JPH02139163A - Working method for wafer - Google Patents

Working method for wafer

Info

Publication number
JPH02139163A
JPH02139163A JP63292575A JP29257588A JPH02139163A JP H02139163 A JPH02139163 A JP H02139163A JP 63292575 A JP63292575 A JP 63292575A JP 29257588 A JP29257588 A JP 29257588A JP H02139163 A JPH02139163 A JP H02139163A
Authority
JP
Japan
Prior art keywords
wafer
surface plate
axis
rotating shaft
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63292575A
Other languages
Japanese (ja)
Other versions
JP2636383B2 (en
Inventor
Sadahiro Kishii
貞浩 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63292575A priority Critical patent/JP2636383B2/en
Publication of JPH02139163A publication Critical patent/JPH02139163A/en
Application granted granted Critical
Publication of JP2636383B2 publication Critical patent/JP2636383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To adequately omit the stage of lapping, etching, etc., and to improve the yield of the resist coating/exposure stages performed in succession after a wafer working stage by shaping the surface of a wafer by grinding in a recessed face or projecting face with good controllability. CONSTITUTION:Two circular surface plates 2, 3 driven by rotating independently each other are arranged in opposition up and down by sliding so that the upper surface plate 4 coincides with the shaft center of the rotary shaft 5 of the lower surface plate 3, the shaft center of the rotary shaft 5 of the lower surface plate 3 is pivotally supported vertically, the shaft center of the rotary shaft 8 of the upper surface plate 2 is pivotally supported by inclining to the shaft center of the rotary shaft 5 of the lower surface plate 3 in the surface including the rotary shafts 5, 8 of the two surface plates 2, 3 and a grindstone 7 is fixed to the upper surface plate 2. Moreover, a wafer 6 is vacuum adsorbed to the lower surface plate 3, two surface plates 2, 3 are rotated in the opposite direction each other, and yet, at least one part of the surface plates is press-fitted to the other part of the surface plate with moving in the vertical direction and the surface of the wafer 6 is shaped by grinding the recessed face or projecting face with good controllability.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、シリコンウェーハなどの半導体基板の加工方
法に関し、 特にデバイスを形成しない基板の裏面を凹面にし、かつ
、加工工程の幾つかを省略することを目的とし、 互いに独立に回転駆動する2つの円形の定盤を、上の定
盤の端部が下の定盤の回転軸の軸心に一致するようずら
して上下に対向配置し、下の定盤の回転軸の軸心を垂直
に軸支し、該2つの定盤の回転軸を含む面内において、
上の定盤の回転軸の軸心を、前記下の定盤の回転軸の軸
心に対して傾けて軸支し、前記上の定盤には砥石を固着
するとともに、前記下の定盤にはウェーハを真空吸着さ
せ、該2つの定盤を互いに反対方向に回転させ、かつ、
少なくとも一方の定盤を垂直方向に移動させながら、他
方の定盤に圧接し、前記ウェーへの表面を、制御性よく
凹面もしくは凸面に研削整形するウェーハの加工方法、
あるいは前記上の定盤の回転軸の軸心を垂直に軸支し、
該2つの定盤の回転軸を含む面内において、下の定盤の
回転軸の軸心を、前記上の定盤の回転軸の軸心に対して
傾けて軸支し、前記ウェーハの表面を、制御性よ(凹面
もしくは凸面に研削整形するウェーハの加工方法を含み
構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method of processing a semiconductor substrate such as a silicon wafer, and in particular, it involves making the back surface of a substrate on which no devices are formed concave and omitting some of the processing steps. For the purpose of The axis of the rotating shaft of the plate is vertically supported, and in a plane including the rotating axis of the two surface plates,
The axis of the rotating shaft of the upper surface plate is tilted and supported with respect to the axis of the rotating shaft of the lower surface plate, and a grindstone is fixed to the upper surface plate, and the lower surface plate The wafer is vacuum-adsorbed, the two surface plates are rotated in opposite directions, and
A method for processing a wafer, in which at least one surface plate is moved vertically and pressed against the other surface plate, and the surface of the wafer is ground and shaped into a concave or convex surface with good controllability;
Alternatively, the axis of the rotating shaft of the upper surface plate is vertically supported,
In a plane including the rotation axes of the two surface plates, the axis of the rotation axis of the lower surface plate is tilted and supported with respect to the axis of the rotation axis of the upper surface plate, and the surface of the wafer is This includes controllability (including a wafer processing method for grinding and shaping into a concave or convex surface).

〔産業上の利用分野〕[Industrial application field]

本発明は、シリコンウェーハなどの半導体基板の加工方
法に関する。
The present invention relates to a method for processing semiconductor substrates such as silicon wafers.

近年、エレクトロニクスの発展は目ざましいものがある
が、その発展は、半導体デバイスの技術革新に負うとこ
ろが大きい。
The development of electronics has been remarkable in recent years, and this development is largely due to technological innovations in semiconductor devices.

中でも、シリコン半導体を用いた集積回路の大規模・高
集積化は、異常なまでに急速に推移しており、■チップ
内に集積される素子数は、メモリ素子の容量に換算して
、数年単位で4倍に拡大している。
In particular, the large scale and high integration of integrated circuits using silicon semiconductors is progressing at an abnormally rapid pace. It has expanded four times over the years.

それに伴い、シリコンウェーハからデバイスに仕上げる
までの一連の工程、いわゆるウェーハプロセスにおいて
、如何に微細なパターニングを施すかが、各所で検討さ
れている。
In line with this trend, various studies are being conducted on how to perform fine patterning in the so-called wafer process, which is a series of steps from silicon wafers to finished devices.

従来から行われているウェーハの加工工程は、それに引
き続く、以後のウェーハプロセス全体の初段の工程であ
り、しかも、多数の工程から構成されている。
The conventional wafer processing step is the initial step of the entire subsequent wafer process, and is composed of a large number of steps.

