JPH0213833A - Icp emission analyzer - Google Patents
Icp emission analyzerInfo
- Publication number
- JPH0213833A JPH0213833A JP63164471A JP16447188A JPH0213833A JP H0213833 A JPH0213833 A JP H0213833A JP 63164471 A JP63164471 A JP 63164471A JP 16447188 A JP16447188 A JP 16447188A JP H0213833 A JPH0213833 A JP H0213833A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- laser light
- plasma flame
- sample
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001228 spectrum Methods 0.000 abstract description 5
- 230000006698 induction Effects 0.000 abstract description 4
- 239000006199 nebulizer Substances 0.000 abstract description 4
- 238000004451 qualitative analysis Methods 0.000 abstract description 4
- 238000004445 quantitative analysis Methods 0.000 abstract description 4
- 238000010408 sweeping Methods 0.000 abstract description 4
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 12
- 238000009616 inductively coupled plasma Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、I CP(誘導結合プラズマ)発光分析装置
に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an ICP (inductively coupled plasma) emission spectrometer.
(ロ)従来の技術
従来のICP発光分析装置では、高周波電源からプラズ
マトーチに高周波電力を供給する一方、分析対象となる
試料をネプライザで霧化してプラズマトーチに導入する
。そして、霧化された試料をプラズマトーチ内で励起し
て発光させ、この光を分光器で元素特有のスペクトル線
に分光し、各スペクトル線の有無と強度を光検出器で検
出することにより、試料に含まれる各元素の定性、定量
分析を行う。(B) Prior Art In a conventional ICP emission spectrometer, high frequency power is supplied from a high frequency power supply to a plasma torch, and a sample to be analyzed is atomized by a nebulizer and introduced into the plasma torch. Then, the atomized sample is excited in a plasma torch to emit light, the light is separated into element-specific spectral lines using a spectroscope, and the presence and intensity of each spectral line is detected using a photodetector. Perform qualitative and quantitative analysis of each element contained in the sample.
(ハ)発明が解決しようとする課題
このように、従来のこの種の装置では1.プラズマ光を
各スペクトル線の情報に変換するために、分光器ならび
に光検出器が必要不可欠とされる。(c) Problems to be Solved by the Invention As described above, the conventional devices of this type have 1. A spectrometer and a photodetector are essential to convert plasma light into information about each spectral line.
そのため、装置が大型化するとともに、高価とな。
る。さらに、分光器は精密機器であり、その使用に際し
ては温度、振動等に起因するドリフト等の影響を除くた
めに一定の環境に保持する必要があり、メインテナンス
にも手間がかかる。As a result, the equipment becomes larger and more expensive.
Ru. Furthermore, a spectrometer is a precision instrument, and when it is used, it must be kept in a constant environment to eliminate the effects of drift caused by temperature, vibration, etc., and maintenance is time-consuming.
本発明は、このような事情に鑑みてなされたものであっ
て、分光器や光検出器を使用せずに、高分解能のスペク
トルデータが得られるようにして、従来に比較して装置
全体を小型化し、しかも、メインテナンスが簡単になる
ようにすることを目的とする。The present invention has been made in view of these circumstances, and allows the acquisition of high-resolution spectral data without using a spectrometer or photodetector, thereby reducing the overall cost of the device compared to conventional methods. The purpose is to make the device compact and easy to maintain.
(ニ)課題を解決するための手段
本発明は、上記の目的を達成するために、次の構成を採
る。(d) Means for Solving the Problems In order to achieve the above object, the present invention adopts the following configuration.
すなわち、本発明のICP発光分析装置では、プラズマ
トーチで発生されるプラズマ炎に対してレーザ光を照射
する波長可変レーザと、前記プラズマ炎を挟んで対向配
置された一対の電極と、前記両電極間に流れるイオン電
流を検出する検出器とを備えていることを特徴とする。That is, in the ICP emission spectrometer of the present invention, a wavelength tunable laser that irradiates a laser beam to a plasma flame generated by a plasma torch, a pair of electrodes that are disposed opposite to each other with the plasma flame in between, and both of the electrodes are provided. and a detector that detects the ionic current flowing between the two.
