzer according to the prior art in cross section. The capillaries 2 are pressed closely against each other within the housing 1, so that one large flow cross section 16 is open or formed through which a large amount of dialysate flows like a short circuit. , thus resulting in losses to the operation of the dialyzer.

第4図はこの大きい流れの断面を、ハウジング1の開い
た面にわたってより一様ないし非一様に分布する挿入さ
れた撚糸の形状の個々の流れの断面に分割した状態を概
略的に示している。前述のように撚糸15の多くの小さ
い流れの断面に比較して流れの断面16の直径3乗に流
れの抵抗とまた流量とが依存することがここでも当はま
る。
FIG. 4 schematically shows the division of this large flow cross-section into individual flow cross-sections in the form of inserted strands that are more uniformly to non-uniformly distributed over the open surface of the housing 1. There is. As mentioned above, the dependence of the flow resistance and also the flow rate on the cube of the diameter of the flow cross section 16 compared to the many small flow cross sections of the twisted yarn 15 applies here as well.

計算例でこれを示そう。Let's demonstrate this with a calculation example.

(1)最初に毛管2の理想的な分イljを右りる透析装
置を考える。この透析装置はハウジング内に2000本
の毛管2を有していて、毛管2の間に2000の細い流
路が形成される。流路の有効直径は0.3mmとなろう
。これは理想的な分布を有するこの透析装置に関して 2000x O,33=54 の程度の流量係数となる。
(1) First, consider a dialysis machine in which the ideal division lj of the capillary tube 2 is determined. This dialysis device has 2000 capillary tubes 2 in the housing, and 2000 narrow channels are formed between the capillary tubes 2. The effective diameter of the channel will be 0.3 mm. This results in a flow coefficient of the order of 2000x O,33=54 for this dialyzer with ideal distribution.

(2)  (1)で説明した透析装置で2000本の毛
管が断面にわたって理想的な分布状態で配置されずに、
直径5mmのより大きい流れの断面16(第3図)が形
成されて異なる流れの状態となるものと考える。流れの
断面16の周囲の流路の直径は理想的な分布となろう。
(2) In the dialysis machine explained in (1), the 2000 capillaries are not arranged in an ideal distribution across the cross section,
Consider that a larger flow cross-section 16 (FIG. 3) of 5 mm diameter is formed resulting in different flow conditions. There will be an ideal distribution of channel diameters around the flow cross section 16.

それから0.278mmの直径にまで減小する。これは
理想的な分布を有する透析装置の断面に対して 2000X O,2783=43 の程度の流量係数となる。
It is then reduced to a diameter of 0.278 mm. This results in a flow coefficient of the order of 2000×O,2783=43 for a cross-section of a dialysis machine with ideal distribution.

これは透析物の量の36%に相当し、すなわち毛管が理
想的分布状態で設けられている透析装置の断面を通って
36%の透析物が流れるであろう。
This corresponds to 36% of the dialysate volume, ie 36% of the dialysate will flow through the cross section of the dialyzer where the capillaries are provided with an ideal distribution.

しかしながらさらに仮定のように直径5mmの大きい開
いた流れの断面16がある。この流れの断面16の流量
係数は lX53=75 であることがわかる。
However, as also assumed, there is a large open flow cross section 16 with a diameter of 5 mm. It can be seen that the flow coefficient of this flow cross section 16 is lX53=75.

これは透析物の量の64%に相当し、すなわち約2/3
の透析物が開いた流れの断面16を通って流れて作用を
なさない。すなわち使用されずに透析装置を通って移送
される。
This corresponds to 64% of the dialysate volume, i.e. about 2/3
of dialysate flows through the open flow section 16 to no effect. That is, it is transported through the dialysis machine without being used.

(3)本発明の目的を比較検討してみる。ここで直径5
mmの流れの断面16の単一の自由な部分が直径0.5
mmの100本の流路に分割され、これは直径0.5m
mの撚糸15を100本挿入することに相当する。する
と次のようなことが生ずる。すなわち理想的な分布した
部分の流量係数43は変化しない。しかしながら撚糸1
5の挿入により分割された流路り流量係数はこのとき 100X O,53=12.5 になる。これは22.5%の透析物の量に相当する。
(3) Comparatively examine the objectives of the present invention. Here the diameter is 5
A single free section of the flow cross section 16 mm has a diameter of 0.5
It is divided into 100 channels with a diameter of 0.5 m.
This corresponds to inserting 100 twisted yarns 15 of m. Then, the following happens. That is, the flow coefficient 43 of the ideal distributed portion does not change. However, twist 1
The flow rate coefficient of the flow path divided by the insertion of 5 becomes 100X O,53=12.5. This corresponds to a dialysate volume of 22.5%.