従って、ウェーハを如何に効率よく、希望する形状に加
工するかは、ウェーハプロセス全体の歩留り向上の点か
らも、非常に重要視されている。
Therefore, how efficiently a wafer can be processed into a desired shape is of great importance from the perspective of improving the overall yield of the wafer process.

−iに、ウェーハの加工工程の後は、レジストの塗布と
それに引き続くパターン露光が行われる。
-i, after the wafer processing step, resist coating and subsequent pattern exposure are performed.

レジストの塗布や露光を大気中で行う場合には、−Cに
、ウェーハのデバイスを形成しない裏側を支持台に真空
で吸引し、いわゆる真空チャックする。
When resist coating and exposure are performed in the atmosphere, at -C, the back side of the wafer on which no devices are formed is vacuum-suctioned to a support stand, and the wafer is vacuum chucked.

従って、ウェーハのデバイスを形成しない裏面は、凹面
になっている方が安定に支持できる。
Therefore, the back surface of the wafer on which no devices are formed can be more stably supported if it is a concave surface.

そこで、ウェーハの一方の面を、制御性よく凹面に加工
する効率のよい方法の開発が強く望まれている。
Therefore, there is a strong desire to develop an efficient method for processing one side of a wafer into a concave surface with good controllability.

〔従来の技術〕[Conventional technology]

第4図には、従来のウェーハの加工工程図を示す。 FIG. 4 shows a conventional wafer processing process diagram.

同図においては、ウェーハとして、シリコンウェーハが
最も一般的で、例えば、化合物半導体などにおいても、
加工工程に大差がないので、シリコンウェーハの場合を
代表例として示し、以下に説明する。
In the figure, silicon wafers are the most common wafer, and for example, in compound semiconductors,
Since there is not much difference in the processing steps, the case of a silicon wafer will be shown as a representative example and explained below.

スライシング41は、円柱状のインゴットをワイヤソー
や内周刃式〇カッタなどにより、薄く輪切りにして、ウ
ェーハの原型をつくる工程で、厚さは約750μmであ
るが、この工程でウェーハの形状を制御することは極め
て困難で、現在実現されていない。
Slicing 41 is a process in which a cylindrical ingot is sliced into thin rings using a wire saw or an internal blade type cutter to create a wafer prototype.The thickness is approximately 750 μm, and the shape of the wafer is controlled in this process. It is extremely difficult to do so, and it is not currently possible.

ベベリング42は、スライシング41を行ったつ工−ハ
の周辺端部が欠けるのを防ぐため、砥石によって研削す
る工程である。
Beveling 42 is a process of grinding with a grindstone in order to prevent the peripheral edge of the slicing 41 from being chipped.

ラッピング43は、・一般に、ラッピング装置と呼ばれ
る加工機により、スライシング41によって輪切りにし
た厚さの不揃いなウェーハを、規定の精度の寸法に入る
よう、ウェーハの片面ないしは両面を研削整形する工程
である。
Lapping 43 is a process in which one or both sides of the wafer is ground and shaped using a processing machine called a lapping device, so that the wafer of uneven thickness is sliced into rounds by slicing 41 and has dimensions with specified precision. .

エツチング44は、ラッピング43によって生じた加工
歪み、つまり破砕層から成る加工変質層を薬剤を用いて
、化学的に除去する工程である。
Etching 44 is a process of chemically removing processing distortion caused by lapping 43, that is, a processing-affected layer consisting of a fractured layer, using a chemical.

研暦45は、エツチング44を行った後のウエーハを、
遊離砥粒と定盤に貼付した研磨布とで挟持して研磨し、
ウェーハのデバイスを形成する面もしくは両面を、鏡面
に仕上げる工程である。
Kenreki 45 is a wafer after etching 44,
Polished by sandwiching the free abrasive grains with a polishing cloth attached to a surface plate.
This is the process of finishing the surface or both surfaces of the wafer on which devices will be formed into a mirror finish.

洗浄46は、以上の加工工程でウェーハに付着した夾雑
物を除去する工程で、例えば、RCA洗浄(過酸化水素
のアンモニア水溶液に浸漬)・純水洗浄・アルコール置
換・乾燥などを行う。
Cleaning 46 is a process for removing impurities that have adhered to the wafer during the above processing steps, and includes, for example, RCA cleaning (immersion in an ammonia aqueous solution of hydrogen peroxide), pure water cleaning, alcohol replacement, and drying.

以上述べた従来の加工工程においては、どの工程も省く
ことができないばかりでなく、スライシング41の工程
でウェーハの初段の形状が決まると、その形状が履歴と
して後々まで残る。
In the conventional processing steps described above, not only can no steps be omitted, but once the initial shape of the wafer is determined in the slicing step 41, that shape remains as a history until later.

すなわち、その後の工程、特にウェーハを研削整形する
ラッピング後3を行っても、厚さばらつきを減らすこと
はできるが、その初段の形状を制御性よく変えることは
できない。
That is, even if subsequent steps, especially post-lapping step 3 in which the wafer is ground and shaped, can reduce the thickness variation, the initial shape cannot be changed with good controllability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第5図には、ラッピング加工による形状変化を示し、同
図(A)は凸面形状の場合、同図(B)は凹面形状の場
合を示す。
FIG. 5 shows changes in shape due to lapping, with (A) showing the convex shape and FIG. 5(B) showing the concave shape.

すなわち、ラッピング加工においては、スライシングの
工程で、同図(A)に示したような凸面形状のウェーハ
51になった場合には、ラッピング工程で研削整形して
も、凸面の頂点52に最も高い押圧が掛かるので、頂上
の真下面53、すなわち、ウェーハの中心部分の削れ方
が大きい。
That is, in the lapping process, if the wafer 51 has a convex shape as shown in FIG. Since the pressure is applied, the surface 53 directly below the top, ie, the center portion of the wafer, is largely scraped.

