JPH0214008Y2 - - Google Patents

Info

Publication number
JPH0214008Y2
JPH0214008Y2 JP1982154734U JP15473482U JPH0214008Y2 JP H0214008 Y2 JPH0214008 Y2 JP H0214008Y2 JP 1982154734 U JP1982154734 U JP 1982154734U JP 15473482 U JP15473482 U JP 15473482U JP H0214008 Y2 JPH0214008 Y2 JP H0214008Y2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber bundle
refractive index
light
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982154734U
Other languages
Japanese (ja)
Other versions
JPS5958418U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15473482U priority Critical patent/JPS5958418U/en
Publication of JPS5958418U publication Critical patent/JPS5958418U/en
Application granted granted Critical
Publication of JPH0214008Y2 publication Critical patent/JPH0214008Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、光源装置の光を、光学繊維束によつ
て伝送し、該光学繊維束の端面から射出する光学
繊維束を用いた照明装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an illumination device using an optical fiber bundle in which light from a light source device is transmitted through an optical fiber bundle and emitted from an end face of the optical fiber bundle.

内視鏡による体腔内観察時のように照明を必要
とする部位に光源を近づけて該部位を直接に照明
することが不可能な場合には、第1図に示すよう
に、光源装置に設けた光源ランプ1の光を放物面
反射鏡及び集光レンズ、或いは楕円面反射鏡等の
集光器2によつて集光して、照明用光学繊維束3
の入射端面4に入射し、該光を光学繊維束3によ
つて伝送し、上記部位の近傍に位置する光学繊維
束3の射出端面5から該部位に向けて射出し、該
部位を照明する照明装置が用いられている。
When it is impossible to bring a light source close to the area that requires illumination and illuminate the area directly, such as when observing the inside of a body cavity using an endoscope, a light source is installed in the light source device as shown in Figure 1. The light from the light source lamp 1 is condensed by a condenser 2 such as a parabolic reflector and a condenser lens, or an ellipsoidal reflector, and an optical fiber bundle 3 for illumination is collected.
The light enters the incident end surface 4 of the optical fiber bundle 3, is transmitted through the optical fiber bundle 3, and is emitted toward the region from the exit end surface 5 of the optical fiber bundle 3 located near the region, illuminating the region. A lighting device is used.

この種の照明装置に用いられている光学繊維束
3を形成している光学単繊維は、高屈折率のガラ
ス或いはプラスチツクから成る芯材を低屈折率の
ガラス或いはプラスチツクから成る被覆材で被覆
したものである。その為、該単繊維の開口角θ
は、芯材の屈折率及び被覆材の屈折率によつて決
まり、通常の光学単繊維においてθは60゜程度で
ある。その為、通常の光学単繊維によつて形成し
た通常の光学繊維束では、射出端面5からは開口
角θの範囲内の射出光しか得られず、照明出来る
範囲は約60゜の狭い範囲に限られてしまう。
The optical single fibers forming the optical fiber bundle 3 used in this type of lighting device have a core material made of glass or plastic with a high refractive index coated with a coating material made of glass or plastic with a low refractive index. It is something. Therefore, the opening angle θ of the single fiber is
is determined by the refractive index of the core material and the refractive index of the coating material, and in a normal optical single fiber, θ is about 60°. Therefore, in a normal optical fiber bundle formed from normal optical single fibers, only the emitted light within the range of the aperture angle θ can be obtained from the exit end face 5, and the illumination range is limited to a narrow range of about 60°. It's limited.

