JPH02139046A - Separation recovery of transition metal catalyst - Google Patents

Separation recovery of transition metal catalyst

Info

Publication number
JPH02139046A
JPH02139046A JP63291948A JP29194888A JPH02139046A JP H02139046 A JPH02139046 A JP H02139046A JP 63291948 A JP63291948 A JP 63291948A JP 29194888 A JP29194888 A JP 29194888A JP H02139046 A JPH02139046 A JP H02139046A
Authority
JP
Japan
Prior art keywords
transition metal
catalyst
reaction product
metal catalyst
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63291948A
Other languages
Japanese (ja)
Other versions
JP2580290B2 (en
Inventor
Kazuhiko Saeki
和彦 佐伯
Takashi Ueno
貴史 上野
Koji Shima
幸治 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP63291948A priority Critical patent/JP2580290B2/en
Publication of JPH02139046A publication Critical patent/JPH02139046A/en
Application granted granted Critical
Publication of JP2580290B2 publication Critical patent/JP2580290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To recover transition metal by a simple and efficient method by adding sulfur compounds to transition metal remaining in a reaction product obtained with a transition metal catalyst and recover the transition metal. CONSTITUTION:Transition metal remains in a reaction product obtained with a transition metal catalyst such as Fe or Co. Almost 100% of transition metal can be recovered by adding sulfur compounds such as H2S, Na2B and NaSS to the reaction product. Thus it is possible to recover efficiently the transition metal remaining in the reaction product by a simple method without using a specific device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遷移金属触媒を用いた化学合成プロセスに於い
て、使用した触媒を反応生成物中から分離回収する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for separating and recovering a used catalyst from a reaction product in a chemical synthesis process using a transition metal catalyst.

〔従来の技術及び発明が解決しようとする課題〕化学合
成プロセスにおいて遷移金属触媒は、目的とする反応速
度を目覚ましく向上させることにより、その経済性を高
めている。特に、いわゆるC1化学ではCo、 Ni、
 Rh、 Pd、 Pt等の遷移金属触媒がよく用いら
れる。これらの触媒を用いた化学合成プロセスでは、生
成物中から触媒を分離する必要があり、特にRh、 p
d、 pt、 lr等の高価な触媒を用いる場合には、
触媒を分離、回収する際の回収率がプロセスの経済性に
対して大きな影響を与える。
[Prior Art and Problems to be Solved by the Invention] In chemical synthesis processes, transition metal catalysts dramatically improve the desired reaction rate, thereby increasing their economic efficiency. In particular, in so-called C1 chemistry, Co, Ni,
Transition metal catalysts such as Rh, Pd, and Pt are often used. In chemical synthesis processes using these catalysts, it is necessary to separate the catalysts from the products, especially Rh, p
When using expensive catalysts such as d, pt, lr,
The recovery rate when separating and recovering the catalyst has a major impact on the economics of the process.

従来知られている触媒を分離する方法としては、先ず反
応生成物が比較的低沸点であることを利用して、これを
フラッシュすることにより不揮発性触媒と分離する方法
がある。例えば、メタノール法酢酸合成プロセスにおけ
る酢酸とRh触媒の分離にはこのフラッシュが用いられ
る。
As a conventionally known method for separating a catalyst, there is a method that first takes advantage of the fact that the reaction product has a relatively low boiling point and flashes it to separate it from a non-volatile catalyst. For example, this flash is used to separate acetic acid and Rh catalyst in the methanol method acetic acid synthesis process.

また、反応生成物と触媒の溶解性の差を利用し、抽出分
離する方法がある。例えば、α−7エニルプロピオン酸
誘導体を含有する反応液に、水又は水と酢酸等の混合物
を抽出溶媒として添加し、反応生成物相と水相に二相分
離させ、水相に触媒として使用したロジウム化合物を抽
出し分離する方法(特開昭63−149341.特開昭
63−162653)などがある。
There is also a method of extraction and separation that takes advantage of the difference in solubility between the reaction product and the catalyst. For example, water or a mixture of water and acetic acid, etc. is added as an extraction solvent to a reaction solution containing an α-7enylpropionic acid derivative, the reaction product phase and an aqueous phase are separated, and the aqueous phase is used as a catalyst. There are methods for extracting and separating the rhodium compounds (JP-A-63-149341, JP-A-63-162653).

さらに、触媒の回収率を上げ、プロセスの経済性を高め
るためには、上記のフラッシュ、抽出分離等の方法によ
り回収しきれなかった反応生成物中に残存する触媒を回
収することが必要であり、その手段としては、活性炭等
により吸着し、分離、回収する方法が提案されている(
特開昭63−162044)。
Furthermore, in order to increase the recovery rate of the catalyst and improve the economic efficiency of the process, it is necessary to recover the catalyst remaining in the reaction products that could not be recovered by the above-mentioned methods such as flashing and extraction separation. As a means of achieving this, a method has been proposed that involves adsorption, separation, and recovery using activated carbon, etc. (
JP-A-63-162044).