従って、ラッピング後のウェーハ54の形状は、上に凸
面の弓なりの形状になってしまう。
Therefore, the shape of the wafer 54 after lapping becomes an upwardly convex arched shape.

一方、スライシングの工程で、同図(B)に示したよう
な凹面形状のウェーハ55になった場合には、ラッピン
グ工程で研削整形しても、端部の頂点56に最も高い押
圧が掛かるので、頂点の真下面57、すなわち、ウェー
ハの周辺部分の削れ方が大きい。
On the other hand, in the case where the wafer 55 has a concave shape as shown in Figure (B) in the slicing process, even if it is ground and shaped in the lapping process, the highest pressure is applied to the apex 56 at the end. , the surface 57 directly below the apex, that is, the peripheral portion of the wafer, is largely etched.

従って、ラッピング後のウェーハ58の形状は、上に凹
面の弓なりの形状になる。
Therefore, the shape of the wafer 58 after lapping is an arched shape with an upwardly concave surface.

すなわち、ラッピング加工においては、スライシングの
工程の中で、形状の制御ができないので、それに引き続
くラッピングなどの後工程で研削整形を行っても、スラ
イシングの工程で決められた形状が、そのまま履歴とし
て残る。
In other words, in lapping processing, the shape cannot be controlled during the slicing process, so even if grinding and shaping is performed in subsequent processes such as lapping, the shape determined in the slicing process will remain as a history. .

従って、ウェーハの加工工程の次の工程であるレジスト
塗布や露光工程などにおいて、ウェーハの裏側、つまり
真空チャックする側を、制御性よく凹面にすることが実
現できない問題があった。
Therefore, there is a problem in that it is not possible to make the back side of the wafer, that is, the side to be vacuum chucked, into a concave surface with good controllability in resist coating, exposure, and the like, which are the next steps after the wafer processing step.

そこで、特にデバイスを形成しないウェーハの裏側を効
率よく、かつ、制御性よく凹面にすることが課題である
Therefore, it is particularly important to efficiently and controllably make the back side of the wafer, on which no devices are formed, a concave surface.

〔課題を解決するための手段〕 第1図には、本発明の原理説明図を示す。[Means to solve the problem] FIG. 1 shows a diagram explaining the principle of the present invention.

上で述べた課題は、同図において、スライシングの工程
で決まったウェーハの形状が、その後の工程によっても
整形が困難な、従来のウェーハの加工方法に代えて、互
いに独立に回転駆動する2つの円形の定盤2.3を、上
の定盤2の端部4が下の定盤3の回転軸5の軸心に一致
するように、ずらして上下に対向配置し、下の定盤3の
回転軸5の軸心を垂直に軸支し、2つの定盤2.3の回
転軸5.8を含む面内において、上の定盤2の回転軸8
の軸心を、下の定盤3の回転軸5の軸心に、対して傾け
て軸支し、上の定盤2には砥石7を固着するとともに、
下の定盤3にはウェーハ6を真空吸着させ、2つの定盤
2.3を互いに反、対方向に回転させ、かつ、少なくと
も一方の定盤を垂直方向に、移動させながら、他方の定
盤に圧接し、ウェーハ6の表面を、制御性よく凹面もし
くは凸面に研削整形するウェーハの加工方法、あるいは
、前記上の定盤2の回転軸8の軸心を垂直に軸支し、2
つの定盤2.3の回転軸5.8を含む面内において、下
の定盤3の回転軸5の軸心を、上の定盤2の回転軸8の
軸心に対して傾けて軸支し、ウェーハ6の表面を、制御
性よく凹面もしくは凸面に研削整形するウェーハの加工
方法によって達成できる。
The problem mentioned above is that in the same figure, the shape of the wafer determined in the slicing process is difficult to reshape in subsequent processes. Circular surface plates 2.3 are shifted and arranged vertically to face each other so that the end 4 of the upper surface plate 2 coincides with the axis of the rotating shaft 5 of the lower surface plate 3. The axis of rotation of the upper surface plate 2 is vertically supported, and the rotation axis 8 of the upper surface plate 2 is supported vertically in the plane including the rotation axis 5.8 of the two surface plates 2.3.
The axial center of the lower surface plate 3 is tilted to the axis of the rotary shaft 5 of the lower surface plate 3, and the grindstone 7 is fixed to the upper surface plate 2.
The wafer 6 is vacuum-adsorbed onto the lower surface plate 3, and the two surface plates 2.3 are rotated in opposite directions to each other, and while at least one surface plate is moved in the vertical direction, the other surface plate is moved. A wafer processing method in which the surface of the wafer 6 is ground and shaped into a concave or convex surface with good controllability by being pressed against a plate, or a method in which the axial center of the rotating shaft 8 of the upper surface plate 2 is vertically supported;
In a plane including the rotation shafts 5.8 of the two surface plates 2.3, the axis of the rotation shaft 5 of the lower surface plate 3 is tilted with respect to the axis of the rotation shaft 8 of the upper surface plate 2. This can be achieved by a wafer processing method in which the surface of the wafer 6 is ground and shaped into a concave or convex surface with good controllability.

〔作 用〕[For production]

第1図には、本発明の原理説明図を示し、第2図には、
平面研削装置における2つの定盤の配置と研削整形との
相関図を示す。
FIG. 1 shows a diagram explaining the principle of the present invention, and FIG. 2 shows the following:
A correlation diagram between the arrangement of two surface plates and grinding shaping in a surface grinding device is shown.

第1図において、本発明のウェーハの加工方法で使用す
る平面研削装置1は、互いに独立に回転駆動する2つの
円形の上の定盤2および下の定盤3とから構成され、か
つ、上の定盤2の端部4が、−下の定盤3の回転軸5の
軸心に一致するようずらして上下に対向配置した、自転
式Down Feed方式と呼ばれる平面研削装置の1
種である。
In FIG. 1, a surface grinding apparatus 1 used in the wafer processing method of the present invention is composed of two circular upper and lower surface plates 2 and 3 that are rotated independently of each other. 1 of a surface grinding device called an autorotating Down Feed system in which the end portion 4 of the surface plate 2 is arranged vertically and oppositely so that it coincides with the axis of the rotating shaft 5 of the surface plate 3 below.
It is a seed.