かくして使用されない透析物の割合が100本の撚糸の
挿入により64%から22.5%に減少し、言換えると
透析物の量が格段に良好に使用される。
The proportion of unused dialysate is thus reduced from 64% to 22.5% by inserting 100 threads, in other words the amount of dialysate is used much better.

これは見かけ上の効率上昇を示すものである。This indicates an apparent increase in efficiency.

しかしながら効率が上昇するだけでなく、容量の段階の
帯域幅が本発明による改善の分だけ減少する。2つの測
定による実験でこのことがさらに示されよう。
However, not only is the efficiency increased, but the bandwidth of the capacity stage is reduced by the improvement provided by the present invention. Experiments with two measurements will further demonstrate this.

A)撚糸15を挿入していない従来の形態の透析装置で
試験を行った。これは毛管が10000本のものであっ
た。毛管は内径が0.2mmであった。この透析装置に
200m1/分の血液流及び500m1/分の透析物流
を供給した。169.1で尿素クリアランスが±16.
48の容量段階が測定された。それから10000本の
毛管の束に4%の撚糸15を付加し、他の点では最初の
データ通りとした。かくして182.5で尿素クリアラ
ンスが±7.8の容量段階が得られた。
A) Tests were conducted with a conventional configuration of dialysis device without inserted threads 15. This had 10,000 capillaries. The capillary had an internal diameter of 0.2 mm. The dialysis machine was supplied with a blood flow of 200 ml/min and a dialysis flow of 500 ml/min. 169.1 and urea clearance is ±16.
Forty-eight volume levels were measured. A bundle of 10,000 capillaries was then added with 4% twist 15, otherwise as per the original data. A volume step of 182.5 and a urea clearance of ±7.8 was thus obtained.

それゆえ容量が169.1から182.5に増大してよ
り大きい容量への変位が測定可能に検証された。同時に
容量段階の許容差は16.48から7.8に低下した。
The capacity was therefore increased from 169.1 to 182.5, and the displacement to higher capacity was measurably verified. At the same time, the capacity step tolerance decreased from 16.48 to 7.8.

B)内径0.2mmの8700本の毛管を有する透析装
置で試験を行い、200m1/分の血液流及び500m
1/分の透析物流をこの場合にも供給した。178.7
で尿素クリアランス±4.8が測定された。これとの比
較において、毛管に4%の撚糸を付加した後にこの透析
装置は182.3で尿素クリアランス±1.9の程度の
容量段階を示した。
B) The test was carried out on a dialysis machine with 8700 capillaries of internal diameter 0.2 mm, blood flow of 200 m1/min and 500 m
A 1/min dialysis flow was also provided in this case. 178.7
Urea clearance ±4.8 was measured. In comparison, after adding 4% twist to the capillary tube, this dialyzer showed a volume step of the order of 182.3 urea clearance ±1.9.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は毛管透析装置の断面図である。 第2図は第1図の直線■−■に沿ってとった断面をは切
離して示した図である。 第3図は従来技術による透析装置の概略的な断面図であ
る。 第4図は本発明による透析装置の概略的断面図である。 (外4名) 手 続 補 正 書 1、事件の表示 平成1年特許願第42917号 2、発明の名称 毛管透析装置 3゜ 補止をする者 事件との関係  特許出願人 住所 名 称 ゼコン・ゲーエムベーハ− 4、代 理 人
FIG. 1 is a cross-sectional view of a capillary dialysis device. FIG. 2 is a cutaway view of a cross section taken along the straight line ``--'''' in FIG. FIG. 3 is a schematic cross-sectional view of a dialysis device according to the prior art. FIG. 4 is a schematic cross-sectional view of a dialysis device according to the invention. (4 others) Procedural amendment 1, Indication of the case, 1999 Patent Application No. 42917 2, Name of the invention Capillary dialysis device 3゜Relationship with the case Patent applicant address Name Zecon GmbH 4. Agent