しかしながら、これらの方法においては、特に微量の遷
移金属の回収について不十分であったり、吸着、脱着等
に多大な設備やエネルギーを必要とする等、効率的では
なかった。
However, these methods are not efficient, such as insufficient recovery of particularly trace amounts of transition metals, or requiring a large amount of equipment and energy for adsorption, desorption, etc.

本発明は遷移金属触媒を用いて得られた反応生成物中に
残存する遷移金属を簡単な方法により効率的に回収する
ことを目的とするものである。
The object of the present invention is to efficiently recover transition metals remaining in reaction products obtained using transition metal catalysts by a simple method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、かかる情況に鑑み鋭意研究を重ねた結果
、意外にも触媒を含む反応生成物に硫黄化合物を添加す
るだけでほぼ100%まで遷移金属が回収できることを
見出し、本発明に到った。
The present inventors have conducted extensive research in view of the above circumstances, and have unexpectedly discovered that almost 100% of transition metals can be recovered by simply adding a sulfur compound to a reaction product containing a catalyst, and have thus arrived at the present invention. It was.

即ち本発明は、遷移金属触媒を用いて得られた反応生成
物中に残存する遷移金属を、硫黄化合物を用いて分離回
収することを特徴とする遷移金属触媒の分離回収方法で
ある。
That is, the present invention is a method for separating and recovering a transition metal catalyst, characterized in that the transition metal remaining in a reaction product obtained using a transition metal catalyst is separated and recovered using a sulfur compound.

以下に本発明の実施条件について述べる。The conditions for implementing the present invention will be described below.

本発明によって回収される遷移金属としては、一般に触
媒として用いられるFe、 Co、 Ni、 Cr。
The transition metals recovered by the present invention include Fe, Co, Ni, and Cr, which are generally used as catalysts.

Cu、 Rh、 Pd、 Pt、 Ir等がある。これ
ら遷移金属を含有する反応生成物に添加する硫黄化合物
としては112s、 Na2S、 Na5H等があり、
これらはどのような状態のものでもよく、反応生成物液
中に於ける遷移金属触媒との接触効率によって適宜決定
できる。又、添加量としては回収しようとする遷移金属
量に対して当モル量以上であればよい。
Examples include Cu, Rh, Pd, Pt, and Ir. Sulfur compounds added to reaction products containing these transition metals include 112s, Na2S, Na5H, etc.
These may be in any state and can be appropriately determined depending on the contact efficiency with the transition metal catalyst in the reaction product liquid. Further, the amount added may be at least an equivalent molar amount to the amount of transition metal to be recovered.

本発明が適用される反応生成物は、前述したような遷移
金属触媒を用いて得られた反応液そのものでもよいが、
これらをフラッシュ、抽出等により大部分の触媒を分離
した後の反応生成物であってもよい。
The reaction product to which the present invention is applied may be the reaction solution itself obtained using the transition metal catalyst as described above, but
These may be reaction products after most of the catalyst has been separated by flashing, extraction, etc.

通常この様な反応生成物には5000〜5ppm程度の
遷移金属が含まれている。なお、経済的な効率を考慮す
れば、フラッシュ、抽出等により大部分の触媒を分離し
た後の500〜20ppm程度の遷移金属を含む反応生
成物に好ましく適用される。
Typically, such reaction products contain about 5000 to 5 ppm of transition metals. Note that, in consideration of economic efficiency, this method is preferably applied to reaction products containing about 500 to 20 ppm of transition metals after most of the catalyst has been separated by flashing, extraction, etc.

反応生成物と硫黄化合物を接触させる方法としては、撹
拌槽を用いる等、−数的な方法が利用できる。
As a method for bringing the reaction product into contact with the sulfur compound, a numerical method such as using a stirring tank can be used.

例えば、撹拌槽を使用する場合、遷移金属含有液に対し
てNa5Hフレークを投入し、十分撹拌した後、沈降し
た遷移金属硫化物を通常の固液分離操作によって回収す
る。このようにして回収された遷移金属硫化物は、焼成
等の操作によって高価な遷移金属として容易に回収する
ことができる。
For example, when using a stirring tank, Na5H flakes are added to the transition metal-containing liquid, and after sufficient stirring, the precipitated transition metal sulfide is recovered by a normal solid-liquid separation operation. The transition metal sulfide thus recovered can be easily recovered as an expensive transition metal through operations such as calcination.

