JPH02139438A - Continuous filament bundle reinforced by mixing stable fibers - Google Patents

Continuous filament bundle reinforced by mixing stable fibers

Info

Publication number
JPH02139438A
JPH02139438A JP29233788A JP29233788A JPH02139438A JP H02139438 A JPH02139438 A JP H02139438A JP 29233788 A JP29233788 A JP 29233788A JP 29233788 A JP29233788 A JP 29233788A JP H02139438 A JPH02139438 A JP H02139438A
Authority
JP
Japan
Prior art keywords
fibers
fiber
short
reinforced
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29233788A
Other languages
Japanese (ja)
Inventor
Keiichi Haraguchi
慶一 原口
Yoshio Matsumoto
松本 嘉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP29233788A priority Critical patent/JPH02139438A/en
Publication of JPH02139438A publication Critical patent/JPH02139438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the title continuous filament bundle having the mixed filament uniformity, high bulkiness and high industrial value by admixing thermoplastic short-cut fibers into a continuous filament bundle for reinforcement. CONSTITUTION:A continuous filament bundle, preferably more than 1,500 filament count, for reinforcement such as carbon or glass filaments are combined with short-cut fibers of a thermoplastic resin which is prepared by melt-spinning a thermoplastic resin such as polyolefin into filaments and cutting them, preferably in 3 to 150mm length in an amount of 30vol.%, calculated on the basis of the reinforcing filaments, additionally, when needed, inorganic or organic filler, whiskers, pigments and other additives to give the subject continuous filament bundle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強化繊維束中に熱可塑性樹脂短繊維が混繊され
てなる短繊維混合強化長繊維束に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a short fiber mixed reinforced long fiber bundle in which thermoplastic resin short fibers are mixed in a reinforcing fiber bundle.

さらに詳しくは、繊維強化材料として好適な混繊状態を
有し、適度なバルキー性を有する短繊維混合強化長繊維
束に関する。
More specifically, the present invention relates to a short fiber mixed reinforced long fiber bundle having a mixed fiber state suitable as a fiber reinforced material and having appropriate bulkiness.

〔従来の技術〕[Conventional technology]

近年、強化繊維を各種マトリックス樹脂により結合して
なる繊維強化材料は、その優れた特性、例えば、高強度
、高剛性、低比重、高耐疲労性などを有していることか
ら、幅広い用途が期待され、工業的に1輩な材料として
注目されている。
In recent years, fiber-reinforced materials made by bonding reinforcing fibers with various matrix resins have been used in a wide range of applications due to their excellent properties, such as high strength, high rigidity, low specific gravity, and high fatigue resistance. It has high expectations and is attracting attention as a leading industrial material.

一般に、これら強化繊維をマトリックス樹脂で結合した
繊維強化材料を得る場合、樹脂が繊維中に均一に分散し
やすく、柔軟で賦形性に優れていることなどのために、
硬化以前の状態で流動性に優れた熱硬化性樹脂が、一般
に使用されている。
Generally, when obtaining a fiber-reinforced material in which these reinforcing fibers are combined with a matrix resin, the resin is easily dispersed uniformly in the fibers, and is flexible and has excellent shapeability.
Thermosetting resins that have excellent fluidity before curing are generally used.

しかしながら、これら熱硬化性樹脂の硬化反応には、−
殻内に長時間(通常、1時間以上)の高温加圧条件が必
要であり、生産性に問題がある。
However, in the curing reaction of these thermosetting resins, -
It requires high-temperature pressurization conditions inside the shell for a long time (usually over 1 hour), which poses a problem in productivity.

また、揮発性成分が発生しやすく、ボイド等が製品中に
残るといった重大な欠点があり、繊維強化材料の一般的
な普及に制限があった。
Furthermore, there are serious drawbacks in that volatile components are likely to be generated and voids remain in the product, which has limited the general use of fiber-reinforced materials.

そこで、熱硬化性樹脂のかわりに、熱可塑性樹脂を用い
る試みがなされている(例えば、特開昭58−2965
1号公報)。しかしながら、これら繊維強化材料用に使
用されている熱可塑性樹脂は、室温において剛性が高く
、そのために、単純に樹脂溶液を繊維に含浸後説溶媒し
たり、シート状フィルムを熱溶融させて繊維中に圧入分
散させる方法で得られたプリプレグは、室温の状態で剛
性ヂあリ、無理に曲げたりすると繊維が切断したりして
、賦形性に乏しいもので、その使用に制限があった。
Therefore, attempts have been made to use thermoplastic resins instead of thermosetting resins (for example, Japanese Patent Laid-Open No. 58-2965
Publication No. 1). However, the thermoplastic resins used for these fiber-reinforced materials have high rigidity at room temperature, and for this reason, it is necessary to simply impregnate the fibers with a resin solution and then use a solvent, or heat-melt a sheet-like film to form the fibers. The prepreg obtained by press-fitting and dispersing the prepreg is rigid at room temperature, and its fibers break when it is forcibly bent, resulting in poor formability, which limits its use.