そこで、60゜よりも広い範囲を照明する為に、
従来は、第2図に示すように射出端面5の前方に
凹レンズ6を設け光を拡散させていた。然し乍
ら、凹レンズ6が光学繊維束3の径と同程度の径
を有するものであれば、射出端面5から射出した
照明光の一部が凹レンズ6の縁に遮られて、照明
光の周辺部の光量が著しく減少する。これを防止
する為に、凹レンズ6の径を光学繊維束3の径よ
りも大きくすれば、内視鏡に照明装置を併設する
場合には、体腔内に挿入する内視鏡の先端部を凹
レンズ6の径の大口径化に応じて大きくしなけれ
ばならず、該先端部を挿入される患者の苦痛を大
きくすることになる。加えて、通常の凹レンズで
は、レンズ面の曲率に限度があり、照明範囲を
100゜程度までした拡げられず、それ以上に照明範
囲を拡げ得る凹レンズは生産が難しく高価である
という欠点があつた。
Therefore, in order to illuminate a wider area than 60°,
Conventionally, as shown in FIG. 2, a concave lens 6 was provided in front of the exit end face 5 to diffuse light. However, if the concave lens 6 has a diameter comparable to the diameter of the optical fiber bundle 3, a portion of the illumination light emitted from the exit end face 5 will be blocked by the edge of the concave lens 6, and the peripheral portion of the illumination light will be blocked. The amount of light decreases significantly. In order to prevent this, if the diameter of the concave lens 6 is made larger than the diameter of the optical fiber bundle 3, if an illumination device is attached to the endoscope, the tip of the endoscope to be inserted into the body cavity can be attached to the concave lens. As the diameter of No. 6 becomes larger, the diameter must be increased, which increases the pain for the patient who inserts the tip. In addition, with normal concave lenses, there is a limit to the curvature of the lens surface, which limits the illumination range.
The disadvantage was that concave lenses, which could not be expanded up to about 100 degrees, but could extend the illumination range further, were difficult and expensive to produce.

他の従来例として、射出端面5の前方にオパー
ル硝子等の不透明な拡散板を設け光を拡散させた
り、射出端面に設けられるカバーレンズの中央部
に、カバーレンズの屈折率とは異なる材料から成
る微粒子を多量に埋設して光の拡散を図つたもの
がある。然し乍ら、これらの例によれば、不透明
な拡散板や、埋設微粒子によつて逆行する光も多
く、散乱損失が大きくなつて、有効透過光量を考
慮すると透過損失が大きくなり、光源装置で発生
した光を有効に利用することが出来ないという欠
点があつた。
As other conventional examples, an opaque diffusion plate such as opal glass is provided in front of the exit end face 5 to diffuse the light, or a material with a refractive index different from that of the cover lens is placed in the center of the cover lens provided on the exit end face. There are some that are designed to diffuse light by embedding a large amount of fine particles. However, according to these examples, there is a lot of light that travels backwards due to the opaque diffuser plate and buried particles, and the scattering loss becomes large, and when the amount of effective transmitted light is taken into account, the transmission loss becomes large, and the amount of light generated in the light source device increases. The drawback was that light could not be used effectively.

更に他の従来例として、光学単繊維を束ね該束
の一端部を捩回した状態で該端部の光学単繊維を
相互に固着して光学繊維束を形成し、該端部の端
面を該光学繊維束の光軸に垂直且つ平滑に仕上
げ、射出端面5とすることによつて、各光学単繊
維の光軸を光学繊維束の光軸に対して傾け且つ光
学単繊維の光軸に対して該単繊維の端面を傾け、
照明光を拡散させたものがある。然し乍ら、この
例では上記捩回の角度を余り大きく出来ないの
で、照明範囲は90゜程度が限度であり、光学繊維
束の周辺部では、捩回を行なわない光学繊維束に
比べて、収容できる光学単繊維の数が減少するの
で、照明光の周辺部光量が不足がちになり易いと
いう欠点があつた。
Furthermore, as another conventional example, an optical fiber bundle is formed by bundling optical fibers, twisting one end of the bundle, and fixing the optical fibers at the end to each other. By finishing the exit end face 5 perpendicularly and smoothly to the optical axis of the optical fiber bundle, the optical axis of each optical single fiber is tilted with respect to the optical axis of the optical fiber bundle, and the optical axis of each optical single fiber is tilt the end face of the single fiber,
Some have diffused illumination light. However, in this example, the angle of the twist cannot be made too large, so the illumination range is limited to about 90 degrees, and the periphery of the optical fiber bundle can accommodate more light than an optical fiber bundle that is not twisted. Since the number of optical single fibers is reduced, there is a drawback that the amount of illumination light tends to be insufficient in the peripheral area.

本考案は、上述した問題を解決する為になされ
たものであり、照明範囲が広く、光源で発生した
光を有効に利用し得る照明装置を提供するもので
ある。
The present invention has been made to solve the above-mentioned problems, and provides a lighting device that has a wide illumination range and can effectively utilize the light generated by the light source.

以下、添付図面に示す望ましい実施例に従い、
本考案を詳述する。
Hereinafter, according to the preferred embodiment shown in the attached drawings,
The present invention will be explained in detail.

本実施例において、光源装置で発生した照明光
を照明用として用い得る光学繊維束の入射端面に
入射し、該照明光を該光学繊維束によつて伝送
し、該光学繊維束の射出端面から射出している点
は従来の照明装置と変らないが、本実施例では、
第3図に示すように照明用として用い得る光学繊
維束3の射出端面5の前方に光学繊維束3と略同
径の円板状をした透明な拡散部材7を光学繊維束
3の光軸に対して同軸に固定部材(図示せず)に
よつて光学繊維束3に固設、或いは接着材によつ
て接着し、拡散部材7中に拡散部材7よりも低屈
折率の透明な球状体8を単一面に沿つて相互に並
べて内蔵させてある。
In this embodiment, the illumination light generated by the light source device is incident on the incident end face of an optical fiber bundle that can be used for illumination, the illumination light is transmitted through the optical fiber bundle, and the illumination light is transmitted from the exit end face of the optical fiber bundle. Although the point of emission is the same as that of conventional lighting devices, in this example,
As shown in FIG. 3, in front of the exit end face 5 of the optical fiber bundle 3 that can be used for illumination, a transparent diffuser member 7 in the shape of a disk having approximately the same diameter as the optical fiber bundle 3 is installed along the optical axis of the optical fiber bundle 3. A transparent spherical body having a refractive index lower than that of the diffusing member 7 is fixed to the optical fiber bundle 3 coaxially with the optical fiber bundle 3 by a fixing member (not shown) or bonded with an adhesive. 8 are housed side by side along a single plane.

本実施例によれば、第4図に示すように、光学
繊維束3の射出端面5から射出した光は、その射
出角度並びに、球状体8と射出点との位置関係に
よつて異なる拡散をする。球状体8の表面に臨界
角よりも大きな角度で入射する光aは、該表面に
て全反射し、その光路を大きく変え拡散する。球
状体8の表面に臨界角よりも小さな角度で入射す
る光の一部は光bのように、球状体8に入射する
際、球状体8から射出する際及び拡散部材7から
射出する際に各々光学繊維束3の光軸に対してよ
り大きな角度に屈折し拡散する。
According to this embodiment, as shown in FIG. 4, the light emitted from the exit end face 5 of the optical fiber bundle 3 is diffused differently depending on its exit angle and the positional relationship between the spherical body 8 and the exit point. do. Light a that is incident on the surface of the spherical body 8 at an angle larger than the critical angle is totally reflected on the surface, changes its optical path significantly, and is diffused. A part of the light incident on the surface of the spherical body 8 at an angle smaller than the critical angle, like light b, enters the spherical body 8, exits from the spherical body 8, and exits from the diffusing member 7. Each is refracted at a larger angle with respect to the optical axis of the optical fiber bundle 3 and diffused.

本考案に係る照明装置は、球状体8の屈折率、
拡散部材7の屈折率、並びに球状体8の大きさ及
び数量等の条件によつて照明範囲及びその配光が
異なる。また、拡散部材7に内蔵される球状体8
は、単一面に沿つて相互に並べる限り、これを複
列に並べてもよい。上記の条件を適宜に選定すれ
ば、所望の照明範囲及び配光に合せた照明を行な
うことが可能である。
The lighting device according to the present invention has a refractive index of the spherical body 8,
The illumination range and its light distribution vary depending on conditions such as the refractive index of the diffusing member 7 and the size and number of the spherical bodies 8. In addition, a spherical body 8 built into the diffusion member 7
may be arranged in double rows as long as they are arranged along a single plane. By appropriately selecting the above conditions, it is possible to perform illumination that matches the desired illumination range and light distribution.