従って本発明の方法により、反応液中もしくは抽出液中
に含有される遷移金属触媒を何ら特殊な装置を使用せず
、簡単で効率的に分離回収できる。
Therefore, according to the method of the present invention, the transition metal catalyst contained in the reaction solution or extract can be easily and efficiently separated and recovered without using any special equipment.

〔実 施 例〕〔Example〕

以下に本発明の詳細な説明するための実施例を示すが、
本発明はこれらの実施例により限定されるものではない
Examples for explaining the present invention in detail are shown below.
The present invention is not limited to these examples.

実施例1 0ジウム触媒を用いて2−(4−インブチルフェニル)
エチルアルコールと一酸化炭素カラ2− (4−インブ
チルフェニル)プロピオン酸を合成した際に、抽出法に
よって大部分のロジウムを分離した反応液[2−(4−
インブチルフェニル)プロピオン酸25IIlt%、ヘ
キサン75wt%〕中に142MJmのロジウムが残存
した。
Example 1 2-(4-inbutylphenyl) using 0dium catalyst
When ethyl alcohol and carbon monoxide were synthesized, most of the rhodium was separated by an extraction method [2-(4-
25 IIlt% of imbutylphenyl)propionic acid and 75 wt% of hexane], 142 MJm of rhodium remained.

この反応液5001nlを11の3日フラスコに仕込み
、常温にてH2Sガスを100mj2/minの流量で
通気撹拌を行った。120分の後、ガス吹き込みを停止
した時点でフラスコ底部に黒色沈殿が存在した。この後
、液中溶存H2Sガスの追い出しのため、ヘキサンの還
流温度(約70℃)にて1時間加熱処理を行い、グラス
フィルターにて濾過し、液中ロジウム濃度を分析したと
ころ、0.3ppmまで減少していた。本摸作によるR
h回収率は99.79%であった。
5001 nl of this reaction solution was charged into a 3-day flask (No. 11), and aerated with H2S gas at a flow rate of 100 mj2/min at room temperature. After 120 minutes, a black precipitate was present at the bottom of the flask when gas blowing was stopped. After this, in order to drive out H2S gas dissolved in the liquid, heat treatment was performed for 1 hour at the reflux temperature of hexane (approximately 70°C), and the rhodium concentration in the liquid was analyzed and found to be 0.3 ppm. had decreased to. R by this copy
h recovery rate was 99.79%.

実施例2 実施例1と同様の反応液150rrtf!とNa2S 
・9H201gを300m7!の電磁撹拌機付きオート
クレーブに仕込み、常温で1時間、400r、 p、 
m、にて撹拌した後、グラスフィルターにて濾過した。
Example 2 150rrtf of the same reaction solution as in Example 1! and Na2S
・9H201g 300m7! Place in an autoclave equipped with a magnetic stirrer and heat at room temperature for 1 hour at 400 r/p.
After stirring at m, it was filtered through a glass filter.

この液中のRha度を分析したところ、2゜!5ppm
であった。(Rh回収率98.52%) 実施例3 実施例1と同様の反応液をさらに塩酸水溶液で抽出した
下層液(7%塩酸水溶液、Rh濃度86ppm> 10
0m1にNa2S j 9142o 1 gを添加し、
常温にて10分間撹拌した。次いで加熱、濾過を行い、
液中Rh濃度を測定したところ、0.0ippmにまで
減少していた。(Rh回収率99.99%)〔発明の効
果〕 上記実施例からも明らかなように、本発明の方法によっ
て反応液中もしくは抽出液中に含有される遷移金属触媒
を何ら特殊な装置を使用することなく、非常に効率的に
分離回収できる。
When we analyzed the Rha degree in this liquid, it was 2°! 5ppm
Met. (Rh recovery rate 98.52%) Example 3 Lower layer liquid obtained by further extracting the same reaction solution as in Example 1 with an aqueous hydrochloric acid solution (7% aqueous hydrochloric acid solution, Rh concentration 86 ppm > 10
Add 1 g of Na2S j 9142o to 0 ml,
The mixture was stirred at room temperature for 10 minutes. Then heating and filtration are performed,
When the Rh concentration in the liquid was measured, it was found to have decreased to 0.0 ippm. (Rh recovery rate 99.99%) [Effects of the invention] As is clear from the above examples, the method of the present invention does not require any special equipment to remove the transition metal catalyst contained in the reaction solution or extract. can be separated and recovered very efficiently without any

Claims (1)

【特許請求の範囲】 1 遷移金属触媒を用いて得られた反応生成物中に残存
する遷移金属を、硫黄化合物を用いて分離回収すること
を特徴とする遷移金属触媒の分離回収方法。 2 硫黄化合物がH_2S、NaSH又はNa_2Sで
ある請求項1記載の分離回収方法。
[Scope of Claims] 1. A method for separating and recovering transition metal catalysts, which comprises separating and recovering transition metals remaining in a reaction product obtained using a transition metal catalyst using a sulfur compound. 2. The separation and recovery method according to claim 1, wherein the sulfur compound is H_2S, NaSH or Na_2S.
JP63291948A 1988-11-18 1988-11-18 Method for separating and recovering transition metal catalyst Expired - Lifetime JP2580290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291948A JP2580290B2 (en) 1988-11-18 1988-11-18 Method for separating and recovering transition metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291948A JP2580290B2 (en) 1988-11-18 1988-11-18 Method for separating and recovering transition metal catalyst

Publications (2)

Publication Number Publication Date
JPH02139046A true JPH02139046A (en) 1990-05-29
JP2580290B2 JP2580290B2 (en) 1997-02-12

Family

ID=17775532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291948A Expired - Lifetime JP2580290B2 (en) 1988-11-18 1988-11-18 Method for separating and recovering transition metal catalyst

Country Status (1)

Country Link
JP (1) JP2580290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069802A1 (en) * 2003-02-06 2004-08-19 Shionogi & Co., Ltd. Process for producing 2-amino-3-substituted pyridine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437113A (en) * 1977-08-29 1979-03-19 Tokyo Shibaura Electric Co Method of making ceramic sintered body
JPS557302A (en) * 1978-06-29 1980-01-19 Nippon Zeon Co Method of sounddproofing existing house
JPS6311517A (en) * 1986-03-31 1988-01-19 ケミカル アンド メタル インダストリ−ズ,インコ−ポレイテイド Recollection of valuables from used alumina-carried catalyst
JPS63270549A (en) * 1982-10-08 1988-11-08 オウトクンプ オイ Recovery of noble metal from used catalyst for extracting sulfur from crude oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437113A (en) * 1977-08-29 1979-03-19 Tokyo Shibaura Electric Co Method of making ceramic sintered body
JPS557302A (en) * 1978-06-29 1980-01-19 Nippon Zeon Co Method of sounddproofing existing house
JPS63270549A (en) * 1982-10-08 1988-11-08 オウトクンプ オイ Recovery of noble metal from used catalyst for extracting sulfur from crude oil
JPS6311517A (en) * 1986-03-31 1988-01-19 ケミカル アンド メタル インダストリ−ズ,インコ−ポレイテイド Recollection of valuables from used alumina-carried catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069802A1 (en) * 2003-02-06 2004-08-19 Shionogi & Co., Ltd. Process for producing 2-amino-3-substituted pyridine
JPWO2004069802A1 (en) * 2003-02-06 2006-05-25 塩野義製薬株式会社 Method for producing 2-amino-3-substituted pyridine

Also Published As

Publication number Publication date
JP2580290B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
KR0136862B1 (en) Recover of cobalt catalyst and manganese catalyst
JP2002012573A (en) Method for recovering catalytic component from mother liquor of liquid-phase oxidation reaction
JPH07252548A (en) Method for recovering valuable metal from waste catalyst
KR20020046280A (en) Recovery process for oxidation catalyst in the manufacture of aromatic carboxylic acids
JP2007239088A (en) Rare metal/platinum-based metal extractant
JP2007239066A (en) Rare metal/platinum-based metal extractant and method for extracting rare metal/platinum-based metal using the same
JP3421057B2 (en) Catalyst recovery
JPS5850933B2 (en) Production method of silver nitrate
US4950629A (en) Process for catalyst recovery
US4687514A (en) Process for the recovery of noble metals from solutions
AU685888B2 (en) Process for recovering and re-using cobalt and tungsten from reaction liquors
EP0018102A1 (en) Functionalised inorganic oxide products and their use in the removal of heavy metals, transition metals and actinide metals from solution
JPH02139046A (en) Separation recovery of transition metal catalyst
US4289708A (en) Catalyst metal separation from saturated aliphatic monocarboxylic acids
US4394355A (en) Recovery of catalytically-useful cobalt and like metal moieties from their solid oxalates with EDTA salts
WO2005049873A1 (en) Method for recovering catalyst metal from waste of terephthalic acid production
JPS6059974B2 (en) Palladium recovery method
CA2008226C (en) Process for removing metallic corrosion products from a contaminated catalyst solution produced on carbonylation of methanol and/or methyl acetate and/or dimethyl ether
JPH03196846A (en) Method for recovering cobalt catalyst value
KR890006835A (en) Recovery of Precious Metals
JPS61106535A (en) Recovery of benzoic acid
AU653306B2 (en) Process for the recovery of noble metals and tertiary phosphines
CA1107079A (en) Process for removing zinc from a nickel solution by extraction
JPH0280320A (en) Recovering method for transition metal catalyst
CA2147373A1 (en) Method of recovering iodine from iodated organic compounds