そこで、賦形性に優れた熱可塑性樹脂をマトリフクスと
した強化繊維束およびプリプレグの開発が近年盛んに行
われている。
Therefore, the development of reinforcing fiber bundles and prepregs using thermoplastic resin matrices with excellent shapeability has been actively conducted in recent years.

また、この解決策として、熱可塑性樹脂を繊維状にして
、強化繊維と混ぜ、使用することが開示されている(特
開昭60−56545号公報、特開昭60209033
号公報)。
In addition, as a solution to this problem, it has been disclosed that thermoplastic resin is made into a fiber form and mixed with reinforcing fibers for use (JP-A-60-56545, JP-A-60209033).
Publication No.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特開昭60−56545号公報に記載される熱可塑性樹
脂繊維(以下、(T))繊維」と略す。)と強化繊維と
の混合物は単に繊維束どうしを混ぜただけのものであり
、均一に混繊されていない。このものは、単繊維切れ等
が少なく、後工程において取扱いに優れてはいるが、熱
熔融成形時に樹脂が均一に強化繊維に含浸し難いとい・
う欠点がある。
Thermoplastic resin fiber (hereinafter referred to as (T) fiber) described in JP-A No. 60-56545. ) and reinforcing fibers is simply a mixture of fiber bundles and is not uniformly mixed. Although this product has fewer single fiber breaks and is easy to handle in subsequent processes, it is difficult to uniformly impregnate the reinforcing fibers with resin during hot melt molding.
There are some drawbacks.

そこで、特開昭60−209033号公報においては、
樹脂の含浸を容易にするために、単繊維どうしレベルで
混ぜよ・)と試みている。しかしながら、長繊維(紡績
糸でない連続繊維)どうしを単繊維レベルで長手方向に
均一に混ぜるのは、原料となる長繊維にわずかの撚があ
ると撚りの部分だけが混ざらないといった重大な欠点が
あり、また、混繊方法によっては単繊維切れ(いわゆる
毛羽)が発生し、その単繊維切れがロールに巻き付き、
次々に伝わって、ついには系全体が切れるといった問題
が生じる。従って、上記製品の使用には制限があり、−
殻内な普及には至っていない。
Therefore, in Japanese Patent Application Laid-Open No. 60-209033,
In order to facilitate resin impregnation, we are trying to mix the single fibers with each other. However, mixing long fibers (continuous fibers that are not spun yarns) uniformly in the longitudinal direction at the level of single fibers has a serious drawback that if there is a slight twist in the raw long fibers, only the twisted portion will not be mixed. Also, depending on the blending method, single fiber breaks (so-called fuzz) may occur, and the single fiber breaks may wrap around the roll.
A problem arises in that the signals are transmitted one after another and the entire system eventually breaks down. Therefore, there are restrictions on the use of the above products, -
It has not yet become widespread.

さらに、上記製品は、長繊維どうしを混合したものであ
るので、バルキー性に乏しく、強化繊維材料の特徴であ
る軽量性を活かした薄手の製品を作るのにも制限がある
Furthermore, since the above-mentioned products are made of a mixture of long fibers, they lack bulkiness, and there are limitations in making thin products that take advantage of the light weight characteristic of reinforcing fiber materials.

このように強化長繊維束とTP織繊維混合体に関し、単
繊維レベルで断面方向にも長手方向にも均一に混繊され
、バルキー性に冨んだ材料は、これまで見出されておら
ず、その開発が強く望まれていた。
In this way, with regard to reinforced long fiber bundles and TP woven fiber mixtures, a material that is uniformly mixed in both the cross-sectional and longitudinal directions at the single fiber level and has bulky properties has not been found so far. , its development was strongly desired.

本発明は、かかる要望に対して、均一混繊性に優れ、か
つバルキー性に富んだ繊維強化材料用強化長繊維束を提
供することを目的とする。
SUMMARY OF THE INVENTION In response to such demands, an object of the present invention is to provide a reinforced long fiber bundle for fiber-reinforced materials that is excellent in uniform fiber blending properties and bulky.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、本発明の短繊維混合強化長繊維束、すなわ
ち、強化長繊維束中にTP短繊維が混繊されていること
を特徴とする短繊維混合強化長繊維束によって達成され
る。
The above object is achieved by the short fiber mixed reinforced long fiber bundle of the present invention, that is, the short fiber mixed reinforced long fiber bundle characterized in that TP short fibers are mixed in the reinforced long fiber bundle.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては強化長繊維束が用いられる。In the present invention, reinforced long fiber bundles are used.

