JPH0213843B2 - - Google Patents

Info

Publication number
JPH0213843B2
JPH0213843B2 JP8755482A JP8755482A JPH0213843B2 JP H0213843 B2 JPH0213843 B2 JP H0213843B2 JP 8755482 A JP8755482 A JP 8755482A JP 8755482 A JP8755482 A JP 8755482A JP H0213843 B2 JPH0213843 B2 JP H0213843B2
Authority
JP
Japan
Prior art keywords
electric field
polarization component
primary radiator
component
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8755482A
Other languages
Japanese (ja)
Other versions
JPS58204605A (en
Inventor
Takashi Kataki
Takashi Hirukoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8755482A priority Critical patent/JPS58204605A/en
Publication of JPS58204605A publication Critical patent/JPS58204605A/en
Publication of JPH0213843B2 publication Critical patent/JPH0213843B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/028Means for reducing undesirable effects for reducing the cross polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/132Horn reflector antennas; Off-set feeding

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 この発明はマイクロ波帯あるいはミリ波帯で使
用され、反射鏡と一次放射器から構成されるオフ
セツトパラボラアンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an offset parabolic antenna that is used in the microwave band or millimeter wave band and is composed of a reflecting mirror and a primary radiator.

このようなオフセツトパラボラアンテナは第1
図に示すように一次放射器1と回転放物面鏡から
なる反射鏡2で構成されている。なお、第1図a
は側面より見た図、第1図bは正面より見た図を
示している。
This type of offset parabolic antenna is
As shown in the figure, it consists of a primary radiator 1 and a reflecting mirror 2 consisting of a parabolic mirror of revolution. In addition, Figure 1a
1b shows a view from the side, and FIG. 1b shows a view from the front.

説明を容易にするために回転放物面鏡の焦点を
原点、回転軸をZ軸とし、上記オフセツトパラボ
ラアンテナの構造における対称面に垂直な方向を
Y軸とする直交座標系XYZを設定する。上記一
次放射器1の開口と平行となる平面内において焦
点から放射状にのばした直線を反射鏡2に投影し
た場合、Z軸方向より見た上記直線の影は第2図
の点線で示されるような曲線となる。
For ease of explanation, we will set up an orthogonal coordinate system XYZ in which the focal point of the rotating parabolic mirror is the origin, the axis of rotation is the Z axis, and the Y axis is the direction perpendicular to the plane of symmetry in the structure of the offset parabolic antenna described above. . When a straight line extending radially from the focal point in a plane parallel to the aperture of the primary radiator 1 is projected onto the reflecting mirror 2, the shadow of the straight line seen from the Z-axis direction is shown by the dotted line in FIG. The result will be a curve like this.

従つて、このオフセツトパラボラアンテナを、
電界がX軸に平行となる直線偏波で励振した場合
には第2図aの実線で示すように、また電界がY
軸に平行な場合には第2図bの実線で示すよう
に、一次放射器1から放射され反射鏡2に入射し
た電波の電界の方向が反射鏡2によつて曲げられ
るために、交差偏波成分3を生じるという欠点が
あつた。このオフセツトパラボラアンテナの構造
における対称面(XZ面)内における放射パター
ンを第5図に示す。図中、実線は主偏波成分の放
射パターンであり、点線は交差偏波成分の放射パ
ターンである。さらに、交差偏波成分の電界の位
相は、主偏波成分の主ビーム方向の電界の位相に
対して、一方のローブ側が+90度であり、他方の
ロープ側が−90度である。また、このオフセツト
パラボラアンテナを円偏波で励振した場合、上記
反射鏡2によつて電界の方向が曲げられるため
に、主偏波成分の主ビームの方向が、右旋円偏波
と左旋円偏波で異なるという欠点があつた。
Therefore, this offset parabolic antenna is
When the electric field is excited with a linearly polarized wave parallel to the X axis, as shown by the solid line in Figure 2a, the electric field is
When parallel to the axis, as shown by the solid line in Figure 2b, the direction of the electric field of the radio waves emitted from the primary radiator 1 and incident on the reflector 2 is bent by the reflector 2, resulting in cross polarization. It had the disadvantage of generating wave component 3. FIG. 5 shows the radiation pattern in the plane of symmetry (XZ plane) in the structure of this offset parabolic antenna. In the figure, the solid line is the radiation pattern of the main polarization component, and the dotted line is the radiation pattern of the cross-polarization component. Further, the phase of the electric field of the cross-polarized component is +90 degrees on one lobe side and -90 degrees on the other rope side with respect to the phase of the electric field in the main beam direction of the main polarized component. Furthermore, when this offset parabolic antenna is excited with circularly polarized waves, the direction of the electric field is bent by the reflecting mirror 2, so the direction of the main beam of the main polarization component is different from right-handed circularly polarized waves to left-handed circularly polarized waves. The drawback was that the waves differed due to circular polarization.