Claims (1)

【特許請求の範囲】 1、概略管状のハウジングと、該ハウジング内において
両端が取付けられ血液の流入室及び流出室が連結されて
いる埋込み材によって相互にまた上記ハウジングから密
封された毛管の束とを有し、透析室内の透析物が織地状
糸からなる撚糸の配置された毛管の周囲を流れるように
した透析装置において、撚糸(15)が毛管(2)の延
びる方向に平行に配置され個々の毛管に結合せずに毛管
の束に付与され、毛管(2)の束に配置された撚糸(1
5)の数が撚糸を有する毛管の束により透析室の断面が
弾性的に充填されるように断面にわたって均一に分布す
るようにしたことを特徴とする毛管透析装置。 2、上記撚糸(15)が毛管(2)と同等の直径を有し
ていてそれよりわずかに小さい直径となるように選択さ
れることを特徴とする特許請求の範囲第1項に記載の毛
管透析装置。 3、毛管(2)の束において、容量の段階に応じて10
〜25本の毛管(15)に対して1本の撚糸(15)が
設けられるようにしたことを特徴とする特許請求の範囲
第1または2項に記載の毛管透析装置。 4、撚糸の透析物に対する流れの抵抗が近接する毛管(
2)の流れの抵抗に一致するような多孔度を有する撚糸
(15)として織地状糸が用いられるようにしたことを
特徴とする特許請求の範囲第1〜3項に記載の透析装置
。 5、多繊維材または縮れた単繊維材が撚糸(15)とし
て用いられるようにしたことを特徴とする特許請求の範
囲第1〜4項に記載の透析装置。
Claims: 1. A generally tubular housing and a bundle of capillary tubes sealed from each other and from the housing by an implant attached at both ends within the housing and connecting blood inflow and outflow chambers. In this dialysis device, the dialysate in the dialysis chamber is made to flow around capillaries in which twisted threads made of woven threads are arranged. A twist (1) attached to the bundle of capillaries without bonding to the capillaries of
5) A capillary dialysis device characterized in that the number of capillary tubes having twisted threads is uniformly distributed over the cross section of the dialysis chamber so that the cross section is elastically filled with the bundle of capillary tubes having twisted threads. 2. Capillary according to claim 1, characterized in that the thread (15) is selected to have a diameter equal to and slightly smaller than that of the capillary (2). Dialysis machine. 3. In the bundle of capillaries (2), 10 depending on the capacity level
Capillary dialysis device according to claim 1 or 2, characterized in that one twisted thread (15) is provided for ~25 capillaries (15). 4. The flow resistance of the twisted threads to the dialysate is close to the capillary (
Dialysis device according to claims 1 to 3, characterized in that a woven thread is used as the thread (15) with a porosity that matches the flow resistance of 2). 5. The dialysis device according to claims 1 to 4, characterized in that a multifilament material or a curled monofilament material is used as the twisted yarn (15).
JP1042917A 1988-02-22 1989-02-22 Capillary dialyzer Expired - Fee Related JPH0667405B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3805414A DE3805414C1 (en) 1988-02-22 1988-02-22
DE3805414.0 1988-02-22

Publications (2)

Publication Number Publication Date
JPH02140172A true JPH02140172A (en) 1990-05-29
JPH0667405B2 JPH0667405B2 (en) 1994-08-31

Family

ID=6347860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042917A Expired - Fee Related JPH0667405B2 (en) 1988-02-22 1989-02-22 Capillary dialyzer

Country Status (9)

Country Link
US (1) US4950391A (en)
EP (1) EP0329980B1 (en)
JP (1) JPH0667405B2 (en)
KR (1) KR970006840B1 (en)
AU (1) AU595146B2 (en)
BR (1) BR8900793A (en)
CA (1) CA1323581C (en)
DE (1) DE3805414C1 (en)
ES (1) ES2040903T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039227A (en) * 2006-08-03 2008-02-21 Sumitomo Precision Prod Co Ltd Air preheater
WO2008093654A1 (en) 2007-01-30 2008-08-07 Toray Industries, Inc. Hollow-fiber membrane and hollow-fiber-membrane module having the same included therein