一般に、繊維は強度が高いものでも、単繊維では非常に
弱いため、束の状態で生産される。本発明は、このよう
な束状の強化長繊維について適用するものである。
In general, even if fibers have high strength, they are very weak as single fibers, so they are produced in bundles. The present invention is applied to such bundle-shaped reinforced long fibers.

本発明でいう強化長繊維束の単繊維数に関しては、少な
くても多くても良いが、少ない場合は、繊維束どうしを
単に混ぜたもの!攬じり具合の効果の差が小さくなる。
Regarding the number of single fibers in the reinforced long fiber bundle in the present invention, it may be small or large, but if it is small, simply mix the fiber bundles together! The difference in the effect of the degree of plucking becomes smaller.

好ましくは、500本以上である。Preferably, the number is 500 or more.

本発明の強化長繊維としては、一般に繊維強化材料に用
いられうる全ての長繊維を用いることができるが、例え
ば、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素
繊維、ボロン繊維、金属繊維、ポリベンゾチアゾール繊
維、ポリベンゾオキサゾール繊維、アルミナ繊維などの
実質的に連続な繊維が挙げられる。
As the reinforcing long fibers of the present invention, all long fibers that are generally used in fiber-reinforced materials can be used, but examples include carbon fibers, glass fibers, aramid fibers, silicon carbide fibers, boron fibers, metal fibers, Examples include substantially continuous fibers such as benzothiazole fibers, polybenzoxazole fibers, and alumina fibers.

本発明でいう熱可塑性樹脂短繊維(TP短繊維)とは、
熱可塑性樹脂を熱、溶媒等で溶かし、繊維化した後、カ
ットを行ったものをいう。
The thermoplastic resin short fibers (TP short fibers) referred to in the present invention are:
Fibers are produced by melting thermoplastic resin with heat, solvent, etc., turning it into fibers, and then cutting the fibers.

熱可塑性樹脂としては、例えば、ポリオレフィン類、熱
可塑性ポリエステル類、熱可塑性ポリアミド類、アクリ
ル樹脂類、ポリオキシメチレン、ポリカーボネート、ポ
リフェニレンエーテル、ポリスチレン類、ポリフェニレ
ンサルファイド、ポリエーテル・エーテルケトン、ポリ
エーテルケトン、ポリエーテルイミド、ポリエーテルケ
トンォン、熱可塑性ポリアミドイミド、フッ素樹脂類な
どのポリマー類または、これらのコポリマー類などの公
知の熱可塑性樹脂を挙げることができる。
Examples of thermoplastic resins include polyolefins, thermoplastic polyesters, thermoplastic polyamides, acrylic resins, polyoxymethylene, polycarbonate, polyphenylene ether, polystyrenes, polyphenylene sulfide, polyether/ether ketone, polyether ketone, Known thermoplastic resins include polymers such as polyetherimide, polyetherketone, thermoplastic polyamideimide, fluororesins, and copolymers thereof.

これらは繊維中でアロイになっていても良いし、2種以
上の繊維が物性を著しく損なわない形で使用されてもよ
い。そして、TP織繊維存在肚は繊維強化材料を100
容量%とすると少なくとも20容量%が必要であり、好
ましくは30容量%以上存在することが必要である。
These may be alloyed in the fibers, or two or more types of fibers may be used without significantly impairing physical properties. And, the TP woven fiber-existence material is made of fiber-reinforced material with 100%
In terms of volume %, at least 20 volume % is required, preferably 30 volume % or more.

しかしながら、着色、粘着性、酸化防止、表面のみに樹
脂をリッチにさせて平滑性を上げる等の目的のために、
TPフィルム、熱硬化性樹脂等のマトリックスを併用す
る場合にはこの限りではない。
However, for purposes such as coloring, adhesion, anti-oxidation, and increasing the smoothness by enriching the resin only on the surface,
This does not apply when a matrix such as a TP film or a thermosetting resin is used in combination.

本発明においては、剛性、流動性、着色、酸化防止、潤
滑性、その他の性能を上げるために、無機、有機フィラ
ー、ウィスカー、顔料、可塑剤等を必要に応じて1種以
上含有させてもよい。
In the present invention, one or more inorganic or organic fillers, whiskers, pigments, plasticizers, etc. may be included as necessary in order to improve rigidity, fluidity, coloring, antioxidant, lubricity, and other properties. good.

短繊維の長さは、長ければTP短繊維の毛羽が目立たな
い良好な外観のものが得られるが、均一混繊が困難にな
ってくる。短くなると混繊は容易であるが、TP短繊維
の毛羽が目立ったり、取扱中に容易に脱離し易くなる。
If the length of the short fibers is long, a good appearance with less noticeable fuzz of the TP short fibers can be obtained, but it becomes difficult to mix the fibers uniformly. When the length is short, it is easy to mix the fibers, but the fuzz of the TP short fibers becomes noticeable and they tend to come off easily during handling.