この発明はこのような欠点を除去するために、
一次放射器を主偏波成分と、上記主偏波成分の電
界と直交する補正電界からなる成分とで励振した
もので、以下図面を用いて詳細に説明する。
In order to eliminate such drawbacks, this invention
The primary radiator is excited with a main polarization component and a component consisting of a correction electric field orthogonal to the electric field of the main polarization component, and will be described in detail below with reference to the drawings.

第3図はこの発明の原理を説明する図で、主偏
波成分4で励振した場合に反射鏡2で生じる交差
偏波成分3の電界方向、および上記交差偏波成分
を打ち消すために必要な補正電界5を示したもの
である。
FIG. 3 is a diagram explaining the principle of this invention, showing the direction of the electric field of the cross-polarized wave component 3 generated in the reflecting mirror 2 when excited with the main polarized wave component 4, and the direction of the electric field necessary to cancel the cross-polarized wave component 3. A correction electric field 5 is shown.

まず、主偏波成分4としてX偏波成分6で一次
放射器を励振した場合、電界の方向は反射鏡2に
よつて曲げられ、交差偏波成分3としてY偏波成
分を生じる。反射鏡2で反射した後の電界を主偏
波成分4と交差偏波成分3に分けると第3図の反
射鏡における電界の欄に示すようになる。
First, when the primary radiator is excited with the X polarization component 6 as the main polarization component 4, the direction of the electric field is bent by the reflecting mirror 2, producing a Y polarization component as the cross polarization component 3. The electric field after being reflected by the reflecting mirror 2 is divided into a main polarization component 4 and a cross polarization component 3 as shown in the column of electric field in the reflecting mirror in FIG.

従つて、この交差偏波成3を打ち消すように一
次放射器に予め補正電界5を加えて励振したもの
で、対称面(XZ面)を境界として二等分した一
次放射器の各部を、主偏波成分4に対してそれぞ
れ90度及び−90度の位相差を持つたY偏波成分の
補正電界5で励振したものである。この場合、主
偏波成分4に対して90度及び−90度の位相差を持
たせた理由は、反射鏡2における補正電界5によ
る放射パターンのZ軸の両側のロープの位相を、
主偏波成分の主ロープの位相に対してそれぞれ90
度及び−90度とすることにより、先に説明したよ
うに元から存在する主偏波成分4が反射鏡2によ
つて生じる交差偏波成分の放射パターンと逆相す
ることができるので、交差偏波成分を打ち消すこ
とができる。このような構成にすることによつ
て、反射鏡によつて生じる交差偏波成分3を一次
放射器における補正電界5による成分で打ち消す
ことができるので、交差偏波成分3のレベルの低
い良好な放射パターンを実現することができる。
Therefore, the primary radiator is excited by applying a correction electric field 5 in advance so as to cancel out this cross-polarization component 3, and each part of the primary radiator, which is divided into two halves with the plane of symmetry (XZ plane) as the boundary, is It is excited with a correction electric field 5 of the Y polarization component having a phase difference of 90 degrees and -90 degrees with respect to the polarization component 4, respectively. In this case, the reason why the main polarization component 4 has a phase difference of 90 degrees and -90 degrees is that the phase of the ropes on both sides of the Z axis of the radiation pattern due to the correction electric field 5 in the reflecting mirror 2 is
90 respectively for the phase of the main rope of the main polarization component.
By setting the angles to -90 degrees and -90 degrees, the originally existing main polarized wave component 4 can be in opposite phase to the radiation pattern of the cross polarized wave components generated by the reflector 2, so that Polarization components can be canceled out. By adopting such a configuration, the cross-polarized wave component 3 generated by the reflecting mirror can be canceled out by the component generated by the correction electric field 5 in the primary radiator, so that a good low-level cross-polarized wave component 3 can be obtained. A radiation pattern can be realized.