(ホ)作用
上記構成によれば、プラズマトーチで発生されるプラズ
マ炎に対して波長可変レーザからのレーザ光を照射する
。その際、光ガルバノ効果により、そのレーザ光を吸収
する原子が存在すると、イオン数が変化して電極間に流
れるイオン電流が変化する。このイオン電流の変化が検
出器で検出される。したがって、レーザ光の波長を掃引
しつつイオン電流変化を測定することにより、所要のス
ペクトルデータが得られる。(E) Effect According to the above configuration, the plasma flame generated by the plasma torch is irradiated with laser light from the wavelength tunable laser. At this time, due to the photogalvano effect, if there are atoms that absorb the laser light, the number of ions changes and the ionic current flowing between the electrodes changes. This change in ion current is detected by a detector. Therefore, by measuring the change in ion current while sweeping the wavelength of the laser beam, the required spectral data can be obtained.
(へ)実施例
第1図は本発明の実施例に係るICP発光分析装置の構
成図である。同図において、符号lは■CP発光分析装
置の全体を示し、2はプラズマトーチ、4は試料、6は
試料4を霧化するネプライザ、8はプラズマトーチ2に
Ar等のガスを供給するガス制御装置、lOは高周波プ
ラズマ発生用の誘導コイル、12は誘導コイルIOに高
周波電力を供給する高周波電源、14はプラズマトーチ
2で発生されたプラズマ炎である。(f) Example FIG. 1 is a block diagram of an ICP emission spectrometer according to an example of the present invention. In the same figure, the symbol l indicates the entire CP emission spectrometer, 2 is a plasma torch, 4 is a sample, 6 is a nebulizer that atomizes the sample 4, and 8 is a gas that supplies gas such as Ar to the plasma torch 2. In the control device, IO is an induction coil for generating high-frequency plasma, 12 is a high-frequency power source that supplies high-frequency power to the induction coil IO, and 14 is a plasma flame generated by the plasma torch 2.
この実施例では、上記のプラズマ炎14に対してレーザ
光を照射する波長可変レーザ16を備える。波長可変レ
ーザ16としては、各種の色素レーザを使用できるが、
特には広い波長域で高効率の発振が得られるパルス、レ
ーザ励起色素レーザ(−例としてN、レーザ励起色素レ
ーザ)が適用される。また、18は波長可変レーザ16
の波長を掃引するための波長掃引制御部である。20は
レーザ光の光路上に配置されたハーフミラ−122はプ
ラズマ炎!4を挟んで対向配置された一対の電極である
。これらの各電極22は水冷等により常時冷却されてお
り、また、画電極22間には高圧電源24により高圧が
印加される。26はノ\−フミラー20で反射されたレ
ーザ光を検出する光電変換素子(本例ではフォトダイオ
ード)、28は上記の画電極22間に流れるイオン電流
を検出する検出器であり、本例では同調増幅器30とボ
ックスカー積分器32とからなる。34は検出器28で
検出されたイオン電流とレーザ光の掃引波長との関係に
基づいてスペクトルデータを求めて試料中の元素の定性
、定量分析を行うデータ処理部である。This embodiment includes a variable wavelength laser 16 that irradiates the plasma flame 14 with laser light. Various dye lasers can be used as the wavelength tunable laser 16, but
In particular, pulsed and laser-excited dye lasers (for example, N, laser-excited dye lasers) that can provide highly efficient oscillation in a wide wavelength range are applied. In addition, 18 is a wavelength tunable laser 16
This is a wavelength sweep control unit for sweeping the wavelength of . 20 is a half mirror placed on the optical path of the laser beam. 122 is a plasma flame! A pair of electrodes are placed opposite each other with 4 in between. Each of these electrodes 22 is constantly cooled by water cooling or the like, and a high voltage is applied between the picture electrodes 22 by a high voltage power source 24. 26 is a photoelectric conversion element (photodiode in this example) that detects the laser beam reflected by the nof mirror 20; 28 is a detector that detects the ion current flowing between the picture electrodes 22; It consists of a tuned amplifier 30 and a boxcar integrator 32. 34 is a data processing unit that obtains spectrum data based on the relationship between the ion current detected by the detector 28 and the sweep wavelength of the laser beam, and performs qualitative and quantitative analysis of elements in the sample.
次に、上記構成のICP発光分析装置1の作用について
説明する。Next, the operation of the ICP emission spectrometer 1 having the above configuration will be explained.
高周波電源12から誘導コイル10に高周波電流が供給
されると、その電磁誘導作用によりプラズマトーチ2に
はプラズマ炎14が生成する。このプラズマ炎14に対
して試料4をネプライザ6で霧化して導入する。これに
より、試料が励起されて発光する。また、予め、高圧電
源24により画電極22間に高電圧を印加しておく。When a high frequency current is supplied from the high frequency power source 12 to the induction coil 10, a plasma flame 14 is generated in the plasma torch 2 due to its electromagnetic induction action. A sample 4 is atomized by a nebulizer 6 and introduced into the plasma flame 14 . This excites the sample and emits light. Further, a high voltage is applied between the picture electrodes 22 by the high voltage power supply 24 in advance.
そして、試料が励起されたプラズマ炎14に対して波長
可変レーザ16からパルスレーザ光を照射しつつ、この
パルスレーザ光を波長掃引制御部18により波長掃引す
る。このときの波長のレーザ光を吸収するのに適合した
試料元素が存在すると、光ガルバノ効果によりプラズマ
炎14中のイオン数が変化し、これに伴って画電極22
間に流れるイオン電流が変化する。このイオン電流の変
化は、同調増幅器30で増幅された後、ボックスカー積
分器32に入力される。一方、波長可変レーザ16から
のレーザ光の一部はハーフミラ−20を介してフォトダ
イオード26で検出され、この検出出力がボックスカー
積分器32にサンプリングトリガ信号として入力される
。これにより、レーザ光のパルス出力のタイミングに同
期してイオン電流がサンプリングされて順次積分される
。Then, while the wavelength tunable laser 16 irradiates the plasma flame 14 in which the sample is excited with pulsed laser light, the wavelength of this pulsed laser light is swept by the wavelength sweep control section 18 . If a sample element suitable for absorbing the laser light of this wavelength exists, the number of ions in the plasma flame 14 changes due to the optical galvano effect, and accordingly, the number of ions in the picture electrode 22 changes.
The ionic current flowing between them changes. This change in ion current is amplified by a tuned amplifier 30 and then input to a boxcar integrator 32. On the other hand, a part of the laser light from the wavelength tunable laser 16 is detected by the photodiode 26 via the half mirror 20, and the detection output is inputted to the boxcar integrator 32 as a sampling trigger signal. Thereby, the ion current is sampled and sequentially integrated in synchronization with the timing of the laser beam pulse output.
そして、波長可変レーザ16の掃引波長に対応するボッ
クスカー積分器32の積分強度値に基づいて、データ処
理部34は、第2図に示すような所要のスペクトルデー
タを得る。さらに、データ処皿部34は、得られたスペ
クトルを各元素のデータベースと照合して試料中の元素
の定性、定量分析を行う。Then, based on the integrated intensity value of the boxcar integrator 32 corresponding to the swept wavelength of the wavelength tunable laser 16, the data processing section 34 obtains required spectrum data as shown in FIG. Further, the data processing unit 34 performs qualitative and quantitative analysis of the elements in the sample by comparing the obtained spectra with the database of each element.
なお、この実施例ではプラズマ中のイオン数の変化を電
極22間に流れるイオン電流の変化として検出している
が、その他、プラズマ負荷のインピーダンス変化をたと
えばプラズマ生成用の高周波の反射波の変化として検出
することも可能である。In this embodiment, a change in the number of ions in the plasma is detected as a change in the ion current flowing between the electrodes 22, but in addition, a change in the impedance of the plasma load can be detected as a change in the high frequency reflected wave for plasma generation. It is also possible to detect.
(ト)効果
本発明によれば、光ガルバノ効果を利用して分光測定を
行うため、分光器や光検出器を使用せずに高分解能のス
ペクトルデータが得られるようになる。その結果、従来
に比較して装置全体を小型化でき、しかも、メインテナ
ンスが簡単になる等の優れた効果が発揮される。(g) Effects According to the present invention, since spectroscopic measurements are performed using the optical galvano effect, high-resolution spectral data can be obtained without using a spectrometer or a photodetector. As a result, the entire device can be made smaller in size compared to the conventional method, and excellent effects such as easier maintenance are exhibited.
図面は本発明の実施例を示すもので、第1図はICP発
光分析装置の構成図、第2図はレーザ光の波長と検出し
たイオン電流との関係を示す特性図である。
1・・・ICP発光分析装置、16・・・波長可変レー
ザ、22・・・電極、28・・・検出器。The drawings show an embodiment of the present invention, and FIG. 1 is a configuration diagram of an ICP emission spectrometer, and FIG. 2 is a characteristic diagram showing the relationship between the wavelength of laser light and the detected ion current. DESCRIPTION OF SYMBOLS 1... ICP emission spectrometer, 16... Tunable wavelength laser, 22... Electrode, 28... Detector.
Claims (1)
レーザ光を照射する波長可変レーザと、前記プラズマ炎
を挟んで対向配置された一対の電極と、 前記両電極間に流れるイオン電流を検出する検出器と、 を備えることを特徴とするICP発光分析装置。(1) A variable wavelength laser that irradiates a plasma flame generated by a plasma torch with laser light, a pair of electrodes that are placed opposite to each other with the plasma flame in between, and detecting the ionic current that flows between the two electrodes. An ICP emission spectrometer comprising: a detector;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63164471A JPH0213833A (en) | 1988-06-30 | 1988-06-30 | Icp emission analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63164471A JPH0213833A (en) | 1988-06-30 | 1988-06-30 | Icp emission analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0213833A true JPH0213833A (en) | 1990-01-18 |
Family
ID=15793809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63164471A Pending JPH0213833A (en) | 1988-06-30 | 1988-06-30 | Icp emission analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0213833A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102140A (en) * | 1985-10-30 | 1987-05-12 | Hitachi Ltd | Quantitative determination and correcting method for laser excited plasma spectrochemical analysis |
-
1988
- 1988-06-30 JP JP63164471A patent/JPH0213833A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102140A (en) * | 1985-10-30 | 1987-05-12 | Hitachi Ltd | Quantitative determination and correcting method for laser excited plasma spectrochemical analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ballew et al. | A single‐sweep, nanosecond time resolution laser temperature‐jump apparatus | |
RU2313078C2 (en) | Mode of detection of gases with the usage of a spectrometer on the basis of a semi-conducting diode laser and a spectrometer for its realization | |
US20220113190A1 (en) | Short pulsewidth high repetition rate nanosecond transient absorption spectrometer | |
US9851248B2 (en) | Spectroscopy system using waveguide and employing a laser medium as its own emissions detector | |
CN110383605A (en) | Observation of stimulated Raman scattering instrument based on passive Q-switch and its use in industrial molecular analysis | |
US5973782A (en) | Phaseless wavelength modulation spectroscopy | |
McManus et al. | TOBI: a two-laser beam infrared system for time-resolved plasma diagnostics of infrared active compounds | |
JPH0213833A (en) | Icp emission analyzer | |
Brown et al. | Water-vapor detection using asynchronous THz sampling | |
Carson et al. | Invalidation of the intracavity optogalvanic method for radiocarbon detection | |
CN211785136U (en) | Synchronous detection device for Raman, fluorescence and laser induced breakdown spectrum signals | |
Bahrini et al. | Pulsed cavity ring-down spectrometer at 3 µm based on difference frequency generation for high-sensitivity CH 4 detection | |
US11525804B2 (en) | Optogalvanic effect detection system | |
Zhang et al. | Plasma-cavity ringdown spectroscopy for analytical measurement: Progress and prospectives | |
JPH04274743A (en) | Laser emission analysis method | |
CN118050349B (en) | Method and device for detecting adsorbate on surface of thin film circuit by using higher harmonic | |
Hieftje et al. | Application of a Wave-length Modulation Device to Problems Concerning Spectrometer Misalignment | |
Martini | Density measurement of OH radicals in non-thermal plasmas by laser induced fluorescence and time-resolved absorption spectroscopy | |
Ohmukai et al. | Doppler-free optogalvanic spectroscopy of Ca+ and Ca | |
JPH102859A (en) | Plasma monitoring method | |
Telle | In-situ assaying of materials using laser analytical spectroscopy | |
Berniolles et al. | Sensitive absorbance measurement for gas-phase analytes based on multiwave mixing spectroscopy | |
Seltzer et al. | Optogalvanic spectroscopy in a microwave-induced active nitrogen plasma | |
JPS58100741A (en) | Laser raman spectroscopic apparatus removing fluorescence | |
JPS62102140A (en) | Quantitative determination and correcting method for laser excited plasma spectrochemical analysis |