従って、TP短繊維の太さおよび強化長繊維とのからみ
易さなどを考慮して選ぶ必要がある。具体的にはIMか
ら600閣程度の長さであり、好ましくは3Mから15
0鵬である。
Therefore, it is necessary to select the TP short fibers in consideration of their thickness and ease of entanglement with the reinforcing long fibers. Specifically, the length is about 600 meters from IM, preferably 15 meters from 3M.
It is 0 Peng.

本発明でいう「混繊Jとは、下記のように算出される「
断面方向における混繊度」が50%以下であることを意
味する。すなわち、混繊された糸長10mの繊維束を、
糸方向に沿って均等に最低10ケ所で直角に切断した面
内を観察した時に、強化繊維の単繊維どうしを、内部に
TP短繊維が含まれないように凸型多角形で囲み、同−
断面内において、その囲んだ多角形の中の最も大きな集
団の単繊維の本数を分子とし、混繊する前の強化長繊維
束中の単繊維本数を分母として計算し、平均した値を%
で表す。このように算出される断面方向における混繊度
が50%以下の状態を混繊といい、好ましい混繊は20
%以下であり、最も好ましくは10%以下である。
In the present invention, "mixed fiber J" is calculated as follows.
This means that the degree of blending in the cross-sectional direction is 50% or less. In other words, a mixed fiber bundle with a yarn length of 10 m,
When observing the plane cut at right angles at at least 10 places evenly along the yarn direction, the single fibers of the reinforcing fibers are surrounded by convex polygons so that no TP short fibers are included inside, and the same -
In the cross section, the number of single fibers in the largest group in the enclosed polygon is used as the numerator, and the number of single fibers in the reinforced long fiber bundle before mixing is used as the denominator, and the average value is calculated as %.
Expressed as A state in which the degree of blending in the cross-sectional direction calculated in this way is 50% or less is called mixed fiber, and the preferable blend is 20%.
% or less, most preferably 10% or less.

さらに、混繊の状態を示す他の尺度として「長手方向に
おける混繊度」が用いられる。長手方向における混繊度
とは、肉眼で10mの長さの繊維束を観察し、50c+
a以上の間隔をあけて、混繊度の悪い個所を10ケ所選
び、それぞれの断面方向の混繊度を測定し、平均値を算
出する。この平均値を上記における断面方向混繊度で割
った比を長手方向における混繊度とする。−船釣に断面
方向における混繊度が高くなると上記比は大きくなる傾
向がある。好ましい比を特定することは困難であるが、
例えば、断面方向混繊度20%のケースでは好ましい比
は2以下、より好ましくは1.5以下であり、断面方向
混繊度10%のケースでは好ましい比は4以下、さらに
好ましくは2以下である。
Furthermore, "degree of blending in the longitudinal direction" is used as another measure to indicate the state of blending. The degree of blending in the longitudinal direction is defined as 50c+ when observing a 10m long fiber bundle with the naked eye.
Select 10 locations with poor fiber blending at intervals of a or more, measure the fiber blend in each cross-sectional direction, and calculate the average value. The ratio obtained by dividing this average value by the above-mentioned cross-sectional fiber mixing degree is defined as the longitudinal fiber mixing degree. - The above ratio tends to increase as the degree of blending in the cross-sectional direction increases in boat fishing. Although it is difficult to specify a preferred ratio,
For example, in the case of a cross-sectional direction blending degree of 20%, the preferred ratio is 2 or less, more preferably 1.5 or less, and in the case of a cross-sectional direction blending degree of 10%, the preferable ratio is 4 or less, more preferably 2 or less.

一般的に、TP織繊維用いた強化繊維材料用複合体は、
TP織繊維構成するポリマーが高分子であるために、溶
融成形時において粘度が高く、強化繊維中にあらかじめ
均一に分散させておく必要があり、−ケ所でも分散の悪
い所があるとボイドを生じやすく、そこから破壊が進行
するために、強化繊維材料の信顛性を著しく失うことに
なる。
Generally, composites for reinforcing fiber materials using TP woven fibers are
Since the polymer constituting the TP woven fiber is a polymer, it has a high viscosity during melt molding, and it is necessary to uniformly disperse it in the reinforcing fiber in advance. The reinforcing fiber material loses its integrity significantly because the reinforcing fiber material is easily destroyed and the fracture progresses from there.

なお、大きなr長手方向の混繊度」は撚などのために周
期的に出現する傾向があり、肉眼による判定のほうが確
実である。さらに繊維どうしの色じ同じで肉眼による判
別が困難な場合は、TP織繊維みを染色するような公知
の方法を使えば容易にできる。
It should be noted that a large degree of "mixture in the longitudinal direction" tends to appear periodically due to twisting, etc., and judgment with the naked eye is more reliable. Furthermore, if the fibers have the same color and are difficult to distinguish with the naked eye, this can be easily done by using a known method such as dyeing only the TP woven fibers.