上述した拡散部材7の材料としてはエポキシ樹
脂(屈折率:1.52〜1.57)、ポリカーボネート
(屈折率:1.58)、ポリスチレン(屈折率:1.60)、
光学ガラス(屈折率:1.5〜)等高屈折率のプラ
スチツクまたはガラスが採用可能であり、球状体
8の材料としてはPMMA(屈折率:1.49)、CR−
39(屈折率:1.48)等低屈折率のプラスチツクま
たはガラスが採用可能であり、球状体8を空気
(屈折率:1.0)で形成することも可能である。
Materials for the above-mentioned diffusion member 7 include epoxy resin (refractive index: 1.52 to 1.57), polycarbonate (refractive index: 1.58), polystyrene (refractive index: 1.60),
Plastic or glass with a high refractive index such as optical glass (refractive index: 1.5~) can be used, and materials for the spherical body 8 include PMMA (refractive index: 1.49), CR-
Plastic or glass having a low refractive index such as 39 (refractive index: 1.48) can be used, and the spherical body 8 can also be formed of air (refractive index: 1.0).

空気によつて球状体8を形成する場合には、溶
融した拡散部材7の材料に気泡を混入させて、該
溶融材料が固化する際に該気泡を拡散部材7内に
封入すればよい。その他にも、第5A図及び第5
B図に半完成状態を示すように、半球形の凹部9
を設けたガラスまたはプラスチツクの板10を該
凹部9を相互に一致させながら2枚貼り合せ、第
6図に完成状態を示すように球状体8を形成する
ことも可能である。
When forming the spherical body 8 with air, air bubbles may be mixed into the molten material of the diffusion member 7, and the air bubbles may be enclosed within the diffusion member 7 when the molten material solidifies. In addition, Figures 5A and 5
As shown in the semi-finished state in Figure B, the hemispherical recess 9
It is also possible to form the spherical body 8 as shown in the completed state in FIG. 6 by bonding together two glass or plastic plates 10 provided with the recesses 9 with each other.

本考案の球状体8は、上述した実施例とは逆
に、球状体8の屈折率を拡散部材7の屈折率より
も高くしてもよい。その場合には、第7図に示す
ように、光学繊維束3の射出端面5から射出した
光の一部は光c,dのように、球状体8に入射す
る際、球状体8から射出する際及び拡散部材7か
ら射出する際に各々光学繊維束3の光軸に対して
より大きな角度に屈折し拡散する。
In the spherical body 8 of the present invention, the refractive index of the spherical body 8 may be higher than the refractive index of the diffusing member 7, contrary to the above-described embodiment. In that case, as shown in FIG. 7, a part of the light emitted from the exit end face 5 of the optical fiber bundle 3 is emitted from the spherical member 8 when it enters the spherical member 8, like lights c and d. When the light is released from the optical fiber bundle 3 and when it is emitted from the diffusing member 7, it is refracted at a larger angle with respect to the optical axis of the optical fiber bundle 3 and diffused.

本実施例においては、拡散部材7の材料として
前述した低屈折率のププラスチツクまたはガラス
を用い、球状体8の材料として前述した高屈折率
のププラスチツクまたはガラスを用いればよい。
In this embodiment, the material for the diffusion member 7 may be the low refractive index plastic or glass described above, and the material for the spherical body 8 may be the above-mentioned high refractive index plastic or glass.

他に、球状体8として、拡散部材7よりも屈折
率の高いものと低いものとを単一の拡散部材7中
に混在させても本考案は実施可能である。
Alternatively, the present invention can be implemented even if spherical bodies 8 having higher and lower refractive indexes than the diffusing member 7 are mixed in a single diffusing member 7.

また、第3図、第4図及び第7図では拡散部材
7を射出端面5に密着させているが、拡散部材7
と射出端面5との間に隙間を設けても本考案は実
施可能である。
Further, in FIGS. 3, 4, and 7, the diffusion member 7 is brought into close contact with the injection end surface 5, but the diffusion member 7
The present invention can be implemented even if a gap is provided between the injection end face 5 and the injection end face 5.

本考案に係る光学繊維束を用いた照明装置によ
れば、球状体を配設した拡散部材によつて照明光
を拡散し、広い範囲を照明することが出来る。し
かも、該球状体の数、大きさ及び屈折率を変える
ことによつて照明光の照射範囲、配光を変えるこ
とが可能であり、用途に応じて最適な照明を行な
うことが出来る。加えて、不透明の拡散板を設け
た場合や、カバーレンズの中央部に屈折率の異な
る多量の微粒体を埋設したものと異なり、透過損
失も殆どない。更に、凹レンズを設けた場合と異
なり、拡散部材の径が光学繊維束の径と同一であ
つても、光が拡散部材の周面に遮られることが少
ないので、光源装置で発生した光を有効に利用し
て充分な照明を行なうために照明装置の射出部の
径を大きくする必要がない。従つて、照明装置の
射出部を小径のものとすることによつて内視鏡に
併設した場合には患者の体腔内への挿入時に患者
に与える苦痛を軽減することが出来る。
According to the illumination device using the optical fiber bundle according to the present invention, the illumination light can be diffused by the diffusion member provided with the spherical bodies, and a wide range can be illuminated. Moreover, by changing the number, size, and refractive index of the spherical bodies, it is possible to change the irradiation range and light distribution of illumination light, and it is possible to perform optimal illumination depending on the application. In addition, unlike the case where an opaque diffuser plate is provided or the case where a large amount of fine particles with different refractive indexes are embedded in the central part of the cover lens, there is almost no transmission loss. Furthermore, unlike the case where a concave lens is provided, even if the diameter of the diffusing member is the same as the diameter of the optical fiber bundle, the light is less likely to be blocked by the peripheral surface of the diffusing member, so the light generated by the light source device can be used effectively. There is no need to increase the diameter of the emission part of the illumination device in order to provide sufficient illumination. Therefore, by making the emission part of the illumination device small in diameter, when the illumination device is attached to an endoscope, it is possible to reduce the pain caused to the patient when the illumination device is inserted into the patient's body cavity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な光学繊維束を用いた照明装置
を示す平面図、第2図は凹レンズを用いた従来例
の射出部を示す縦断平面図、第3図は本考案の一
実施例の射出部を示す縦断平面図、第4図は同実
施例の光路図、第5A図は同実施例拡散部材の一
例の半完成状態を示す縦断平面図、第5B図は第
5A図の半完成状態拡散部材を示す正面図、第6
図は第5A図及び第5B図の拡散部材の完成状態
を示す縦断平面図、第7図は本考案の他の実施例
の光路図である。 3……光学繊維束、4……入射端面、5……射
出端面、7……拡散部材、8……球状体。
Fig. 1 is a plan view showing an illumination device using a general optical fiber bundle, Fig. 2 is a longitudinal cross-sectional plan view showing an emitting part of a conventional example using a concave lens, and Fig. 3 is a plan view showing an example of an embodiment of the present invention. 4 is an optical path diagram of the same embodiment. FIG. 5A is a longitudinal sectional plan view showing an example of the diffusion member of the embodiment in a semi-completed state. FIG. 5B is a semi-completed view of FIG. 5A. Front view showing the state diffusion member, No. 6
This figure is a longitudinal sectional plan view showing the completed state of the diffusing member shown in FIGS. 5A and 5B, and FIG. 7 is an optical path diagram of another embodiment of the present invention. 3... Optical fiber bundle, 4... Incident end face, 5... Outgoing end face, 7... Diffusion member, 8... Spherical body.

Claims (1)

【実用新案登録請求の範囲】 (1) 照明用の光源装置と、該光源装置の光を伝送
する光学繊維束と、該光学繊維束の射出端面前
方に設ける透明な拡散部材とからなり、 上記拡散部材に、該拡散部材とは屈折率の異
なる複数の透明な球状体を単一面に沿つて相互
に並べて配設することを特徴とする光学繊維束
を用いた照明装置。 (2) 上記球状体の屈折率が上記拡散部材の屈折率
よりも低い実用新案登録請求の範囲第(1)項に記
載の光学繊維束を用いた照明装置。 (3) 上記球状体が空気によつて形成されている実
用新案登録請求の範囲第(2)項に記載の光学繊維
束を用いた照明装置。 (4) 上記球状体の屈折率が上記拡散部材の屈折率
よりも高い実用新案登録請求の範囲第(1)項に記
載の光学繊維束を用いた照明装置。 (5) 上記球状体として上記拡散部材よりも屈折率
の低いものと高いものとを単一の拡散部材に配
設する実用新案登録請求の範囲第(1)項に記載の
光学繊維束を用いた照明装置。
[Claims for Utility Model Registration] (1) Consisting of a light source device for illumination, an optical fiber bundle for transmitting light from the light source device, and a transparent diffusing member provided in front of the exit end surface of the optical fiber bundle, An illumination device using an optical fiber bundle, characterized in that a plurality of transparent spherical bodies having a different refractive index from the diffusion member are arranged side by side along a single surface as a diffusion member. (2) An illumination device using an optical fiber bundle according to claim (1), in which the refractive index of the spherical body is lower than the refractive index of the diffusing member. (3) A lighting device using an optical fiber bundle according to claim (2) of the utility model registration, wherein the spherical body is formed of air. (4) An illumination device using an optical fiber bundle according to claim (1), in which the refractive index of the spherical body is higher than the refractive index of the diffusing member. (5) The optical fiber bundle according to claim (1) of the utility model registration is used, in which spherical bodies having a refractive index lower and higher than that of the diffusing member are arranged in a single diffusing member. lighting equipment.
JP15473482U 1982-10-13 1982-10-13 Illumination device using optical fiber bundle Granted JPS5958418U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15473482U JPS5958418U (en) 1982-10-13 1982-10-13 Illumination device using optical fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15473482U JPS5958418U (en) 1982-10-13 1982-10-13 Illumination device using optical fiber bundle

Publications (2)

Publication Number Publication Date
JPS5958418U JPS5958418U (en) 1984-04-16
JPH0214008Y2 true JPH0214008Y2 (en) 1990-04-17

Family

ID=30341951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15473482U Granted JPS5958418U (en) 1982-10-13 1982-10-13 Illumination device using optical fiber bundle

Country Status (1)

Country Link
JP (1) JPS5958418U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605988B2 (en) * 1991-01-28 1997-04-30 富士写真光機株式会社 Endoscope
JP4700501B2 (en) * 2006-01-20 2011-06-15 オリンパス株式会社 Optical element and manufacturing method thereof
JP5988705B2 (en) * 2012-06-01 2016-09-07 オリンパス株式会社 Lighting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589207Y2 (en) * 1978-05-30 1983-02-19 オリンパス光学工業株式会社 Endoscope
JPS589208Y2 (en) * 1978-06-05 1983-02-19 オリンパス光学工業株式会社 Endoscope

Also Published As

Publication number Publication date
JPS5958418U (en) 1984-04-16

Similar Documents

Publication Publication Date Title
US4929070A (en) Illumination optical system for endoscopes
US6473554B1 (en) Lighting apparatus having low profile
US4631642A (en) Adaptor for coupling a light guide to a light source, in particular for providing an integrated side light in a motor vehicle headlamp assembly
US4824225A (en) Illumination optical system for an endoscope
JPH11250713A (en) Light guide plate and plane lighting system
TW374864B (en) Projecting type displaying device and photo-modulating elements array used therein
JPH0628725Y2 (en) Lens for LED lamp
JPS5753702A (en) Lens body
US4538216A (en) Lighting apparatus
CA1074754A (en) Stop, tail and signal lamp
KR20010075051A (en) Illumination system having edge-illuminated waveguide and separate components for extracting and directing light
JPH0214008Y2 (en)
TW201414957A (en) Illumination device
US4666246A (en) Illuminating optical system for endoscopes
JP3936871B2 (en) Light guide block
CN205354578U (en) Backlight LED lens of advertising lamp box
JP4223533B2 (en) Flat lighting device
JP2588833Y2 (en) Optical system for endoscope illumination
JPH11238408A (en) Linear beam projecting device and plane lighting system
US20020048176A1 (en) Cusp illuminator and flat panel illuminator made thereby
JP2003275165A (en) Endoscope luminous intensity distribution lens and manufacturing method of molding die for the same
CN108087841B (en) Light guide hollow lens and LED lamp bead
JPS63239415A (en) Lighting optical system for endoscope
JPS63249811A (en) Illuminating optical device
JP2733218B2 (en) Illumination optical system for endoscope