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270004A (en) 1989-10-01 1993-12-14 Minntech Corporation Cylindrical blood heater/oxygenator
US5198110A (en) * 1990-07-02 1993-03-30 Asahi Medical Co., Ltd. Bundle of permselective hollow fibers and a fluid separator containing the same
DE4039967A1 (en) * 1990-12-14 1992-06-17 Preussag Anlagenbau PLANT FOR SEPARATING LIQUID OR GASEOUS MIXTURES
SE502103C2 (en) * 1991-08-01 1995-08-14 Gambro Dialysatoren Filter unit for transfer of pulp and / or heat containing cavity fibers
ES2081708T3 (en) * 1992-03-27 1996-03-16 Akzo Nobel Nv MAKE HOLLOW THREADS, AS WELL AS A PROCEDURE AND DEVICE FOR ITS MANUFACTURE.
US5489413A (en) * 1992-11-03 1996-02-06 Cobe Laboratories, Inc. Hollow fiber blood oxygenator
US5779897A (en) * 1996-11-08 1998-07-14 Permea, Inc. Hollow fiber membrane device with inert filaments randomly distributed in the inter-fiber voids
DE19652695C1 (en) * 1996-12-18 1997-10-30 Saxonia Medical Gmbh Hollow fibre module e.g. for blood dialysis, filtration, oxygenation, etc.
RU2109555C1 (en) * 1996-12-25 1998-04-27 Алексей Николаевич Катрузов Method of organization of mass transfer and device for its realization
US6350618B1 (en) * 1998-04-27 2002-02-26 Corning Incorporated Redrawn capillary imaging reservoir
DE69835342T2 (en) * 1998-04-27 2007-08-23 Corning Inc. Method for storing biological samples with the aid of a redrawn capillary store
US6884626B1 (en) 1998-04-27 2005-04-26 Corning Incorporated Redrawn capillary imaging reservoir
JP4115626B2 (en) * 1998-05-25 2008-07-09 旭化成クラレメディカル株式会社 Method for producing hollow fiber membrane hemodialyzer
US6762061B1 (en) 1998-07-03 2004-07-13 Corning Incorporated Redrawn capillary imaging reservoir
US20020143397A1 (en) * 2001-04-02 2002-10-03 Von Segesser Ludwig K. Compliant artificial lung for extrapulmonary gas transfer
DE10242078A1 (en) * 2002-09-09 2004-03-18 Saxonia Bio Tec Gmbh Fiber cassette, for processing a variety of fluids, comprises a number of fibers and/or hollow fibers anchored in the housing at one end and with open fibers at the other end, giving a variety of configurations for a modular structure
KR100721054B1 (en) * 2004-11-23 2007-05-25 주식회사 뉴하트바이오 Filter module with multi-function parts for a blood purification and/or oxygenation using thereof and method for a blood purification and oxygenation and purification device comprising thereof
KR101214439B1 (en) * 2005-05-25 2012-12-21 에치투엘 주식회사 Immersed hollow fiber membrane module
DE102011106914B4 (en) 2011-07-08 2015-08-27 Zellwerk Gmbh Meander bioreactor and method for dynamic expansion, differentiation and harvesting of hematopoietic cells
DE102012204705A1 (en) 2012-03-23 2013-09-26 Raumedic Ag Heat exchanger for an oxygenator and method of making such a heat exchanger
KR20160099304A (en) * 2015-02-12 2016-08-22 코오롱인더스트리 주식회사 Hollow Fiber Membrane Bundle and Method for Manufacturing thereof
KR101766011B1 (en) * 2015-04-30 2017-08-07 현대자동차주식회사 Humidification device for fuel cell
DE102016003611A1 (en) 2016-03-29 2017-10-05 Enmodes Gmbh Apparatus for mass transfer and method of production
US20190022592A1 (en) * 2017-07-18 2019-01-24 Saudi Arabian Oil Company Hollow fiber membrane module
KR102510133B1 (en) * 2017-11-09 2023-03-15 에보니크 오퍼레이션즈 게엠베하 Membrane bundle layout having spacers
EP3482817A1 (en) 2017-11-09 2019-05-15 Frank Wiese Membrane bundle presentation with spacers
US20190233972A1 (en) 2018-01-31 2019-08-01 Saudi Arabian Oil Company Producing Fibers Using Spinnerets
US11406941B2 (en) 2020-02-14 2022-08-09 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems
CN111389231A (en) * 2020-04-24 2020-07-10 北京碧水源膜科技有限公司 Laminated hollow fiber membrane element with equal membrane-filament spacing and production method thereof
US11253819B2 (en) 2020-05-14 2022-02-22 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012081A (en) * 1983-06-29 1985-01-22 松下電工株式会社 Batting exerciser