以上は主偏波成分4がX偏波成分6の場合につ
いて説明したが、第3図に示すようにY偏波成分
7のみの場合でもこの発明を用いることによつて
同様の効果を得ることができる。さらにX偏波お
よびY偏波で励振した場合の交差偏波成分を打ち
消すことができるので、円偏波で励振した場合の
放射パターンの主偏波成分の主ビーム方向を、右
旋円偏波と左旋円偏波で合わせることができる。
The above description has been made for the case where the main polarization component 4 is the X polarization component 6, but as shown in FIG. 3, the same effect can be obtained by using this invention even when only the Y polarization component 7 is present. Can be done. Furthermore, since it is possible to cancel out cross-polarized components when excited with X-polarized waves and Y-polarized waves, the main beam direction of the main polarized components of the radiation pattern when excited with circularly polarized waves can be changed to right-handed circularly polarized waves. can be matched with left-handed circular polarization.

一次放射器1における具体的な励振方法の一例
として、一次放射器1を送信用とした場合、第4
図に示すように主偏波成分4の電力の一部をプロ
ーブ8a,8bによつて取り出し、その電力を伝
送線路9を通じて再びプローブ8c,8dを用い
て、補正電界5として入力する方法がある。第4
図aは一次放射器1を斜め前よより見た場合の外
観図で、出力面10内に設けたプローブ8a,8
bにより取り出した主偏波成分4の電力の一部
を、伝送線路9を通じて入力面11内に設けたプ
ローブ8c,8dに伝送し補正電界5として入力
している。出力面10と入力面11の距離および
伝送線路9の長さは、一次放射器1内を伝播する
主偏波成分の位相と、プローブ8a,8bによつ
て取り出し伝送線路9を通じて再びプローブ8
c,8dによつて補正電界として入力される電波
の位相が先に示した所定の位相差となるように選
ばれている。第4図bは一次放射危1の開口より
給電側を見た図で、主偏波成分4がX偏波成分6
の場合に関係のある出力用プローブ8a、入力用
プローブ8cと伝送線路9、および入力用プロー
ブ8cによつて励振される補正電界5を示したも
のである。また図4cは同様に一次放射器1の開
口より給電側を見た図で、主偏波成分4がY偏波
成分7の場合に関係のある出力用プローブ8b、
入力用プローブ8dと伝送線路9、および入力用
プローブ8dによつて励振される補正電界5を示
したものである。
As an example of a specific excitation method in the primary radiator 1, when the primary radiator 1 is used for transmission, the fourth
As shown in the figure, there is a method of extracting a part of the power of the main polarization component 4 using probes 8a and 8b and inputting that power as a correction electric field 5 through a transmission line 9 again using probes 8c and 8d. . Fourth
Figure a is an external view of the primary radiator 1 viewed diagonally from the front.
A part of the power of the main polarized wave component 4 extracted by step b is transmitted to probes 8c and 8d provided in the input surface 11 through a transmission line 9, and is inputted as a correction electric field 5. The distance between the output surface 10 and the input surface 11 and the length of the transmission line 9 are determined by the phase of the main polarized wave component propagating within the primary radiator 1 and the phase of the main polarized wave component that is extracted by the probes 8a and 8b and passed back through the transmission line 9 to the probe 8.
c and 8d are selected so that the phase of the radio waves input as the correction electric field has the predetermined phase difference shown above. Figure 4b is a diagram looking at the feed side from the opening of the primary radiation hazard 1, where the main polarization component 4 is the X polarization component 6.
This figure shows the output probe 8a, the input probe 8c, the transmission line 9, and the correction electric field 5 excited by the input probe 8c, which are related to the case of . Similarly, FIG. 4c is a diagram looking at the feed side from the aperture of the primary radiator 1, and shows the output probe 8b, which is related when the main polarization component 4 is the Y polarization component 7.
It shows the input probe 8d, the transmission line 9, and the correction electric field 5 excited by the input probe 8d.

以上説明したように本発明をオフセツトパラボ
ラアンテナの一次放射器に用いることによつて、
直線偏波で励振する場合には交差偏波成分のレベ
ルの低い放射パターンを実現でき、また、円偏波
で励振する場合には主偏波成分の主ビーム方向を
右旋円偏波と左旋円偏波で合わせることができ
る。
As explained above, by applying the present invention to the primary radiator of an offset parabolic antenna,
When exciting with linear polarization, a radiation pattern with a low level of cross-polarized components can be achieved, and when exciting with circular polarization, the main beam direction of the main polarization component can be changed between right-handed circular polarization and left-handed circular polarization. It can be matched with circular polarization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオフセツトパラボラアンテナの構成
図、第2図は電界の方向の変化を説明する図、第
3図はこの発明の原理を説明する図、第4図はこ
の発明による一次放射器の構成図、第5図は従来
のオフセツトパラボラアンテナの放射パターンを
示す図である。図中、1は一次放射器、2は反射
鏡、3は交差偏波成分、4は主偏波成分、5は補
正電界、6はX偏波成分、7はY偏波成分、8は
プローブ、9は伝送線路、10は出力面、11は
入力面である。なお、図中同一あるいは相当部分
には同一符号を付して示してある。
Figure 1 is a block diagram of an offset parabolic antenna, Figure 2 is a diagram explaining changes in the direction of the electric field, Figure 3 is a diagram explaining the principle of this invention, and Figure 4 is a diagram of a primary radiator according to this invention. The configuration diagram, FIG. 5, is a diagram showing the radiation pattern of a conventional offset parabolic antenna. In the figure, 1 is the primary radiator, 2 is the reflector, 3 is the cross polarization component, 4 is the main polarization component, 5 is the correction electric field, 6 is the X polarization component, 7 is the Y polarization component, and 8 is the probe. , 9 is a transmission line, 10 is an output surface, and 11 is an input surface. It should be noted that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロ波帯あるいはミリ波帯で使用され、
反射鏡と一次放射器から構成されるオフセツトパ
ラボラアンテナにおいて、上記オフセツトパラボ
ラアンテナを直線偏波で励振する場合に、上記一
次放射器を主偏波成分とこの主偏波成分の電界と
空間的に直交する補正電界からなる成分とで励振
し、上記オフセツトパラボラアンテナの構造にお
ける対称面を境界として上記一次放射器を二等分
した各部における上記補正電界の時間的な位相が
上記主偏波成分の電界の位相に対して一方が+90
度となり、他方が−90度となつていることを特徴
とするオフセツトパラボラアンテナ。
1 Used in microwave or millimeter wave bands,
In an offset parabolic antenna consisting of a reflector and a primary radiator, when the offset parabolic antenna is excited with linearly polarized waves, the primary radiator is connected to the main polarization component, the electric field of this main polarization component, and the space. The temporal phase of the correction electric field in each part bisecting the primary radiator with the plane of symmetry in the structure of the offset parabolic antenna as the boundary is the main polarization. One side is +90 relative to the phase of the electric field of the wave component.
An offset parabolic antenna characterized in that one side is at -90 degrees and the other side is at -90 degrees.
JP8755482A 1982-05-24 1982-05-24 Offset parabola antenna Granted JPS58204605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8755482A JPS58204605A (en) 1982-05-24 1982-05-24 Offset parabola antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8755482A JPS58204605A (en) 1982-05-24 1982-05-24 Offset parabola antenna

Publications (2)

Publication Number Publication Date
JPS58204605A JPS58204605A (en) 1983-11-29
JPH0213843B2 true JPH0213843B2 (en) 1990-04-05

Family

ID=13918201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8755482A Granted JPS58204605A (en) 1982-05-24 1982-05-24 Offset parabola antenna

Country Status (1)

Country Link
JP (1) JPS58204605A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204902A (en) * 1987-02-20 1988-08-24 Radio Res Lab Cross polarization suppressing system

Also Published As

Publication number Publication date
JPS58204605A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
US4141015A (en) Conical horn antenna having a mode generator
JP2584518B2 (en) Scanning antenna system
CA1039842A (en) Compact frequency reuse antenna
AU2003245108B2 (en) Real-time, cross-correlating millimetre-wave imaging system
JPH0818326A (en) Antenna equipment
US4297710A (en) Parallel-plane antenna with rotation of polarization
JPH0213843B2 (en)
JPS5839401B2 (en) circular array antenna
JPS6019303A (en) Antenna
US4847628A (en) Frequency independent constant beamwidth directional lens antenna for very wideband and multi-channel electromagnetic communications
JP3038768B2 (en) Thin antenna
JPH1194926A (en) Radar antenna
JPS5892106A (en) Multibeam antenna
JPS6330005A (en) Ffrequency shared type antena system
JPS6033614Y2 (en) horn reflector antenna
JPS626502A (en) Feeding method for circularly polarized wave array antenna
JPS59194512A (en) Parabolic antenna for circular polarized wave
JPS6129569B2 (en)
JPH0550881B2 (en)
JPS6184905A (en) Antenna system
JPS5897902A (en) Reflector type antenna device
JPH03179903A (en) Mirror correction antenna
JPS5928282B2 (en) Frequency band shared radar antenna
JPS5892104A (en) Antenna device
JPH09102708A (en) Primary radiator for paraboloidal antenna