下の定盤3には、研削整形しようとするウェーハ6を真
空チャックにより吸着させる。
A wafer 6 to be ground and shaped is attracted to the lower surface plate 3 by a vacuum chuck.

一方、上の定盤2には、砥石7を固着する。On the other hand, a grindstone 7 is fixed to the upper surface plate 2.

上下の定盤2.3のそれぞれの回転軸8.5の軸心が平
行な状態で、画定盤2.3を回転させながら、互いに圧
接させれば、通常の平面研削が行われる。
Normal surface grinding is performed by pressing the upper and lower surface plates 2.3 into contact with each other while rotating the delimiting surface plates 2.3 in a state in which the axes of the rotating shafts 8.5 of the upper and lower surface plates 2.3 are parallel to each other.

しかし、本発明では、2つの回転軸のどちらか一方の軸
心を、他方の軸心に対して傾けて用いることが大きな特
徴である。
However, a major feature of the present invention is that the axis of one of the two rotating shafts is tilted with respect to the other axis.

すなわち、2つの定盤2.3の回転軸5.8を含む面内
において、どちらか一方の軸心を、他方の軸心に対して
傾け、その傾は角度を調整して研削整形を行うと、ウェ
ーハ6の研削した面を制御性よく、凸面形状にしたり、
凹面形状にしたりすることができる。
That is, in a plane including the rotational axes 5.8 of the two surface plates 2.3, the axial center of one of them is tilted with respect to the other axial center, and the angle of the inclination is adjusted to perform grinding and shaping. Then, the ground surface of the wafer 6 is made into a convex shape with good controllability,
It can be made into a concave shape.

平面研削装置1において、上下2つに定盤2.3をどの
ように配置構成すれば、上で述べたウェーハの表面を凸
面に研削整形したり、凹面に研削整形したりできるかは
、第2図で説明するとよく分かる。
In the surface grinding apparatus 1, how to arrange and configure the two upper and lower surface plates 2.3 to grind and shape the surface of the wafer into a convex surface or a concave surface as described above will be explained in the following. This can be clearly explained using Figure 2.

すなわち、同図(A)において、下の定盤3の回転軸5
の軸心を垂直に軸支して、上の定盤2の回転軸8の軸心
を外側に傾けるか、あるいは上の定盤2の回転軸8の軸
心を垂直に軸支して、下の定盤3の回転軸5の軸心を内
側に傾けるかすれば、ウェーハ6の表面を凸面に研削整
形することができる。
That is, in the same figure (A), the rotating shaft 5 of the lower surface plate 3
The axial center of the rotating shaft 8 of the upper surface plate 2 is tilted outward by supporting the axis vertically, or the axial center of the rotating shaft 8 of the upper surface plate 2 is vertically supported, By tilting the axis of the rotating shaft 5 of the lower surface plate 3 inward, the surface of the wafer 6 can be ground and shaped into a convex surface.

一方、同図(B)において、下の定盤3の回転軸5の軸
心を垂直に軸支して、上の定盤2の回転軸8の軸心を内
側に傾けるか、あるいは上の定盤2の回転軸8の軸心を
垂直に軸支して、下の定盤3の回転軸5の軸心を外側に
傾ければ、ウェーハ6の表面を凹面に研削整形すること
ができる。
On the other hand, in the same figure (B), the axial center of the rotating shaft 5 of the lower surface plate 3 is vertically supported, and the axial center of the rotating shaft 8 of the upper surface plate 2 is tilted inward, or By vertically supporting the axis of the rotating shaft 8 of the surface plate 2 and tilting the axis of the rotating shaft 5 of the lower surface plate 3 outward, the surface of the wafer 6 can be ground and shaped into a concave surface. .

こうして、上下2つの定盤2.3の回転軸5.8のどち
らか一方の軸心の傾きを調整することにより、ウェーハ
6の表面を制御性よく凸面にしたり、凹面にしたりする
研削整形が可能となる。
In this way, by adjusting the inclination of the axis of either one of the rotating shafts 5.8 of the two upper and lower surface plates 2.3, it is possible to grind and shape the surface of the wafer 6 to make it convex or concave with good controllability. It becomes possible.

本発明の加工方法により、ウェーハ6の一方の面を凸面
に加工した場合には、その後ラッピングを行い、第5図
で前述した凹面の裏側を真空チャックする面とすればよ
い。
When one surface of the wafer 6 is processed into a convex surface by the processing method of the present invention, lapping may be performed after that, and the back side of the concave surface described above in FIG. 5 may be used as a surface to be vacuum chucked.

それに対して、ウェーハ6の一方の面を凹面に加工した
場合には、その後ラッピングを省略して、そのまま真空
チャックする面として使用できる特徴がある。
On the other hand, when one surface of the wafer 6 is processed into a concave surface, the wafer 6 has the characteristic that it can be used as a surface for vacuum chuck without further lapping.

さらに、本発明の加工方法により研削整形したウェーハ
に、加工歪みが生じてない場合には、エツチングを省略
することができる。
Furthermore, if the wafer that has been ground and shaped by the processing method of the present invention has no processing distortion, etching can be omitted.

従って、必要に応じて、従来のウェーハの加工工程の中
の、ラッピングやエツチングなどを省略したまま、次の
研磨工程に入れるので、ウェーハの加工工程の効率化も
図ることができる。
Therefore, if necessary, lapping, etching, etc. in the conventional wafer processing steps can be omitted before proceeding to the next polishing step, making it possible to improve the efficiency of the wafer processing steps.

〔実施例〕〔Example〕

以下、本発明の実施例を、第3図(A)の実施例1にお
ける上下2つの定盤の構成図、および同図(B)の傾き
角度(±θ)と反りff1(±δ)との関係図によって
、詳しく説明する。
Examples of the present invention will be described below with reference to the configuration diagram of the two upper and lower surface plates in Example 1 shown in FIG. This will be explained in detail using the relationship diagram.

実施例1: 第3図(A)の平面研削装置1において、上の定盤2は
200++unφの円盤で、それに直径が同一寸法の砥
石7を固着した。
Example 1: In the surface grinding apparatus 1 shown in FIG. 3(A), the upper surface plate 2 was a disk of 200++unφ, and a grindstone 7 having the same diameter was fixed thereto.

砥石7は、3IIII11のセラミックの基板に、ダイ
ヤモンド砥粒を合成樹脂系の結着剤で0.5閣の厚さに
加熱被着したものである。
The whetstone 7 is made by heat-adhering diamond abrasive grains to a thickness of 0.5 mm on a 3III11 ceramic substrate using a synthetic resin binder.

ウェーハ6には、6インチφのシリコンのインゴットを
約800 p mにスライシングしたものを使用し、2
00wnφの下の定盤3に真空チャックにより固定した
For the wafer 6, a silicon ingot with a diameter of 6 inches was sliced into approximately 800 pm.
It was fixed to the surface plate 3 under 00wnφ by a vacuum chuck.

まず、上の定盤2の端部4が、下の定盤3の回転軸5の
軸心に一致するようずらして上下に対向配置した。
First, the end portions 4 of the upper surface plate 2 were disposed vertically opposite each other so as to be aligned with the axis of the rotating shaft 5 of the lower surface plate 3.

次いで、下の定盤3の回転軸5を垂直に軸支し、上の定
盤2の回転軸8の軸心を下の定盤3の回転軸5の軸心に
対して、内側に−0度傾けた。
Next, the rotating shaft 5 of the lower surface plate 3 is vertically supported, and the axis of the rotating shaft 8 of the upper surface plate 2 is aligned inwardly with respect to the axis of the rotating shaft 5 of the lower surface plate 3. Tilt 0 degrees.

こうして、2つの定盤2および3を、それぞれ反対方向
に3,000回転/分で回転させながら、上の定盤2を
垂直に圧下した。
In this way, while rotating the two surface plates 2 and 3 in opposite directions at 3,000 revolutions/minute, the upper surface plate 2 was vertically rolled down.

こうして、ウェーハ6の表面を凹面になるように、30
秒間研削整形を行った。
In this way, the surface of the wafer 6 is made concave by 30
Grinding and shaping were performed for seconds.

第3図(B)には、傾き角度(±θ)と反り量(±δ)
との関係を示す。
Figure 3 (B) shows the tilt angle (±θ) and the amount of warpage (±δ).
Indicates the relationship between

同図(B)によれば、回転軸の軸心の傾き角度(±θ)
とウェーハの表面の反り量(±δ)との関係は、よい直
線関係となる。
According to the same figure (B), the inclination angle (±θ) of the axis of the rotating shaft
The relationship between the amount of warpage (±δ) on the surface of the wafer and the amount of warpage (±δ) is a good linear relationship.

すなわち、下の定盤3の回転軸5の軸心を垂直に軸支し
、上の定盤2の回転軸8の軸心を、下の定盤3の回転軸
5の軸心に対して、内側の方向に傾き角度−θだけ傾け
た場合の反り量−δは直線関係になる。
That is, the axial center of the rotating shaft 5 of the lower surface plate 3 is vertically supported, and the axial center of the rotating shaft 8 of the upper surface plate 2 is aligned with respect to the axial center of the rotating shaft 5 of the lower surface plate 3. , the amount of curvature -δ when tilted inward by an angle of inclination -θ has a linear relationship.

また、上の定盤2の回転軸8の軸心を、下の定盤3の回
転軸5の軸心に対して外側の方向に、傾き角度十θだけ
傾けた場合の反り量子δも直線関係になる。
In addition, when the axis of the rotating shaft 8 of the upper surface plate 2 is tilted outward by an inclination angle of 10θ with respect to the axis of the rotating shaft 5 of the lower surface plate 3, the warpage quantum δ is also a straight line. Become a relationship.

一方、上の定盤2の回転軸8の軸心を軸支し、下の定盤
3の回転軸5の軸心を内側、あるいは外側に傾けても、
」二で述べた場合と同様の関係が得られる。
On the other hand, even if the axis of the rotating shaft 8 of the upper surface plate 2 is supported, and the axis of the rotating shaft 5 of the lower surface plate 3 is tilted inward or outward,
” A relationship similar to that described in 2 is obtained.

従って、傾き角度(±θ)を変えることにより、反り量
(±δ)を制御性よく変えられることが分かる。
Therefore, it can be seen that by changing the inclination angle (±θ), the amount of warpage (±δ) can be changed with good controllability.

この実施例1では、上の定盤2の回転軸8の軸心を、下
の定盤3の回転軸5の軸心に対して、内側の方向に傾き
角度−0,03度傾け、ウェーハ60表面を、反り量−
20μmの凹面に研削整形した。
In Example 1, the axis of the rotating shaft 8 of the upper surface plate 2 is tilted inward at an angle of -0.03 degrees with respect to the axis of the rotating shaft 5 of the lower surface plate 3, and the wafer 60 surface, amount of warpage -
It was ground and shaped into a concave surface of 20 μm.

その後、ラッピング、エツチング、研磨、洗浄などの一
連のウェーハ加工を行った。
After that, a series of wafer processing including lapping, etching, polishing, and cleaning was performed.

その結果、平面研削装置1により研削整形したウェーハ
6の凹面を裏側、つまり、真空チャックする側として用
いることにより、ウェーハ加工に引き続いて行うレジス
ト塗布・露光工程などの次の工程に、そのまま使用可能
なウェーハ加工が実現できた。
As a result, by using the concave surface of the wafer 6 that has been ground and shaped by the surface grinding device 1 as the back side, that is, the side to be vacuum chucked, it can be used as is for the next process such as the resist coating and exposure process that follows the wafer processing. wafer processing was realized.

実施例2: 上で述べた実施例1において、ウェーハ6に対して、平
面研削装置1によって凹面になるよう研削整形加工をし
た後、ラッピングを省略して、エツチング、研磨、洗浄
などの一連のウェーハ加工を行った。
Example 2: In Example 1 described above, the wafer 6 is ground and shaped using the surface grinding device 1 so that it has a concave surface, and then lapping is omitted and a series of steps such as etching, polishing, and cleaning are performed. Performed wafer processing.

その結果、平面研削装置1によりウェーハ6の表面を研
削整形した凹面を裏側として用いることにより、ラッピ
ングを省略しても、ウェーA加工に引き続いて行うレジ
スト塗布・露光工程にそのまま使用可能なウェーハ加工
が実現できた。
As a result, by using the concave surface obtained by grinding and shaping the surface of the wafer 6 with the surface grinding device 1 as the back side, the wafer can be processed so that it can be used as is for the resist coating/exposure process that follows the wafer A processing even if lapping is omitted. was realized.

実施例3: 上で述べた実施例1において、ウェーハ6に対して、平
面研削装置1によって凹面になるよう研削整形加工をし
た後、ラッピングおよびエツチングを省略して、研磨、
洗浄などの一連のウェーハ加工を行った。
Example 3: In Example 1 described above, the wafer 6 was ground and shaped using the surface grinding device 1 so as to have a concave surface, and then the wafer 6 was polished and etched without lapping and etching.
A series of wafer processing including cleaning was performed.

その結果、平面研削装置1により研削整形したウェーハ
6の凹面を裏側として用いることにより、ラッピングと
エツチングを省略しても、ウェーハ加工に引き続いて行
うレジスト塗布・露光工程にそのまま使用可能なウェー
ハ加工が実現できた。
As a result, by using the concave surface of the wafer 6 that has been ground and shaped by the surface grinding device 1 as the back side, it is possible to process a wafer that can be used as is for the resist coating and exposure process that is performed subsequent to wafer processing, even if lapping and etching are omitted. I was able to make it happen.

実施例4: 平面研削装置1の仕様は実施例1と同一である。Example 4: The specifications of the surface grinding device 1 are the same as in the first embodiment.

また、上の定盤2の回転軸8の軸心を垂直に軸支し、下
の定盤3の回転軸5の軸心を、上の定盤2の回転軸8の
軸心に対して、内側に一〇、05度傾け、ウェーハ6の
表面を、反り量52μmの凸面に研削整形した。
Also, the axis of the rotation shaft 8 of the upper surface plate 2 is vertically supported, and the axis of the rotation shaft 5 of the lower surface plate 3 is aligned with the axis of the rotation shaft 8 of the upper surface plate 2. The surface of the wafer 6 was ground and shaped into a convex surface with a warp of 52 μm.

その後、ラッピング、エツチング、研摩、洗浄などの一
連のウェーハ加工を行った。
After that, a series of wafer processing including lapping, etching, polishing, and cleaning was performed.

その結果、平面研削装置1により研削整形したウェーハ
6の凸面を表側として用いることにより、ウェーハ加工
に引き続いて行うレジスト塗布・露光工程にそのまま使
用可能なウェーハ加工が実現できた。
As a result, by using the convex surface of the wafer 6 that has been ground and shaped by the surface grinding device 1 as the front side, it was possible to realize wafer processing that can be used as is for the resist coating and exposure process that is performed subsequent to wafer processing.

実施例5: 上で述べた実施例4において、ウェーハ6に対して、平
面研削装置1よって凸面になるよう研削整形加工をした
後、エツチングを省略して、ラッピング、研磨、洗浄な
どの一連のウェーハ加工を行った。
Example 5: In Example 4 described above, the wafer 6 is ground and shaped using the surface grinding device 1 so that it has a convex surface, and then etching is omitted and a series of steps such as lapping, polishing, and cleaning are performed. Performed wafer processing.

その結果、平面研削装置1により研削整形したウェーハ
6の凸面を表側として用いることにより、エツチングを
省略しても、ウェーハ加工に引き続いて行うレジスト塗
布・露光工程にそのまま使用可能なウェーハ加工が実現
できた。
As a result, by using the convex surface of the wafer 6 that has been ground and shaped by the surface grinding device 1 as the front side, it is possible to realize wafer processing that can be used as is for the resist coating and exposure process that follows the wafer processing, even if etching is omitted. Ta.

上の実施例で述べたように、平面研削装置の上下2つの
定盤について、どちらの定盤の回転軸の軸心を垂直に軸
支し、その軸心に対して他方の定盤の回転軸の軸心を内
側あるいは外側に傾けるかは、適宜選択できる。
As described in the above example, for the two upper and lower surface plates of a surface grinding device, the axis of the rotating shaft of either surface plate is supported perpendicularly, and the rotation of the other surface plate with respect to the axis is supported perpendicularly. It can be selected as appropriate whether the axis of the shaft is tilted inward or outward.

また、傾ける角度や方向も、ウェーハの表面を凸面にす
るか、凹面にするか、あるいはウェーハのサイズによっ
て反り量をどの程度にするか、などの諸条件は、制御性
よく適宜選択できる。
Further, various conditions such as the angle and direction of inclination, whether the surface of the wafer is convex or concave, and the amount of warpage depending on the size of the wafer can be appropriately selected with good controllability.

さらに、平面研削装置による研削整形加工の仕上がり状
態により、言い換えれば、研削整形加工による加工歪み
の生じる程度により、その後に引き続いて行う一連のウ
ェーハ加工工程の中で、ラッピングまたはエツチングの
すくな(とも一方を省略することもできる。
Furthermore, depending on the finished state of the grinding and shaping process performed by the surface grinding device, in other words, depending on the degree of processing distortion caused by the grinding and shaping process, lapping or etching (both lapping and etching) may occur in a series of subsequent wafer processing processes. can also be omitted.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明のウェーハ加工方法によれば
、従来の加工方法では、任意に制御することができなか
ったウェーハの表面を凸面あるいは凹面にすることを、
制御性よく研削整形することができる。
As described above, according to the wafer processing method of the present invention, it is possible to make the surface of the wafer convex or concave, which could not be controlled arbitrarily with conventional processing methods.
Grinding and shaping can be done with good controllability.

さらに、従来の加工方法では、省くことのできなかった
一連のウェーハの加工工程、すなわち、スライシングか
ら始まって、ベベリング、ラッピング、エツチング、研
磨、洗浄などの諸工程の中で、ラッピングやエツチング
などの工程を適宜省くことができる。
Furthermore, in the conventional processing method, a series of wafer processing steps cannot be omitted, starting from slicing, and includes beveling, lapping, etching, polishing, and cleaning. Steps can be omitted as appropriate.

従って、本発明は、ウェーハ加工工程の後に引続き行う
レジスト塗布・露光工程の歩留り向上と、ウェーハ加工
工程の合理化、効率化に寄与するところが極めて大であ
る。
Therefore, the present invention greatly contributes to improving the yield of the resist coating/exposure process that is performed subsequent to the wafer processing process, and to streamlining and increasing the efficiency of the wafer processing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は2つの定盤の配置と研削整形との相関図、 第3図(A)、(B)は一実施例説明図、第4図は従来
のウェーハ加工工程図、 第5図(A)、(B)はラッピング加工における形状変
化を示す断面図、 である。 図において、 lは平面研削装置、 3は下の定盤、 5.8は回転軸、 7は砥石、 である。 2は上の定盤、 4は端部、 6はウェーハ、 オ(&−日月の、ηヒ、fL 託口月日第 1 口 巳1・1へ鍾ワる (A)凸面1;L1堅形する偽金 〔イ〕  Y州内11へ1lf11する       
  (l:、)Aアト1°jヘイ吻1fる (8111!l!]in Ic 、研冷整形する場合2
フ/)定iの酌己!ヒ石ff幾堅汗泪の才目関圓浩 2
 日 次ハエ程へ 蓬永め ウェーハ乃ロエ工程 日 躬 図 fAl家先例IGい7ろ上下2フj宅盤n構八図イモ1
1ゴ!I”l ノl! θ) (B)’pm! 内L(!θ)と−トノ−1c !訪−
lざプ士h〈F・1−枦二日月 βりとめ 九h イ奈
 Go (A+凸面形状′め鳴合 (8)凹面形状tn 4合 フ7ビン7゛υロニI:#’すろ丹宅火変化と示す納−
菌図第 5 図
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is a correlation diagram between the arrangement of two surface plates and grinding shaping, Fig. 3 (A) and (B) are explanatory diagrams of one embodiment, and Fig. 4 is FIGS. 5A and 5B are cross-sectional views showing changes in shape during lapping processing. In the figure, 1 is a surface grinding device, 3 is a lower surface plate, 5.8 is a rotating shaft, and 7 is a grindstone. 2 is the upper surface plate, 4 is the edge, 6 is the wafer, Solid counterfeit money [A] 1lf11 to 11 within Y state
(l:,) Aato 1°j hei 1fru (8111!l!] in Ic, case of cold shaping 2
Fu/) I'm a drinker! Hi-seki ff Ikken sweaty and talented Enhiro Seki 2
Daily fly process Homonagame wafer no loe process day map fAl family precedent IG 7ro top and bottom 2fj house board n structure eight diagram potato 1
1 go! I"l nol! θ) (B)'pm! inner L(!θ) and -tono-1c !visit-
lzapushih〈F・1−枦crescent moon βritome 9h ina Go (A+convex shape'menalai (8) concave shape tn 4 gofu 7bin 7゛υroni I:#'suro Tanyakubi change and delivery
Bacteria diagram Figure 5

Claims (1)

【特許請求の範囲】 1)互いに独立に回転駆動する2つの円形の定盤(2、
3)を、上の定盤(2)の端部(4)が下の定盤(3)
の回転軸(5)の軸心に一致するように、ずらして上下
に対向配置し、 下の定盤(3)の回転軸(5)の軸心を垂直に軸支し、 該2つの定盤(2、3)の回転軸(5、8)を含む面内
において、上の定盤(2)の回転軸(8)の軸心を、前
記下の定盤(3)の回転軸(5)の軸心に対して傾けて
軸支し、 前記上の定盤(2)には砥石(7)を固着するとともに
、前記下の定盤(3)にはウェーハ(6)を真空吸着さ
せ、 該2つの定盤(2、3)を互いに反対方向に回転させ、
かつ、少なくとも一方の定盤を垂直方向に移動させなが
ら、他方の定盤に圧接し、 前記ウェーハ(6)の表面を、制御性よく凹面もしくは
凸面に研削整形することを特徴とするウェーハの加工方
法。 2)前記上の定盤(2)の回転軸(8)の軸心を垂直に
軸支し、 該2つの定盤(2、3)の回転軸(5、8)を含む面内
において、下の定盤(3)の回転軸(5)の軸心を、前
記上の定盤(2)の回転軸(8)の軸心に対して傾けて
軸支し、 前記ウェーハ(6)の表面を、制御性よく凹面もしくは
凸面に研削整形することを特徴とする請求項1項記載の
ウェーハの加工方法。
[Claims] 1) Two circular surface plates (2,
3), the end (4) of the upper surface plate (2) is the lower surface plate (3).
The lower surface plate (3) is vertically supported by vertically supporting the axis of the rotation shaft (5) of the lower surface plate (3), and the two In the plane that includes the rotating shafts (5, 8) of the plates (2, 3), the axis of the rotating shaft (8) of the upper surface plate (2) is aligned with the rotating shaft (5, 8) of the lower surface plate (3). The grinding wheel (7) is fixed to the upper surface plate (2), and the wafer (6) is vacuum-suctioned to the lower surface plate (3). and rotate the two surface plates (2, 3) in opposite directions,
and wafer processing, characterized in that at least one surface plate is moved in the vertical direction while being pressed against the other surface plate, and the surface of the wafer (6) is ground and shaped into a concave or convex surface with good controllability. Method. 2) The axis of the rotation shaft (8) of the upper surface plate (2) is vertically supported, and in a plane including the rotation shafts (5, 8) of the two surface plates (2, 3), The axial center of the rotating shaft (5) of the lower surface plate (3) is tilted and supported with respect to the axial center of the rotating shaft (8) of the upper surface plate (2), and the wafer (6) is 2. The method of processing a wafer according to claim 1, wherein the surface is shaped by grinding into a concave or convex surface with good controllability.
JP63292575A 1988-11-18 1988-11-18 Wafer processing method Expired - Fee Related JP2636383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292575A JP2636383B2 (en) 1988-11-18 1988-11-18 Wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292575A JP2636383B2 (en) 1988-11-18 1988-11-18 Wafer processing method

Publications (2)

Publication Number Publication Date
JPH02139163A true JPH02139163A (en) 1990-05-29
JP2636383B2 JP2636383B2 (en) 1997-07-30

Family

ID=17783549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292575A Expired - Fee Related JP2636383B2 (en) 1988-11-18 1988-11-18 Wafer processing method

Country Status (1)

Country Link
JP (1) JP2636383B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453670A (en) * 1990-06-20 1992-02-21 Ratsupumasutaa S F T Kk Polishing method in polishing device
JPH07335572A (en) * 1994-06-08 1995-12-22 Toshiba Ceramics Co Ltd Susceptor for heat treatment of semiconductor wafer and its manufacture
JP2003025197A (en) * 2001-07-13 2003-01-29 Waida Seisakusho:Kk Device for adjusting relative position relationship between work and grinding wheel on grinder
JP2007273814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Silicon substrate and its manufacturing method
JP2008028027A (en) * 2006-07-19 2008-02-07 Disco Abrasive Syst Ltd Concave processing method of wafer
JP2009033204A (en) * 2008-10-29 2009-02-12 Sumco Corp Method for plasma-etching semiconductor wafer
DE10057998B4 (en) * 1999-11-26 2009-12-24 Sony Corp. Polisher and polishing process
JP2012106305A (en) * 2010-11-16 2012-06-07 Koyo Mach Ind Co Ltd Single-sided grinding method and device
CN109290876A (en) * 2017-07-25 2019-02-01 株式会社迪思科 The processing method of chip

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453670A (en) * 1990-06-20 1992-02-21 Ratsupumasutaa S F T Kk Polishing method in polishing device
JPH07335572A (en) * 1994-06-08 1995-12-22 Toshiba Ceramics Co Ltd Susceptor for heat treatment of semiconductor wafer and its manufacture
DE10057998B4 (en) * 1999-11-26 2009-12-24 Sony Corp. Polisher and polishing process
JP2003025197A (en) * 2001-07-13 2003-01-29 Waida Seisakusho:Kk Device for adjusting relative position relationship between work and grinding wheel on grinder
JP2007273814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Silicon substrate and its manufacturing method
JP2008028027A (en) * 2006-07-19 2008-02-07 Disco Abrasive Syst Ltd Concave processing method of wafer
JP2009033204A (en) * 2008-10-29 2009-02-12 Sumco Corp Method for plasma-etching semiconductor wafer
JP2012106305A (en) * 2010-11-16 2012-06-07 Koyo Mach Ind Co Ltd Single-sided grinding method and device
CN109290876A (en) * 2017-07-25 2019-02-01 株式会社迪思科 The processing method of chip
CN109290876B (en) * 2017-07-25 2022-03-11 株式会社迪思科 Method for processing wafer

Also Published As

Publication number Publication date
JP2636383B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
EP1217104B1 (en) Method of manufacturing semiconductor wafers
JP3925580B2 (en) Wafer processing apparatus and processing method
KR100457718B1 (en) Method and apparatus for manufacturing silicon wafer
US6214704B1 (en) Method of processing semiconductor wafers to build in back surface damage
US5087307A (en) Method of manufacturing semiconductor substrate
US6352927B2 (en) Semiconductor wafer and method for fabrication thereof
JP3328193B2 (en) Method for manufacturing semiconductor wafer
US6465328B1 (en) Semiconductor wafer manufacturing method
JPH10180624A (en) Device and method for lapping
JPH02139163A (en) Working method for wafer
KR20040097982A (en) Method and pad for polishing wafer
JP3845215B2 (en) Mirror polishing method for surface ground wafer
JP4103808B2 (en) Wafer grinding method and wafer
US6969302B1 (en) Semiconductor wafer grinding method
JPH02208931A (en) Polishing process for compound semiconductor substrate
JP5396616B2 (en) Seasoning plate, semiconductor polishing apparatus, polishing pad seasoning method
TWI653123B (en) Method for adjusting a thickness of a carrier plate
JP2010173016A (en) Conditioner for semiconductor polishing cloth, method for manufacturing the conditioner for semiconductor polishing cloth, and semiconductor polishing apparatus
JPH03184756A (en) Grinding method for wafer
JP4154683B2 (en) Manufacturing method of high flatness back surface satin wafer and surface grinding back surface lapping apparatus used in the manufacturing method
JP3329593B2 (en) Method for manufacturing sapphire dummy wafer
JPH1131670A (en) Manufacture of semiconductor substrate
JP2001176830A (en) Rear-surface grinding method of semiconductor device
JP3079203B2 (en) Method for manufacturing semiconductor wafer
JPS61226272A (en) Grindstone for wafer grinding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees