JPH02139204A - Manufacture of fine fluororesin powder - Google Patents

Manufacture of fine fluororesin powder

Info

Publication number
JPH02139204A
JPH02139204A JP29438388A JP29438388A JPH02139204A JP H02139204 A JPH02139204 A JP H02139204A JP 29438388 A JP29438388 A JP 29438388A JP 29438388 A JP29438388 A JP 29438388A JP H02139204 A JPH02139204 A JP H02139204A
Authority
JP
Japan
Prior art keywords
fluororesin
radiations
ionizing
low temperature
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29438388A
Other languages
Japanese (ja)
Other versions
JP2637520B2 (en
Inventor
Tsutomu Kagitani
勤 鍵谷
Toshihiko Matsubara
俊彦 松原
Tsutomu Takae
高江 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP29438388A priority Critical patent/JP2637520B2/en
Publication of JPH02139204A publication Critical patent/JPH02139204A/en
Application granted granted Critical
Publication of JP2637520B2 publication Critical patent/JP2637520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To simplify processes, obviate hazardous chemicals and at the same time realize full pulverization by a method wherein the mechanical grinding of fluororesin is done to the fluororesin, which is merely irradiated with ionizing radiations, and at the same time done under a low ambient temperature, at which the fluororesin shows low temperature brittleness. CONSTITUTION:The crosslinking of fluororesin is cut by irradiating the fluororesin with ionizing radiations. The ionizing radiations are electron radiations or gamma radiations generated with a Van de Graaf generator, gamma radiations emitted from cobalt 60, x-radiations generated with x-ray generator and the like. The fluororesins are polytetrafluoroethylene, polychlorotriolethylene, polyvinyldene fluoride, polyvinyl fluoride and the like. Ionizing radiation dose of 6-15Mrad is preferable from the view point of effect and efficiency. Next, the fluororesin, which is irradiated with ionizing radiations alone, is mechanically ground at the low temperature atmosphere, at which the fluororesin shows low temperature brittleness such as -100 deg.C or lower, with an impact grinder in order to manufacture fine fluororesin powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単純な機械粉砕では25μm以下に微粉砕す
ることが困難なフッ素樹脂を対象にして、微粉砕を可能
にするために、フッ素樹脂に電離性放射線を照射し、そ
の後でフッ素樹脂を機械粉砕するフッ素(封脂微粉の製
法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention targets fluororesin, which is difficult to pulverize to 25 μm or less by simple mechanical pulverization, and uses fluorine resin to make pulverization possible. This article relates to a method for producing fluorine (sealing powder) by irradiating a resin with ionizing radiation and then mechanically crushing the fluororesin.

〔従来の技術〕[Conventional technology]

従来、電離性放射線照射によってフッ素樹脂の架橋を切
った後、ハロゲン化メタンと酸素の共存下でフッ素樹脂
を加熱処理し、その後で、ロール粉砕機やハンマー粉砕
機による粗砕処理とボールミルや挽臼などによる微粉砕
処理によってフッ素樹脂の微粉を製造していたく例えば
特開昭49−22449号公報参照)。
Conventionally, after cutting the crosslinks of the fluororesin by irradiation with ionizing radiation, the fluororesin is heat-treated in the coexistence of halogenated methane and oxygen, and then coarsely crushed using a roll crusher or hammer crusher, and then subjected to a ball mill or grinding process. (See, for example, Japanese Patent Laid-Open No. 49-22449) to produce fine powder of fluororesin by pulverization using a mortar or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、加熱処理工程が必要な上に粉砕に方式が相違す
る二工程が必要であるため、設備、手間、経費、作業時
間のいずれにおいても欠点があり、危険なハロゲン化メ
タンを取扱わなければならず、薬品管理や安全性の面で
も欠点があった。
However, since it requires a heat treatment process and requires two different pulverization processes, it has drawbacks in terms of equipment, labor, cost, and work time, and it requires handling of dangerous halogenated methane. However, there were also drawbacks in terms of chemical management and safety.

さらに、フッ素樹脂の微粉の粒度は、100メッシュ通
過分が88重量%程度であり、未だ微粉砕が不十分であ
った。
Furthermore, the particle size of the fluororesin fine powder was about 88% by weight when it passed through 100 mesh, and the pulverization was still insufficient.

本発明の目的は、工程の簡略化を図れると共に危険な薬
品を不要にでき、かつ、十分な微粉砕を実現できる、−
段と優れた機械粉砕方式のフッ素樹脂微粉の製法を提供
する点にある。
The purpose of the present invention is to simplify the process, eliminate the need for dangerous chemicals, and achieve sufficient pulverization.
The object of the present invention is to provide an extremely superior method for producing fluororesin fine powder using a mechanical pulverization method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴手段は、フッ素樹脂の機械粉砕を、電離性
放射線を照射しただけのフッ素樹脂に対して実行すると
共に、フッ素樹脂が低温脆性を示す低温雪囲気下で実行
することにあり、その作用・効7果は次の通りである。
The characteristic means of the present invention is that the mechanical crushing of the fluororesin is carried out on the fluororesin that has only been irradiated with ionizing radiation, and that it is carried out under a low-temperature snowy atmosphere in which the fluororesin exhibits low-temperature brittleness. The action/effect 7 is as follows.

〔作 用〕[For production]

いかなる条件で機械粉砕すればフッ素樹脂の十分な微粉
砕を実行できると共に、工程の簡略化を十分に図れるか
について、各種実験により調べたところ、下記の事実が
判明した。
Various experiments were conducted to find out under what conditions mechanical pulverization would allow sufficient pulverization of the fluororesin and sufficient simplification of the process, and the following facts were discovered.

例えば−100℃以下のフッ素樹脂が低温脆性を示す低
温雰囲気下で機械粉砕を実行すれば、前述の従来技術で
必要とした薬品処理と加熱処理を施さないで、単に電離
性放射線を照射しただけでフッ素(封脂を十分に微粉砕
できる事実が判った。また、方式が相違する二工程の機
械粉砕を必要とせずに、衝撃式粉砕装置だけで1〜2回
粉砕処理することによって、前述の従来技術よりも一段
と微細に粉砕できる事実が判った。
For example, if mechanical pulverization is performed in a low-temperature atmosphere where fluororesin exhibits low-temperature brittleness at temperatures below -100°C, it is possible to simply irradiate ionizing radiation without applying the chemical treatment and heat treatment required in the prior art described above. It has been found that fluorine (sealing resin) can be sufficiently finely pulverized using the method described above.In addition, without the need for two-step mechanical pulverization using different methods, by pulverizing once or twice using only an impact pulverizer, It has been found that the grinding process can be made more finely than the conventional technology.

つまり、フッ素樹脂が低温脆性を示す 100℃で衝撃粉砕する本発明法、及び、30℃で衝撃
粉砕する比較法夫々において、γ線照射量を変更すると
、フッ素樹脂微粉の粒度がいかに変化するかを調べたと
ころ、第2図に示す結果を得た。
In other words, how does the particle size of the fluororesin fine powder change when the γ-ray irradiation amount is changed in the present invention method in which fluororesin is impact-pulverized at 100°C, where fluororesin exhibits low-temperature brittleness, and in the comparative method in which impact-pulverization is performed at 30°C? When investigated, the results shown in Figure 2 were obtained.

その結果から、望ましくは6〜15Mradのγ線を照
射し、フッ素樹脂が低温脆性を示す低温雰囲気下で機械
粉砕すると、電離性放射線照射によるフッ素樹脂の架橋
切断と低温脆化の相剰作用で、薬品処理や加熱処理を必
要とせずに、かつ、衝撃式粉砕だけで、フッ素(m脂を
十分に微粉化できることが判った。
From the results, we found that if γ-rays of 6 to 15 Mrad are irradiated and mechanically crushed in a low-temperature atmosphere where fluoropolymer exhibits low-temperature brittleness, the combined effects of crosslinking and low-temperature embrittlement of the fluoropolymer caused by irradiation with ionizing radiation will occur. It has been found that fluorine fat can be sufficiently pulverized by impact pulverization without the need for chemical treatment or heat treatment.

また、10 M r a dの電離性放射線を放射した
たけのフッ素樹脂を一100℃のフッ素樹脂が低温脆性
を示す伐温雲囲気で機械粉砕して、フッ素樹脂微粉の粒
度を調べたところ、微粉のほぼ全量が100メツシユの
篩を通過し、62.5重量%の微粉が500メツシユの
篩を通過した。他方、前述の従来技術では88重量%の
微粉が100メツシユの篩を通過するにすぎず、従来技
術に比して本発明法は大巾な微粒子化を図れることが判
った。
In addition, when we examined the particle size of the fluororesin fine powder by mechanically crushing the fluororesin that had been irradiated with ionizing radiation of 10 Mr. Almost all of the powder passed through a 100 mesh sieve, and 62.5% by weight of fine powder passed through a 500 mesh sieve. On the other hand, in the prior art described above, only 88% by weight of the fine powder passed through a 100-mesh sieve, and it was found that the method of the present invention was able to achieve a greater degree of atomization than the prior art.

〔発明の効果〕〔Effect of the invention〕

その結果、従来必要としていた薬品処理と加熱処理を無
くすと共に、一方式の機械粉砕で済ますことができて、
工程の大巾な簡略化を図れ、設備、手間、経費及び作業
時間のいずれにおいても有利に、かつ、危険な薬品を必
要としないで安全にフッ素樹脂の機械粉砕を実行できる
ようになり、その上、−段と微細なフッ素樹脂微粉を製
造できるようになった。
As a result, we have been able to eliminate the chemical treatment and heat treatment that were previously required, and only require one-way mechanical pulverization.
The process can be greatly simplified, and fluororesin can now be mechanically crushed safely, with advantages in equipment, labor, cost, and working time, and without the need for dangerous chemicals. It has become possible to produce extremely fine fluororesin powder.

〔実施例〕〔Example〕

次に、第1図により実施例を説明する。 Next, an example will be explained with reference to FIG.

先ず、フッ素樹脂に電離性放射線を照射して、フッ素樹
脂の架橋を切断する。
First, the fluororesin is irradiated with ionizing radiation to break the crosslinks of the fluororesin.

電離性放射線はα線、β線、γ線及びX線のいずれでも
よく、放射線源は原子炉、放射性同位元累、ファンデグ
ラフ及びX線発生装置などである。工業的に望ましいも
のは、ファンデグラフによる電子線又はγ線、コバルト
−60のγ線、X線発生装置によるX線などである。
The ionizing radiation may be alpha rays, beta rays, gamma rays, or X-rays, and the radiation source may be a nuclear reactor, a radioisotope generator, a van de Graaff, an X-ray generator, or the like. Industrially desirable ones include electron beams or gamma rays from van de Graaf, gamma rays from cobalt-60, and X-rays from an X-ray generator.

フッ素樹脂はポリテトラフルオルエチレン、ポリクロル
トリオルエチレン、ポリフッ化ビニリデン、ポリフッ化
ビニノベその他である。
Fluororesins include polytetrafluoroethylene, polychlorotriolethylene, polyvinylidene fluoride, polyvinylidene fluoride, and others.

また、フッ素樹脂は粉状、粒状、繊維状、予備成型した
もの等のいかなるものでもよい。
Further, the fluororesin may be in any form such as powder, granule, fiber, or pre-molded.

電離性放射線照射量は第2図に示すように6〜15Mr
adが効果及び効率面から望ましく、さらに望ましくは
10 M r a d程度(9〜114.1rad )
である。
The ionizing radiation dose is 6 to 15 Mr as shown in Figure 2.
ad is desirable from the viewpoint of effectiveness and efficiency, and more preferably about 10 M rad (9 to 114.1 rad).
It is.

次に、電離性放射線を照射しただけのフッ素樹脂を、衝
撃式粉砕装置においてフッ素樹脂が低温脆性を示す低温
雰囲気下(例えば−100℃以下)で機械粉砕し、フッ
素樹脂微粉を製造する。
Next, the fluororesin that has only been irradiated with ionizing radiation is mechanically pulverized in an impact-type pulverizer in a low-temperature atmosphere (for example, -100° C. or lower) in which the fluororesin exhibits low-temperature brittleness to produce fine fluororesin powder.

VIrIr撃砕粉砕装置えばハンマーミルなどの公知の
ものから適宜選定する。
The VIrIr crushing and crushing device is appropriately selected from known devices such as a hammer mill.

フッ素樹脂が低温脆性を示す低温雲囲気にするに、例え
ば液化窒素ガスなどの低温液化ガスを粉砕装置内に噴霧
したり、粉砕装置の冷却ジャケットに供給する等、適当
な手段を選択できる。
In order to create a low-temperature cloud atmosphere in which the fluororesin exhibits low-temperature brittleness, appropriate means can be selected, such as spraying a low-temperature liquefied gas such as liquefied nitrogen gas into the grinding device or supplying it to the cooling jacket of the grinding device.

衝撃粉砕は必要に応じて複数回行ってもよい。Impact pulverization may be performed multiple times as necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフローシートであり、第2図は実験結
果を示すグラフである。
FIG. 1 is a flow sheet of the present invention, and FIG. 2 is a graph showing experimental results.

Claims (1)

【特許請求の範囲】 1、フッ素樹脂に電離性放射線を照射し、その後でフッ
素樹脂を機械粉砕するフッ素樹脂微粉の製法であって、 前記機械粉砕を、前記電離性放射線を照射 しただけのフッ素樹脂に対して実行すると共に、フッ素
樹脂が低温脆性を示す低温雰囲気下で実行するフッ素樹
脂微粉の製法。 2、前記電離性放射線の照射量を6〜15Mradにす
る請求項1記載のフッ素樹脂微粉の製法。 3、前記機械粉砕を衝撃式粉砕装置だけで実行する請求
項1又は2記載のフッ素樹脂微粉の製法。
[Scope of Claims] 1. A method for producing fluororesin fine powder by irradiating a fluororesin with ionizing radiation and then mechanically pulverizing the fluororesin, the method comprising: A method for producing fluororesin fine powder that is carried out on resin and in a low-temperature atmosphere where fluororesin exhibits low-temperature brittleness. 2. The method for producing fluororesin fine powder according to claim 1, wherein the irradiation amount of the ionizing radiation is 6 to 15 Mrad. 3. The method for producing fine fluororesin powder according to claim 1 or 2, wherein the mechanical pulverization is carried out using only an impact type pulverizer.
JP29438388A 1988-11-21 1988-11-21 Manufacturing method of fluororesin fine powder Expired - Lifetime JP2637520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29438388A JP2637520B2 (en) 1988-11-21 1988-11-21 Manufacturing method of fluororesin fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29438388A JP2637520B2 (en) 1988-11-21 1988-11-21 Manufacturing method of fluororesin fine powder

Publications (2)

Publication Number Publication Date
JPH02139204A true JPH02139204A (en) 1990-05-29
JP2637520B2 JP2637520B2 (en) 1997-08-06

Family

ID=17807015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29438388A Expired - Lifetime JP2637520B2 (en) 1988-11-21 1988-11-21 Manufacturing method of fluororesin fine powder

Country Status (1)

Country Link
JP (1) JP2637520B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162962A (en) * 2010-02-17 2011-08-24 株式会社樱花彩色笔 Process for producing electret coarse powder
JP2017019930A (en) * 2015-07-10 2017-01-26 日立金属株式会社 Method for producing crosslinked fluororesin powder
RU2669841C1 (en) * 2017-08-09 2018-10-16 Сергей Витальевич Слесаренко Method of obtaining polymer materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848775B1 (en) * 2015-08-31 2018-05-28 주식회사 티케이케미칼 Manufacturing method of micronized thermoplastic waste fluoropolymer resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162962A (en) * 2010-02-17 2011-08-24 株式会社樱花彩色笔 Process for producing electret coarse powder
JP2017019930A (en) * 2015-07-10 2017-01-26 日立金属株式会社 Method for producing crosslinked fluororesin powder
RU2669841C1 (en) * 2017-08-09 2018-10-16 Сергей Витальевич Слесаренко Method of obtaining polymer materials

Also Published As

Publication number Publication date
JP2637520B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
Johnson et al. Electronic mechanisms for sputtering of condensed-gas solids by energetic ions
KR20050070086A (en) System and method for radioactive waste destruction
JPH02139204A (en) Manufacture of fine fluororesin powder
Cleland Advances in gamma ray, electron beam, and X-ray technologies for food irradiation
Telnov Scattering of electrons on thermal radiation photons in electron-positron storage rings
US9480856B2 (en) X-ray targeted bond or compound destruction
CN104903968A (en) Heat treatment of carbonaceous waste, improved by the choice of injected gases
Cataldo et al. Neutron radiation shielding composites for deep space exploration: an introduction
Agnew Displacement damage efficiency in sapphire
Frank et al. Column accretion onto white dwarfs-Non-local electron transport and the soft X-ray excess
WO2004079749A2 (en) Method of containing radioactve contamination
Niccoli et al. Particle radiation effects on shape memory alloy couplers for ultra-high vacuum sealing: A preliminary study
Pop et al. Reactive collisions of electrons with molecular cations: Application to H2+, BeH+, BF+
Giovannelli et al. Neutrino energy production spectra in a relativistic plasma
Rakhimov et al. Application of functional ceramics synthesized in a large solar furnace for the synthesis of complex compounds
Pandey et al. Classical analysis of angular differential and total cross sections for charge transfer and ionization in He-like systems-helium atom collisions
Wesolowski et al. X-ray dosimetry during low-intensity femtosecond laser ablation of molybdenum in ambient conditions
Tucker The secular behavior of X-ray and radio emission from supernova remnants
Becker et al. The cryogenic storage ring CSR for collision experiments with state-controlled and phase-space cooled molecular ion beams
Krizan Reply to" Comments onTime-symmetric, approximately relativistic particle interactions and radiation'"
Kuulkers et al. A half-a-day long thermonuclear X-ray burst from KS 1731-260
Steele et al. A2 4 Saving the Dinosaurs
Kim et al. Infra-red absorption of hydrogen in 1.5 MeV electron bombarded hydrogen-doped CaF2
Hamaguchi et al. Non-Thermal High Energy Emission from the Massive Colliding Wind Binary Systems
Bruce The evolution of the extra-galactic nebulae and the origin of meta-galactic radio noise