本明細書にいう「バルキー性」とは、本発明の複合体を
溶融圧縮冷却した板がどの程度まで薄くできるかを示す
性質である。
"Bulky property" as used herein is a property indicating how thin a plate obtained by melting, compressing and cooling the composite of the present invention can be made.

一般的に長繊維強化材料は、強化繊維方向には強いが、
直角方向には極端に弱く、そのために角度を変えて積層
し、溶融一体化されて用いられる。
In general, long fiber reinforced materials are strong in the reinforcing fiber direction, but
It is extremely weak in the right angle direction, so it is used by stacking them at different angles and melting them together.

また、後加工の切断、穴開は工程において、切断表面か
ら強化繊維が飛び出さないように表面のみに布状に織っ
た材料が使われている。これらの材料としては、全体の
重量を減らすとともにコストより多数本巻使用すること
は、強化繊維の弾性率が高い故に伸びがなく切れやすい
ので、非常な困難を伴う。それ故に、同数の繊維束で開
繊性を上げて薄くする試みも続けられている(例えば、
特開昭56−43435)。本発明の短繊維混合強化繊
維束は、これらの要求にも答えられる材料である。
Additionally, during the post-processing cutting and hole-drilling process, a cloth-like woven material is used only on the surface to prevent reinforcing fibers from protruding from the cut surface. For these materials, it is very difficult to reduce the overall weight and use a large number of rolls due to cost, since the reinforcing fibers have a high elastic modulus and do not stretch and break easily. Therefore, attempts are being made to increase the spreadability and thin the fiber bundles with the same number of fibers (for example,
Japanese Patent Publication No. 56-43435). The short fiber mixed reinforcing fiber bundle of the present invention is a material that can meet these demands.

さらに、予想外の効果として、積層体の層間接着強度の
高いものが得られる。これは、おそらく、TP短繊維が
強化繊維方向に完全に整列しておらず、溶融冷却硬化さ
せた時にある程度ランダムになっているためと考えられ
る。
Furthermore, as an unexpected effect, a laminate with high interlayer adhesive strength can be obtained. This is probably because the TP short fibers are not perfectly aligned in the direction of the reinforcing fibers, and become random to some extent when melted, cooled, and hardened.

本発明の短繊維混合強化長繊維束は次の方法によって得
られる。まず、従来公知の熱可塑性樹脂(TP)繊維を
カッターで切断するか、または引きちぎるとかいった手
段で短繊維にして、液体に投入し、分散させる0次いで
、あらかじめ開繊させておいた強化繊維を液体に連続的
に供給し、あらかじめTP織繊維分散しておいた液をこ
の中に投入し、強化連続繊維が切れないように静かに下
流方向に引き取り、目が細かく、付着性の少ないテフロ
ンコート金網を介して、液体を分離させて巻き取り、そ
の後、付着している水分を乾燥させて短繊維混合強化長
繊維束を得る。
The short fiber mixed reinforced long fiber bundle of the present invention can be obtained by the following method. First, conventionally known thermoplastic resin (TP) fibers are cut into short fibers by cutting or tearing with a cutter, and the fibers are added to a liquid and dispersed.Next, reinforced fibers that have been opened in advance is continuously supplied to the liquid, the liquid in which the TP woven fibers have been dispersed is poured into the liquid, and the reinforcing continuous fibers are gently pulled downstream so as not to break. The liquid is separated and wound up through a coated wire mesh, and the adhering moisture is then dried to obtain a short fiber mixed reinforced long fiber bundle.

強化長繊維束における単繊維の伸びが大きく単繊維切れ
がほとんどない強化繊組束や、単繊維切れが少々あって
も使用できる用途に向けられる強化繊維束を製造するに
は、別法として、TP短繊維が浮遊流動するような高速
空気を用いて、強化繊維束に吹き込み、金網等で気体を
分離する方法を採ることもできる。
In order to produce reinforced fiber bundles in which the elongation of the single fibers in the reinforced long fiber bundle is large and there are almost no single fiber breaks, or reinforcing fiber bundles that can be used even if there are a few single fiber breaks, there is an alternative method. It is also possible to adopt a method in which high-speed air that causes the TP short fibers to float and flow is blown into the reinforcing fiber bundle and the gas is separated using a wire mesh or the like.

なお、短繊維が短繊維混合強化長繊維束から容易に脱落
しないように、従来公知の繊維でラップしても本発明の
目的は達せられる。
Note that the object of the present invention can also be achieved by wrapping the short fibers with conventionally known fibers so that the short fibers do not easily fall off from the short fiber mixed reinforced long fiber bundle.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples.

実施例1 rll 60 cm、長さ2m、深さ50cmの水槽に
水を8割程満たし、旭化成カーボンファイバー株式会社
製ハイカーボロン3kf糸(PAN系カーボンファイバ
ー、単繊維数3000本)の強化長繊維束を、ローラー
を介して投入し、対向する10対のノズルから糸の方向
に対し直角に水を噴出させ、繊維束を含む空間において
、乱流が発生するようにノズルの位置と、噴出量を調整
し、液流の下流に繊維が開繊した状態で流れるようにし
た。
Example 1 A water tank with a rll of 60 cm, a length of 2 m, and a depth of 50 cm was filled with water to about 80%, and reinforced long fibers of Hi-Carboron 3kf yarn (PAN-based carbon fiber, number of single fibers: 3000) manufactured by Asahi Kasei Carbon Fiber Co., Ltd. The bundle is fed through a roller, and water is jetted from 10 pairs of opposing nozzles perpendicular to the direction of the yarn, and the position of the nozzle and the amount of water jetted are adjusted so that turbulent flow occurs in the space containing the fiber bundle. was adjusted so that the fibers flow downstream of the liquid flow in an open state.

つぎに、ポリエーテルエーテルケトン(インペリアルケ
ミカルインダストリー社製、商品名:ピクト1/ツクス
)を溶融紡糸して、770デニール/72フイラメント
のマルチフィラメントを得た。
Next, polyether ether ketone (manufactured by Imperial Chemical Industries, trade name: Pict 1/Tux) was melt-spun to obtain a 770 denier/72 filament multifilament.

このマルチフィラメントを多数本集めて、小野田製作所
型り型ギロチン式カッターにて811Ifflの長さに
切断してTP短繊維を得た。次いで、このTP短繊維を
水に投入して、分散せしめた。この分散液を上記の強化
長繊維束が開繊している個所に均等かつ連続的に投入し
た。
A large number of these multifilaments were collected and cut into a length of 811 Ifl using a molded guillotine cutter manufactured by Onoda Manufacturing Co., Ltd. to obtain TP short fibers. Next, the TP short fibers were added to water and dispersed. This dispersion liquid was evenly and continuously added to the portion where the reinforced long fiber bundle was opened.

次いで、この強化長繊維束を下流に引取り、テフロンで
コートした200メツシユの金網の上を通過させて水を
下に落とし、糸を巻き取ったところ、TP短繊維が均一
に混繊している短繊維混合強化長繊維束を得た。この短
繊維混合強化長繊維束の炭素繊維含有量を濃硫酸で抽出
して測定した結果、62.7容量%であった。
Next, this reinforced long fiber bundle was taken downstream, passed over a 200-mesh wire mesh coated with Teflon to drain water, and when the yarn was wound, the TP short fibers were uniformly mixed. A short fiber mixed reinforced long fiber bundle was obtained. The carbon fiber content of this short fiber mixed reinforced long fiber bundle was extracted and measured with concentrated sulfuric acid, and was found to be 62.7% by volume.

さらに、この糸を10m取出し、1m間隔でIOケ所エ
ポキシ樹脂で固化固定し、ダイヤモンドカッターで切断
後研摩して倍率100倍の光学顕微鏡で断面を詳しく観
察し、断面方向の混繊度を調べた結果、6.5%であっ
た。さらに、10mの糸を取り出して、炭素繊維がかた
まって混繊が悪そうなイ蔚所を50cm以上の間隔をあ
けて10ケ所選び、試料を採取した。これも同じように
して断面方向の混繊度を測定したところ10.5%とな
り、長手方向の混繊度は1.6倍となる良好な混繊度の
製織したところ、短繊維が若干波は落ちることがあって
も、強化長繊維の単繊維切れ、ロールへの巻きイ」き等
のトラブルもな(バルキー・性の高い織物が得られた。
Furthermore, we took out 10 m of this thread, solidified and fixed it with epoxy resin at IO points at 1 m intervals, cut it with a diamond cutter, polished it, and observed the cross section in detail with an optical microscope at 100x magnification to examine the degree of fiber blending in the cross-sectional direction. , 6.5%. Furthermore, 10 m of yarn was taken out, and samples were taken from 10 locations at intervals of 50 cm or more where the carbon fibers were likely to be clumped together and the fibers would not mix properly. In the same way, when we measured the degree of blending in the cross-sectional direction, it was 10.5%, and the degree of blending in the longitudinal direction was 1.6 times.When weaving with a good blending degree, we found that the short fibers had some waves. However, there were no problems such as breakage of single fibers of the reinforced long fibers or difficulty in winding them into rolls (fabric with high bulkiness and properties was obtained).

次いで、この織物を一枚真空下で15kg/crAの加
圧下に420’Cで10分間加熱溶融し、冷却後取り出
したところ、目付120g/n((炭素繊維の平方m当
たりの重量で、樹脂重量は含まない。)の薄い板が得ら
れた。また、上記織物を8枚重ね合わせて加圧成型して
積層板を得た。この仮の強度を測定したところ、引張強
度45kg/m11”であった。
Next, one sheet of this fabric was heated and melted at 420'C under a pressure of 15 kg/crA for 10 minutes under vacuum, and when taken out after cooling, the fabric weight was 120 g/n ((weight per square meter of carbon fiber, resin (The weight is not included.) A thin plate was obtained.In addition, a laminate was obtained by stacking 8 pieces of the above-mentioned fabric and press-molding it.When the temporary strength of this was measured, the tensile strength was 45 kg/m11'' Met.

圧力を100kg/c−に高めた他は上記と同様に積層
板を成型し、ASTM D−2344に従って層間剪断
強度を測定したところ9.0 kg / mm ”であ
った。
A laminate was molded in the same manner as above except that the pressure was increased to 100 kg/c-, and the interlaminar shear strength was measured according to ASTM D-2344 and found to be 9.0 kg/mm.

比較例1 実施例1で用いたものと同じ炭素繊維とポリエーテルイ
ミド連続繊維を、良く混ぜるために、緩い張力状態にな
るよう引取速度より3%速い供給速度で実施例1と同様
な水槽に連続的に供給し、糸が混合するように10対の
ノズルの位置と噴出量を調整し、下流で巻き取って、乾
燥させ、連続長繊維どうしが混繊された繊維束を得た。
Comparative Example 1 The same carbon fibers and polyetherimide continuous fibers used in Example 1 were placed in the same water tank as in Example 1 at a feeding rate 3% faster than the take-up rate to create a gentle tension state in order to mix well. The position and ejection amount of the 10 pairs of nozzles were adjusted so that the yarns were mixed by continuous feeding, and the fibers were wound downstream and dried to obtain a fiber bundle in which continuous long fibers were mixed together.

この糸の炭素繊維含有量は62.7%であった。The carbon fiber content of this yarn was 62.7%.

さらに、この糸を10m取出し、1m間隔でlOケ所を
選び実施例1と同様にして断面方向混繊度を調べたとこ
ろ、9.5%と比較的良好に混繊されていることが判っ
た。しかしながら、長手方向に肉眼で良く観察すると、
混しっていない個所が、約60cmごとにあり、最も混
繊が悪そうな個所を10ケ所選んで断面方向混繊度を調
べた結果は60%であり、長手方向の混繊度は663倍
となり、かなり不均一な混合杖態であることが判った。
Further, 10 m of this yarn was taken out, 10 points were selected at 1 m intervals, and the fiber blending degree in the cross-sectional direction was examined in the same manner as in Example 1, and it was found that the fibers were blended relatively well at 9.5%. However, when closely observed with the naked eye in the longitudinal direction,
There are areas where the fibers are not mixed at approximately every 60 cm, and we selected 10 areas where the fibers were most likely to be mixed and examined the degree of fiber mixing in the cross-sectional direction.The result was 60%, and the degree of fiber mixing in the longitudinal direction was 663 times higher. , a rather heterogeneous mixed cane morphology was found.

次に、この繊維束から平磯布を製織したところ、最初の
100mはど織った時点では比較的品位の高い#Ia物
になっていたが、ロール上にポリエーテルイミドの単繊
維切れした毛羽が巻きついたとたんに、全体が巻き込ま
れて、糸が切れるというトラブルが発生した。
Next, when flat iso cloth was woven from this fiber bundle, the first 100 meters of weaving turned out to be a relatively high-quality #Ia fabric, but there was some fuzz from broken polyetherimide single fibers on the roll. As soon as I wrapped it around, the whole thing got tangled up and the thread broke.

初期に得られた織物を、実施例1と同様にして15kg
/c+flの加圧下に420°Cで10分間加熱溶融し
、冷却後取り出したところ、150g/rrfの目付の
仮が得られた。この板を6枚重ねて加圧成型した積層板
の強度を測定したところ、引張強度は32kg/mm”
であった。強度が低い原因を調べるために、顕微鏡で観
察したところ、ボイドのある個所が多数あり、この部分
から切断しているものと推定された。
The initially obtained fabric was weighed 15 kg in the same manner as in Example 1.
The material was heated and melted at 420° C. for 10 minutes under a pressure of /c+fl, and taken out after cooling, to obtain a tentative basis weight of 150 g/rrf. When we measured the strength of a laminate made by stacking six of these plates and forming them under pressure, the tensile strength was 32 kg/mm.
Met. In order to investigate the cause of the low strength, we observed it under a microscope and found that there were many voids, and it was assumed that the cut was made from these areas.

そこで、ボイドがな(なるように100 kg / c
Uの高圧をかけて成型し、強度を測定したところ44k
g / mm ”の引張強度の板が得られた。
Therefore, the void is 100 kg/c
When it was molded under high pressure of U and its strength was measured, it was 44k.
A plate with a tensile strength of “g/mm” was obtained.

次に、100kg/cJの高圧下に成型した積層板の層
間剪断強度杏実施例1と同様に測定したところ、7.0
kg/ml12であった。
Next, the interlaminar shear strength of the laminate molded under high pressure of 100 kg/cJ was measured in the same manner as in Example 1, and it was found to be 7.0.
kg/ml12.

〔発明の効果〕〔Effect of the invention〕

本発明の短繊維混合強化長繊維束は、これを使用して複
合材料を作ると、従来のものに比べ、より容易な成型条
件でより高強度な坂が得られるうえに、薄い板も作れる
ため、より広い用途に向けることができ、工業的価値が
高い。
When the short fiber mixed reinforced long fiber bundle of the present invention is used to make composite materials, it is possible to obtain slopes with higher strength under easier molding conditions than with conventional materials, and also to make thin plates. Therefore, it can be used in a wider range of applications and has high industrial value.

Claims (1)

【特許請求の範囲】[Claims] 1、強化長繊維束中に熱可塑性樹脂短繊維が混繊されて
いることを特徴とする短繊維混合強化長繊維束。
1. A short fiber mixed reinforced long fiber bundle characterized in that thermoplastic resin short fibers are mixed in the reinforced long fiber bundle.
JP29233788A 1988-11-21 1988-11-21 Continuous filament bundle reinforced by mixing stable fibers Pending JPH02139438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29233788A JPH02139438A (en) 1988-11-21 1988-11-21 Continuous filament bundle reinforced by mixing stable fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29233788A JPH02139438A (en) 1988-11-21 1988-11-21 Continuous filament bundle reinforced by mixing stable fibers

Publications (1)

Publication Number Publication Date
JPH02139438A true JPH02139438A (en) 1990-05-29

Family

ID=17780492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29233788A Pending JPH02139438A (en) 1988-11-21 1988-11-21 Continuous filament bundle reinforced by mixing stable fibers

Country Status (1)

Country Link
JP (1) JPH02139438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224974A (en) * 2011-04-18 2012-11-15 Siemens Ag Bundle of roving yarns, method for manufacturing bundle of roving yarns, and method for manufacturing work piece
CN113604921A (en) * 2021-07-13 2021-11-05 开滦(集团)有限责任公司 Polyformaldehyde staple fiber yarn and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224974A (en) * 2011-04-18 2012-11-15 Siemens Ag Bundle of roving yarns, method for manufacturing bundle of roving yarns, and method for manufacturing work piece
JP2016211139A (en) * 2011-04-18 2016-12-15 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Bundle of roving, method to manufacture bundle of roving and method to manufacture workpiece
CN113604921A (en) * 2021-07-13 2021-11-05 开滦(集团)有限责任公司 Polyformaldehyde staple fiber yarn and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4483727A (en) High modulus polyethylene fiber bundles as reinforcement for brittle matrices
US4541884A (en) Method of producing fibre-reinforced composition
JP2569380B2 (en) Fiber reinforced molded product
KR101578236B1 (en) Process for producing long glass fibre-reinforced thermoplastic compositions
US8329280B2 (en) Chopped fiber bundle, molding material, and fiber reinforced plastic, and process for producing them
CN106350882B (en) A kind of superhigh molecular weight polyethylene fibers of cut resistant, preparation method and applications
JP6083377B2 (en) Carbon fiber composite material
US4524101A (en) High modulus polyethylene fiber bundles as reinforcement for brittle matrices
US5989710A (en) Molding material for thermoplastic composites
AU592736B2 (en) Composites of stretch broken aligned fibers of carbon and glass reinforced resin
JPH05247761A (en) Hybrid yarn comprising polyamide filaments and reinforcing filaments
JPH0347713A (en) Composite sheet for fiber-reinforced material
CA1294772C (en) Composite fiber blends
JP6083239B2 (en) Fiber-reinforced plastic and method for producing the same
EP0303499A1 (en) Preformed yarn useful for forming composite articles and process of producing same
JPH08336879A (en) Resin-coated reinforcing fiber yarn, molding material and manufacture thereof
JPS6036136A (en) Manufacture of long-sized product of thermoplastic resin reinforced with fiber
JPH02139438A (en) Continuous filament bundle reinforced by mixing stable fibers
JP2623282B2 (en) Molding material
JPH11200160A (en) Chopped carbon fiber and production thereof
JP7441831B2 (en) Stretched aromatic polyether
US5001184A (en) High modulus thermoplastic composites
JPH01190733A (en) Production of fiber composite material
JPH04183729A (en) Molding material for thermoplastic composite
EP3751040A1 (en) Filamentary tape and composite material including said tape