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616928A (en) * 1969-10-02 1971-11-02 Du Pont Permeation separation device for separating fluids
US3893926A (en) * 1973-07-24 1975-07-08 John A Awad Membrane fluid diffusion exchange device
IN149938B (en) * 1977-11-30 1982-06-12 Monsanto Co
US4293418A (en) * 1979-03-28 1981-10-06 Toray Industries, Inc. Fluid separation apparatus
US4428403A (en) * 1980-12-19 1984-01-31 Extracorporeal Medical Specialties, Inc. Conduit having spirally wound monofilament material
DE3301268A1 (en) * 1983-01-17 1984-07-26 Akzo Gmbh, 5600 Wuppertal METHOD AND DEVICE FOR PRODUCING HOLLOW BANDS
JPS62250908A (en) * 1986-04-24 1987-10-31 Asahi Chem Ind Co Ltd Hollow yarn type filter
JPS62266106A (en) * 1986-05-12 1987-11-18 Mitsubishi Rayon Co Ltd Hollow yarn filter module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012081A (en) * 1983-06-29 1985-01-22 松下電工株式会社 Batting exerciser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039227A (en) * 2006-08-03 2008-02-21 Sumitomo Precision Prod Co Ltd Air preheater
WO2008093654A1 (en) 2007-01-30 2008-08-07 Toray Industries, Inc. Hollow-fiber membrane and hollow-fiber-membrane module having the same included therein

Also Published As

Publication number Publication date
CA1323581C (en) 1993-10-26
KR900012655A (en) 1990-09-01
AU3017489A (en) 1989-09-14
AU595146B2 (en) 1990-03-22
DE3805414C1 (en) 1989-09-07
EP0329980A3 (en) 1990-01-31
US4950391A (en) 1990-08-21
JPH0667405B2 (en) 1994-08-31
BR8900793A (en) 1989-10-17
ES2040903T3 (en) 1993-11-01
EP0329980A2 (en) 1989-08-30
KR970006840B1 (en) 1997-04-30
EP0329980B1 (en) 1993-04-07

Similar Documents

Publication Publication Date Title
JPH02140172A (en) Capillary dialysis apparatus
US4293418A (en) Fluid separation apparatus
US5198110A (en) Bundle of permselective hollow fibers and a fluid separator containing the same
US7524417B2 (en) Dialyzer and method for manufacturing the same
EP0701826B1 (en) Dialyzer
US4022692A (en) Non-woven support screen for mass transfer devices
AU624673B2 (en) Hollow fiber blood oxygenator
JP3574902B2 (en) Hollow fiber type dialyzer
JP2004529723A (en) Hemodialysis machine with improved dialysate perfusion
JPH02504227A (en) External perfusion blood oxygenator
US5263982A (en) Hollow fiber membrane type artificial lung
JPH09290020A (en) Gas exchange device
CA2191438A1 (en) Monofilament spacing of hollow fiber membranes and blood oxygenation devices incorporating same
JPH08192031A (en) Dialyzer
JP3878675B2 (en) Hollow fiber oxygenator
US4715952A (en) Reverse osmosis water purification element and cartridge
IL26988A (en) Artificial kidney
US4019988A (en) Dialyzer membrane seal and tubing connector
JP4214910B2 (en) Dialysis machine and manufacturing method thereof
JP3080430B2 (en) Permselective hollow fiber bundle and fluid separation device incorporating the same
CN209827731U (en) Dialyser comprising improved internal filtration
JPH0412988B2 (en)
JPWO2006070890A1 (en) Hollow fiber blood purifier
JP2000070360A (en) Hollow fiber membrane type dialyzer
JPS6217452Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees