JPH02138166A - Production of aromatic urethane - Google Patents

Production of aromatic urethane

Info

Publication number
JPH02138166A
JPH02138166A JP28966488A JP28966488A JPH02138166A JP H02138166 A JPH02138166 A JP H02138166A JP 28966488 A JP28966488 A JP 28966488A JP 28966488 A JP28966488 A JP 28966488A JP H02138166 A JPH02138166 A JP H02138166A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
urethane
product
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28966488A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iwata
岩田 一幸
Kazuhito Kurachi
倉地 和仁
Tetsuo Takano
哲雄 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28966488A priority Critical patent/JPH02138166A/en
Publication of JPH02138166A publication Critical patent/JPH02138166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To enable efficient recovery and reuse of the catalyst to avoid the quality deterioration of the product, in the production of an aromatic urethane by the carbonylation reaction, by separating the catalyst from the product in the coexistence of an aliphatic hydrocarbon solvent. CONSTITUTION:In the production of an aromatic urethane by reaction of an aromatic nitro compound, a hydroxyl organic compound such as alcohol, phenol and carbon monoxide in the presence of a catalyst system comprising a platinum metal, as a major catalyst, a Lewis acid, as a cocatalyst and a nitrogen- containing aromatic compound, as a ligand, the separation of the catalyst from the aromatic urethane product is conducted in the coexistence of an aliphatic hydrocarbon solvent such as straight-chained or branched alkane and cycloalkane, for example, n-heptane, isohexane or cyclohexane. Thus, the recovery and reuse of the catalyst is facilitated and the deterioration of the product can be avoided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は芳香族ウレタン化合物の製造方法に関し、特に
ポリウレタンの原料となるポリメチレンポリフェニルポ
リイソシアネート(以下、PMPPIと略記する)を非
ホスゲン法により製造する場合の出発物質となる芳香族
ウレタン化合物の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing an aromatic urethane compound, and in particular, a non-phosgene method for producing polymethylene polyphenyl polyisocyanate (hereinafter abbreviated as PMPPI), which is a raw material for polyurethane. The present invention relates to a method for producing an aromatic urethane compound that is a starting material in the production process.

詳しくは、芳香族ニトロ化合物、含水酸基有機化合物お
よび一酸化炭素を、白金族金属/ルイス酸/含窒素ヘテ
ロ芳香族化合物触媒系の存在下で反応させることからな
る芳香族ウレタンの製造において、触媒の回収・再利用
が容易で、生成物の品質劣化が防止された改良方法に関
する。
Specifically, in the production of aromatic urethane, which involves reacting an aromatic nitro compound, a hydrous acid group organic compound, and carbon monoxide in the presence of a platinum group metal/Lewis acid/nitrogen-containing heteroaromatic compound catalyst system, This invention relates to an improved method that allows easy recovery and reuse of products and prevents deterioration of product quality.

(従来の技術) ポリウレタンの原料として大量に使用されているPMP
PI は、工業的には、芳香族ニトロ化合物を還元して
得た芳香族アミンにホスゲンを作用させるホスゲン法に
より従来より生産されてきた。しかし、この方法は有毒
なホスゲンを使用すること、ホスゲン合成のために高価
な塩素が必要なこと、塩化水素が大量に副生ずることな
どの問題点があった。
(Prior technology) PMP is used in large quantities as a raw material for polyurethane
PI has conventionally been produced industrially by the phosgene method in which phosgene is reacted with an aromatic amine obtained by reducing an aromatic nitro compound. However, this method has problems such as the use of toxic phosgene, the need for expensive chlorine for phosgene synthesis, and the production of large amounts of hydrogen chloride as a by-product.

そこで、ホスゲンを使用しない非ホスゲン法によるP?
1PPIの合成方法がこれまでも盛んに研究されてきた
Therefore, P? by the non-phosgene method that does not use phosgene?
Methods for synthesizing 1PPI have been actively studied.

この非ホスゲン法の1つには芳香族ニトロ化合物を出発
原料として、カルボニル化、縮合、および熱分解の3工
程を経る方法がある。詳しくは、芳香族ニトロ化合物、
一酸化炭素および含水酸基有機化合物を触媒の存在下に
反応させて芳香族ウレタンを合成しくカルボニル化)、
次にこのウレタンをホルムアルデヒドなどのメチレン化
剤との縮合反応により架橋させてポリウレタン化合物を
合成しく縮合)、このポリウレタン化合物から含水酸基
有機化合物(アルコールもしくはフェノール)を脱離さ
せ(熱分解)、目的のP?IPPIを得る方法である。
One of the non-phosgene methods involves using an aromatic nitro compound as a starting material and passing through three steps: carbonylation, condensation, and thermal decomposition. For details, see aromatic nitro compounds,
Carbonylation (to synthesize aromatic urethane by reacting carbon monoxide and a hydrous acid group organic compound in the presence of a catalyst),
Next, this urethane is crosslinked by a condensation reaction with a methylenating agent such as formaldehyde to synthesize a polyurethane compound (condensation), and the hydrous acid group organic compound (alcohol or phenol) is eliminated from this polyurethane compound (thermal decomposition). P? This is the method to obtain IPPI.

PMPPIの代表例であるMDI (メチレンジフェニ
ルジイソシアネート)の合成を例にとり、以上の反応経
路を反応式で示すと次のようになる。
Taking the synthesis of MDI (methylene diphenyl diisocyanate), which is a representative example of PMPPI, as an example, the above reaction route is shown in the following reaction formula.

カルボニル化: 縮 合: 熱分解: MDU =メチレンジフェニルシカーバメート本発明は
、前記反応経路のカルボニル化工程に相当する反応によ
り、RPCなどのウレタン化合物を製造する方法に関す
る。
Carbonylation: Condensation: Thermal decomposition: MDU = methylene diphenyl cycarbamate The present invention relates to a method for producing urethane compounds such as RPC by a reaction corresponding to the carbonylation step of the above reaction route.

上記カルボニル化工程を白金族金属(主触媒)−ルイス
酸(助触媒)−含窒素ヘテロ芳香族化合物(配位子)か
らなる触媒系の存在下に行うことにより芳香族ウレタン
を製造する方法は公知である。このウレタン合成方法は
触媒が回収でき、収率が高く、また反応装置の腐食が抑
えられるという利点がある。
A method for producing an aromatic urethane by performing the above carbonylation step in the presence of a catalyst system consisting of a platinum group metal (main catalyst), a Lewis acid (cocatalyst), and a nitrogen-containing heteroaromatic compound (ligand). It is publicly known. This urethane synthesis method has the advantage that the catalyst can be recovered, the yield is high, and corrosion of the reaction equipment is suppressed.

この反応後、得られた反応混合物から触媒と芳香族ウレ
タンを回収し、触媒はカルボニル化反応に再利用し、芳
香族ウレタンは次工程の縮合工程を経て熱分解されてM
旧に変換される。したがって、工業的には、触媒を再利
用可能な状態で回収すること、および芳香族ウレタン生
成物は次工程で使用できるように高純度・高収率で回収
することが重要である。これらの点に留意して従来より
下記の方法が提案されている。
After this reaction, the catalyst and aromatic urethane are recovered from the resulting reaction mixture, the catalyst is reused in the carbonylation reaction, and the aromatic urethane is thermally decomposed through the condensation step in the next step.
Converted to old. Therefore, industrially, it is important to recover the catalyst in a reusable state and to recover the aromatic urethane product with high purity and high yield so that it can be used in the next step. With these points in mind, the following methods have been proposed in the past.

特公昭56−3861号公報には、反応終了後、熱時濾
過等により反応液に不溶の触媒を分離・回収し、次いで
濾液を冷却して析出した芳香族ウレタン生成物を回収し
、残った母液を回収した触媒と共に次回のウレタン合成
に使用する方法が開示されている。
Japanese Patent Publication No. 56-3861 states that after the completion of the reaction, the catalyst insoluble in the reaction solution was separated and recovered by filtration while hot, and then the filtrate was cooled to recover the precipitated aromatic urethane product. A method is disclosed in which the mother liquor is used together with the recovered catalyst in the next urethane synthesis.

特開昭53−137929号には、前記の方法で得られ
た芳香族ウレタンを酸性水溶液で処理することにより精
製する方法が記載されている。それにより、ウレタン生
成物の熱安定性が良くなり、次の熱分解工程で目的とす
るイソシアネート以外のタール性物質の副生が抑えられ
る。
JP-A-53-137929 describes a method for purifying the aromatic urethane obtained by the above method by treating it with an acidic aqueous solution. This improves the thermal stability of the urethane product and suppresses the by-product of tar substances other than the target isocyanate in the next thermal decomposition step.

さらに、反応終了後、不溶性の触媒を熱時濾過等により
回収し、濾液を濃縮または蒸留して芳香族ウレタンを回
収する方法も公知である。
Furthermore, a method is also known in which, after the reaction is completed, the insoluble catalyst is recovered by hot filtration or the like, and the filtrate is concentrated or distilled to recover the aromatic urethane.

(発明が解決しようとする課題) 上記のウレタン合成方法においては、反応物質である含
水酸基有機化合物を、溶媒の作用を兼ねて大過剰に使用
することが普通であった。この含水酸基有機化合物は触
媒、特にルイス酸の溶解力が高い。そのため、反応終了
後、反応液から不溶の触媒を濾過により分離しても、濾
液中になお相当量の触媒が熔存し、濾液に混入してくる
ことになる。場合によっては、濾過により回収されるル
イス酸は半分以下で、大半のルイス酸が濾液中に残留す
る。したがって、この濾液から芳香族ウレタンを蒸留に
より回収すると、濾液に残留する触媒中のルイス酸によ
り芳香族ウレタン生成物が熱劣化を受け、ウレタン生成
物の収率が低下し、品質が劣化する。
(Problems to be Solved by the Invention) In the above-mentioned urethane synthesis method, it has been usual to use a large excess of the hydrated acid group organic compound as a reactant, which also serves as a solvent. This hydrous acid group organic compound has a high ability to dissolve catalysts, especially Lewis acids. Therefore, even if the insoluble catalyst is separated from the reaction solution by filtration after the reaction is completed, a considerable amount of the catalyst still remains in the filtrate and is mixed into the filtrate. In some cases, less than half of the Lewis acid is recovered by filtration, with most of the Lewis acid remaining in the filtrate. Therefore, when aromatic urethane is recovered from this filtrate by distillation, the aromatic urethane product is thermally degraded by the Lewis acid in the catalyst remaining in the filtrate, resulting in a decrease in the yield and deterioration of the quality of the urethane product.

特に?IDI合成の原料となる芳香族ウレタン(RPC
)を回収する場合、前記特公昭56−3861号公報に
開示されたような晶析法の適用は困難なため、蒸留法を
適用しなければならない。
especially? Aromatic urethane (RPC) is a raw material for IDI synthesis.
), it is difficult to apply the crystallization method as disclosed in Japanese Patent Publication No. 56-3861, so a distillation method must be used.

第1図に、ウレタン生成物であるRPCに種々の量でル
イス酸のpecI*を添加し、110℃で1時間加熱し
た時のEPC残存率を示す。これから、ウレタンに共存
するルイス酸量が多いほど残存率が低下すること、すな
わち、ルイス酸の共存下ではウレタンの熱安定性が低下
し、熱劣化を受けるが、ルイス酸の共存量が多いほど熱
劣化がひどくなることがわかる。
FIG. 1 shows the residual rate of EPC when various amounts of Lewis acid pecI* were added to RPC, which is a urethane product, and the mixture was heated at 110° C. for 1 hour. From this, it can be seen that the larger the amount of Lewis acid coexisting in urethane, the lower the residual rate.In other words, in the coexistence of Lewis acid, the thermal stability of urethane decreases and it undergoes thermal deterioration, but the larger the amount of Lewis acid coexisting, the lower the residual rate. It can be seen that thermal deterioration becomes severe.

したがって、上記のように蒸留によりウレタン生成物を
回収する場合、蒸留が進行するにつれて薄留釜中のウレ
タン量が低下し、留出しない触媒のウレタンに対する相
対量が増加するため、蒸留終期はどウレタンの熱劣化が
著しくなり、その収率が低下することになる。
Therefore, when recovering a urethane product by distillation as described above, as the distillation progresses, the amount of urethane in the thin distillate decreases, and the relative amount of catalyst that does not distill out to urethane increases, so what happens at the end of distillation? Thermal deterioration of urethane becomes significant and its yield decreases.

また、このように濾液に残留する触媒量が多いことから
、濾過により固形分として回収される触媒の回収量も低
くなり、再利用に際して新たに触媒を添加する必要が出
てくる。
Furthermore, since the amount of catalyst remaining in the filtrate is large, the amount of catalyst recovered as solid content by filtration is also low, and it becomes necessary to add a new catalyst for reuse.

濾液からウレタン生成物を冷却・晶析により回収する場
合も、濾液に上記のように多量の触媒が残留しているた
め、これがウレタン生成物と一緒に析出し、回収された
ウレタン生成物の品質を悪化させる。また、晶析分離後
の母液にも触媒とウレタン生成物が共存状態で残留し、
この母液を次回の反応に利用するとウレタン生成物の熱
劣化は避けられない。
Even when the urethane product is recovered from the filtrate by cooling and crystallization, a large amount of catalyst remains in the filtrate as described above, and this precipitates out together with the urethane product, resulting in poor quality of the recovered urethane product. worsen. In addition, the catalyst and urethane product remain in a coexisting state in the mother liquor after crystallization separation.
If this mother liquor is used in the next reaction, thermal deterioration of the urethane product is unavoidable.

本発明の目的は、前述したカルボニル化反応による芳香
族ウレタンの製造方法においで、芳香族ウレタン生成物
と触媒との分離効率を向上させることにより、触媒の再
利用率および次工程の原料としての芳香族ウレタンの品
質・収量を改善することである。
The purpose of the present invention is to improve the efficiency of separating the aromatic urethane product from the catalyst in the above-mentioned method for producing aromatic urethane by carbonylation reaction, thereby improving the reuse rate of the catalyst and improving the efficiency of the catalyst as a raw material for the next step. The objective is to improve the quality and yield of aromatic urethane.

(課題を解決するための手段) 本発明者らは、芳香族ウレタン生成物から触媒、特に生
成物を劣化させるルイス酸を効率良く分離する手段につ
いて検討を重ねた結果、脂肪族炭化水素系溶媒を添加し
て分離を行うと、ルイス酸が不溶化し、溶解状態にとど
まるウレタン生成物から触媒を効率よく分離することが
できることを見出した。
(Means for Solving the Problems) As a result of repeated studies on means for efficiently separating catalysts, especially Lewis acids that degrade products, from aromatic urethane products, the present inventors discovered that aliphatic hydrocarbon solvents It has been found that when separation is performed by adding , the Lewis acid becomes insolubilized and the catalyst can be efficiently separated from the urethane product that remains in the dissolved state.

それにより、触媒のほとんど全量を不溶分として回収し
、再利用することができる。触媒の回収率が向上すると
同時に、分離された芳香族ウレタン中には微量のルイス
酸しか存在しないため、蒸留によりウレタンを回収して
も熱変成等による収率低下がなく、高純度・高回収率で
生成物を回収することも可能となる。
Thereby, almost the entire amount of the catalyst can be recovered as an insoluble content and reused. At the same time, the recovery rate of the catalyst is improved, and since only a small amount of Lewis acid exists in the separated aromatic urethane, there is no decrease in yield due to thermal denaturation even when the urethane is recovered by distillation, resulting in high purity and high recovery. It also becomes possible to recover the product at a high rate.

また、脂肪族炭化水素系溶媒は触媒とウレタン生成物と
の分離時に添加することができるが、この溶媒を反応前
に添加しておき、カルボニル化反応をこの溶媒の存在下
で実施しても、同様に優れた結果が得られることも判明
した。
Although an aliphatic hydrocarbon solvent can be added during separation of the catalyst and urethane product, it is also possible to add this solvent before the reaction and carry out the carbonylation reaction in the presence of this solvent. It was also found that similar results were obtained.

本発明の要旨は、芳香族ニトロ化合物、含水酸基有機化
合物、および一酸化炭素を、主触媒として白金族金属、
助触媒としてルイス酸、および配位子として含窒素ヘテ
ロ芳香族化合物からなる触媒系の存在下に反応させて芳
香族ウレタンを製造する方法において、芳香族ウレタン
生成物と触媒との分離を脂肪族炭化水素系溶媒の共存下
で行うことを特1fiとする、芳香族ウレタンの製造方
法である。
The gist of the present invention is to use an aromatic nitro compound, a hydrous acid group organic compound, and carbon monoxide as main catalysts, and a platinum group metal,
In a method for producing aromatic urethanes by reaction in the presence of a catalyst system consisting of a Lewis acid as a cocatalyst and a nitrogen-containing heteroaromatic compound as a ligand, the separation of the aromatic urethane product and the catalyst is performed using an aliphatic This is a method for producing aromatic urethane, which is characterized in that it is carried out in the coexistence of a hydrocarbon solvent.

この脂肪族炭化水素系溶媒は、反応前および反応後のい
ずれに添加することもできる。
This aliphatic hydrocarbon solvent can be added either before or after the reaction.

(作用) 前述したように、本発明の特徴は、前記カルボニル化反
応による芳香族ウレタンの製造において、脂肪族炭化水
素系溶媒を利用して触媒とウレタン生成物とを分離する
点にあり、その他の反応物質および反応条件等について
は、従来法と同様でよいが、以下に節単に説明する。
(Function) As described above, the present invention is characterized in that the catalyst and urethane product are separated using an aliphatic hydrocarbon solvent in the production of aromatic urethane through the carbonylation reaction. The reactants, reaction conditions, etc. may be the same as those in the conventional method, but will be briefly explained below.

主原料として用いる芳香族ニトロ化合物は、モノニトロ
化合物あるいはポリ二ロト化合物のいずれでもよく、反
応条件下で不活性なニトロ基以外のIII基(例、アル
キル、アルケニル、アルコキシ、ハロゲン、カルボキシ
ル、シアノ、イソシアネートなど)を1個またはそれ以
上有していてもよい。これには、ニトロベンゼン類、ジ
ニトロベンゼン類、ジニトロトルエン類、ニトロナフタ
レン類、ニトロアントラセン類、ニトロビフェニル類、
ビス にトロフェニル)アルカン類、ビスにトロフェニ
ル)エーテル類、ニトロジフェノキシアルカン類、ある
いは、5−ニトロピリジンのようなヘテロ芳香族化合物
などが含まれる。
The aromatic nitro compound used as the main raw material may be either a mononitro compound or a polynitro compound, and has a III group other than a nitro group that is inactive under the reaction conditions (e.g., alkyl, alkenyl, alkoxy, halogen, carboxyl, cyano, isocyanate, etc.). These include nitrobenzenes, dinitrobenzenes, dinitrotoluenes, nitronaphthalenes, nitroanthracenes, nitrobiphenyls,
Examples include bis-trophenyl) alkanes, bis-trophenyl) ethers, nitrodiphenoxyalkanes, and heteroaromatic compounds such as 5-nitropyridine.

含水酸基有機化合物はアルコールまたはフェノール類で
あり、1価または多価化合物のいずれでもよい。アルコ
ールの場合、これからOff基を除いた炭化水素残基は
、直鎖または分岐のアルキル、シクロアルキル、アルキ
レン、シクロアルキレンまたはアラルキルである。含水
酸基有機化合物は、酸素、窒素またはハロゲン原子を含
む置換基、例えば、カルボニル、カルボン酸エステル基
、アミン、アミドまたはハロゲンなどを含むことができ
る。
The hydrous acid group organic compound is an alcohol or a phenol, and may be either a monovalent or polyvalent compound. In the case of alcohol, the hydrocarbon residue from which the Off group is removed is a straight-chain or branched alkyl, cycloalkyl, alkylene, cycloalkylene or aralkyl. The hydrous acid group organic compound can contain substituents containing oxygen, nitrogen or halogen atoms, such as carbonyl, carboxylic acid ester groups, amines, amides or halogens.

主触媒である白金族金属としては、パラジウム、ロジウ
ム、白金、ルテニウム、オスミウムの単体あるいはその
化合物を1種または2種以上使用できる。化合物として
は、ハロゲン化物、酸化物、硫酸塩、硝酸塩、アセチル
アセテート、カルボニル化合物、トリフェニルホスフィ
ンなどの有機リン化合物との錯体などが含まれる。また
、主触媒はそのままでも、あるいは適当な)旦体に1旦
持させて反応に用いてもよい。
As the platinum group metal serving as the main catalyst, one or more of palladium, rhodium, platinum, ruthenium, and osmium or a compound thereof can be used. Examples of the compound include halides, oxides, sulfates, nitrates, acetyl acetates, carbonyl compounds, and complexes with organic phosphorus compounds such as triphenylphosphine. Further, the main catalyst may be used in the reaction as it is, or after being kept in a suitable container.

助触媒であるルイス酸としては、反応条件下で、レドッ
クス反応を行う周期律表IIIA〜vm族およびIB〜
VB亜族の元素から得られる化合物が適当である。たと
えば、錫、チタン、ジルコニウム、バナジウム、ニオブ
、ゲルマニウム、アルミニウム、鉄、ニッケル、モリブ
デン、タングステン、マンガン、コバルトなどのハロゲ
ン化物、オキンハロゲン化物、硫酸塩、リン酸塩、硝酸
塩、酸化物、アセチルアセテートおよび/またはオキシ
アセチルアセテートである。
As the Lewis acid which is a co-catalyst, under the reaction conditions, groups IIIA to Vm of the periodic table and IB to which perform a redox reaction are used.
Compounds obtained from elements of the VB subgroup are suitable. For example, halides such as tin, titanium, zirconium, vanadium, niobium, germanium, aluminum, iron, nickel, molybdenum, tungsten, manganese, cobalt, oquine halides, sulfates, phosphates, nitrates, oxides, acetylacetate and /or oxyacetylacetate.

配位子である含窒素ヘテロ芳香族化合物は、無置換形で
も、あるいは反応条件下で不活性な置換基、例えば、ハ
ロゲン、アルキル、アリール、アルケニル、シアノ、ア
ルデヒド、アルコキシ、フェノキシ、カルボアルコキシ
、カルバミル、カルボアリルオキシなどの11′ffA
基を含むものでもよい。
The nitrogen-containing heteroaromatic compound as a ligand can be used in an unsubstituted form or with a substituent that is inert under the reaction conditions, such as halogen, alkyl, aryl, alkenyl, cyano, aldehyde, alkoxy, phenoxy, carbalkoxy, 11'ffA such as carbamyl, carboallyloxy
It may also contain a group.

また、含窒素ヘテロ芳香族化合物の酸付加塩、第四級塩
または酸化物も使用できる。
Acid addition salts, quaternary salts, or oxides of nitrogen-containing heteroaromatic compounds can also be used.

これらの含窒素ヘテロ芳香族化合物はルイス酸と錯体を
形成するので、触媒系成分のうち、ルイス酸と含窒素ヘ
テロ芳香族化合物は、これらを予め反応させて錯体の形
態で使用することもできる。
These nitrogen-containing heteroaromatic compounds form a complex with a Lewis acid, so among the components of the catalyst system, the Lewis acid and the nitrogen-containing heteroaromatic compound can be used in the form of a complex by reacting them in advance. .

カルボニル化反応は、主原料の芳香族ニトロ化合物のニ
トロ基に対して、モル比で少なくとも3倍の一酸化炭素
を用いて行うことが望ましい。
The carbonylation reaction is preferably carried out using carbon monoxide at a molar ratio of at least three times the nitro groups of the aromatic nitro compound as the main raw material.

含水酸基有機化合物はニトロ基に対して等モル以上用い
ることが必要である。しかし、大過剰に使用すると触媒
の溶解量が多くなり、本発明で触媒を不溶分として分離
するのに必要な脂肪族炭化水素系溶媒の使用量が多くな
る。そのため、含水酸基有機化合物はニトロ基に対して
モル比で1:Iないし10:1の範囲で使用することが
好ましい。
It is necessary to use the hydrous acid group organic compound in an amount equal to or more than the nitro group. However, if it is used in large excess, the amount of dissolved catalyst increases, and the amount of aliphatic hydrocarbon solvent required to separate the catalyst as an insoluble component in the present invention increases. Therefore, it is preferable to use the hydrous acid group organic compound in a molar ratio of 1:I to 10:1 to the nitro group.

反応物質および触媒の仕込み方法や添加の順序には特に
制限はなく、用いる装置の制約内で変えることができる
。反応は、回分、半連続、連続のいずれの方法で実施し
てもよい。
There are no particular restrictions on the charging method or order of addition of the reactants and catalyst, and they can be changed within the limitations of the equipment used. The reaction may be carried out batchwise, semi-continuously or continuously.

反応は溶媒の不存在下で実施することができるが、特に
含水酸基有機化合物の量が少ない場合には、有機溶媒を
添加して反応を行うことが好ましい。この場合、反応溶
媒としては芳香族炭化水素、ハロゲン化炭化水素、ニト
リル、エーテル、エステル、ケトン系などの溶媒を使用
することもできるが、後で詳述するように、本発明によ
り触媒の分離に使用する脂肪族炭化水素系溶媒を反応溶
媒として使用することが好ましい。これ以外の反応溶媒
を使用した場合には、本発明による触媒の分離を妨害し
ないように、脂肪族炭化水素系溶媒を添加する前に、反
応溶媒を蒸留などにより除去しておくことが望ましい。
Although the reaction can be carried out in the absence of a solvent, it is preferable to carry out the reaction with the addition of an organic solvent, especially when the amount of the hydrous acid group organic compound is small. In this case, aromatic hydrocarbons, halogenated hydrocarbons, nitriles, ethers, esters, ketone solvents, etc. can be used as the reaction solvent, but as will be explained in detail later, the present invention enables separation of the catalyst. It is preferable to use the aliphatic hydrocarbon solvent used in the reaction solvent as the reaction solvent. If a reaction solvent other than these is used, it is desirable to remove the reaction solvent by distillation or the like before adding the aliphatic hydrocarbon solvent so as not to interfere with the separation of the catalyst according to the present invention.

反応温度は100〜250℃の範囲内、特に140〜1
90℃の範囲内が好ましい。反応圧力は一酸化炭素の分
圧として10〜1000kg/ cd−Gさらに好まし
くは30〜300 kg/cal−Gの範囲である。反
応時間は、用いた反応物質の種類、反応温度、反応圧力
、触媒の種類と量、反応装置などの諸因子によって変わ
るが、−IIには0.5ないし10時間で充分である。
The reaction temperature is within the range of 100 to 250°C, especially 140 to 1
The temperature is preferably within the range of 90°C. The reaction pressure is in the range of 10 to 1000 kg/cal-G, more preferably 30 to 300 kg/cal-G, as a partial pressure of carbon monoxide. The reaction time varies depending on various factors such as the type of reactant used, reaction temperature, reaction pressure, type and amount of catalyst, and reaction apparatus, but 0.5 to 10 hours is sufficient for -II.

反応が終了した後、反応混合物を室温まで冷却した後あ
るいは冷却せずに脱圧する。こうして得られた反応混合
物において、触媒の一部は不溶分として存在するが、上
述したように触媒のかなりの部分が溶解状態で存在して
いる。そのため、反応混合物を単に濾過しただけでは触
媒を完全に分離することができず、ウレタン生成物中に
残留する触媒は生成物の劣化の原因となる。
After the reaction is complete, the reaction mixture is cooled to room temperature or depressurized without cooling. In the reaction mixture thus obtained, a portion of the catalyst is present as an insoluble component, but as described above, a considerable portion of the catalyst is present in a dissolved state. Therefore, the catalyst cannot be completely separated by simply filtering the reaction mixture, and the catalyst remaining in the urethane product causes deterioration of the product.

したがって、ウレタン生成物の収率および品質を改善し
、触媒の回収率を上げるには、触媒を可及的に完全にウ
レタン生成物から分離することが必要であるが、本発明
によれば、脂肪族炭化水素系溶媒の共存下に触媒を分離
することにより触媒のほぼ全量を固形分として回収する
ことができる。
Therefore, in order to improve the yield and quality of the urethane product and to increase the recovery of the catalyst, it is necessary to separate the catalyst from the urethane product as completely as possible, and according to the present invention: By separating the catalyst in the coexistence of an aliphatic hydrocarbon solvent, almost the entire amount of the catalyst can be recovered as a solid content.

脂肪族炭化水素系溶媒は、触媒を熔解せずにウレタン生
成物を溶解することができ、また反応に不活性であるた
め、この目的に特に好適である。
Aliphatic hydrocarbon solvents are particularly suitable for this purpose because they are capable of dissolving the urethane product without melting the catalyst and are inert to the reaction.

本発明で使用できる脂肪族炭化水素系溶媒は、直鎖もし
くは分岐鎖アルカンならびにシクロアルカンを包含する
。具体例としては、n−ペンタン、n−ヘキサン、n−
へブタン、n−オクタン、nノナン、n−デカン、n−
ウンデカン、n−ドデカン、n−トリデカン、n−テト
ラデカン、nペンタデカン、イソペンタン、イソヘキサ
ン、3−メチルペンタン、2.2−ジメチルブタン、2
.3−ジメチルブタン、2.3−ジメチルペンクン、2
−エチルヘキサン、シクロペンクン、シクロヘキサン、
シクロへブタン、シクロオクタン、シクロノナン、メチ
ルシクロペンクン、メチルンクロヘキサン、1.1−ジ
メチルシクロヘキサン、12ジメチルシクロヘキサン、
1.3−ジメチルシクロヘキサン、1.4−ジメチルシ
クロヘキサンなどが挙げられる。これらの化合物の異性
体、または2種以上の溶媒の混合物も使用できる。
Aliphatic hydrocarbon solvents that can be used in the present invention include linear or branched alkanes as well as cycloalkanes. Specific examples include n-pentane, n-hexane, n-
Hebutane, n-octane, n-nonane, n-decane, n-
Undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, isopentane, isohexane, 3-methylpentane, 2,2-dimethylbutane, 2
.. 3-dimethylbutane, 2.3-dimethylpenkune, 2
-Ethylhexane, cyclopenkune, cyclohexane,
Cyclohebutane, cyclooctane, cyclononane, methylcyclopenkune, methylcyclohexane, 1,1-dimethylcyclohexane, 12-dimethylcyclohexane,
Examples include 1,3-dimethylcyclohexane and 1,4-dimethylcyclohexane. Isomers of these compounds or mixtures of two or more solvents can also be used.

本発明の方法において、脂肪族炭化水素系溶媒の添加時
期は特に制限されない。
In the method of the present invention, the timing of adding the aliphatic hydrocarbon solvent is not particularly limited.

例えば、上述したように、反応前の反応系にこの溶媒を
反応溶媒として添加し、反応をこの溶媒の存在下に行う
こともできる。この場合には、脂肪族炭化水素系溶媒の
添加量は、反応後に未反応の含水酸基有機化合物に溶解
しうる触媒、特にルイス酸を実質的に完全に不溶化させ
るのに必要な量とする。そのために、反応器に仕込んだ
含水酸基有機化合物の量に対して容量比で1;1以上の
量で上記溶媒を用いる。
For example, as described above, this solvent can be added as a reaction solvent to the reaction system before the reaction, and the reaction can be carried out in the presence of this solvent. In this case, the amount of the aliphatic hydrocarbon solvent added is the amount necessary to substantially completely insolubilize the catalyst, particularly the Lewis acid, which can be dissolved in the unreacted hydrous acid group organic compound after the reaction. For this purpose, the above-mentioned solvent is used in an amount of 1:1 or more by volume with respect to the amount of the hydrous acid group organic compound charged into the reactor.

このように脂肪族炭化水素系触媒の存在下で反応を行っ
た場合、反応終了後、反応混合物を室温まで冷却し、脱
圧する。この溶媒の存在により触媒は不溶化されるので
、反応混合物を濾過すると、触媒、特にルイス酸をほぼ
完全に固形分として回収できる。回収された触媒は、そ
のまま、あるいは溶媒洗浄などの適当な方法で精製し、
組成を調整した後、循環使用することができる。
When the reaction is carried out in the presence of an aliphatic hydrocarbon catalyst as described above, after the reaction is completed, the reaction mixture is cooled to room temperature and depressurized. The presence of this solvent renders the catalyst insolubilized, so that when the reaction mixture is filtered, the catalyst, particularly the Lewis acid, can be recovered almost completely as a solid content. The recovered catalyst can be purified as is or by an appropriate method such as solvent washing.
After adjusting the composition, it can be recycled.

脂肪族炭化水素系溶媒の添加は、反応直後の反応混合物
に対して行うこともできる。すなわち、冷却後または冷
却せずに脱圧した反応混合物にこの溶媒を添加した場合
も、上記と同様に触媒を実質的に不溶化するとかできる
。この場合の溶媒の添加量は、反応混合物中に未反応の
含水酸基有機化合物が残留しているため、上記と同様で
よく、触媒の回収および循環使用も上記と同様に実施で
きる。
The aliphatic hydrocarbon solvent can also be added to the reaction mixture immediately after the reaction. That is, even when this solvent is added to the depressurized reaction mixture after cooling or without cooling, the catalyst can be made substantially insolubilized in the same manner as described above. In this case, the amount of the solvent added may be the same as above because unreacted hydrous acid group organic compounds remain in the reaction mixture, and the catalyst can be recovered and recycled in the same manner as above.

あるいは、反応後に反応混合物を濾過して、反応混合物
から不溶の触媒を濾過により除去し、得られたウレタン
生成物および残留触媒を含有する反応液に前記溶媒を添
加してもよい。この溶媒の添加により、反応液に熔解し
ていた触媒、特にルイス酸は不溶化し、ウレタン生成物
は溶解状態にとどまる。その後、il!過により残留す
る触媒のほぼ全量を固形分として回収できる。こうして
回収された触媒は、最初の濾過により回収された触媒と
合わせて、必要により上記のように精製処理した後、循
環使用される。この場合の溶媒の使用量も前記と同様で
よい。
Alternatively, the reaction mixture may be filtered after the reaction, the undissolved catalyst removed from the reaction mixture by filtration, and the solvent may be added to the reaction solution containing the resulting urethane product and residual catalyst. By adding this solvent, the catalyst, particularly the Lewis acid, dissolved in the reaction solution becomes insolubilized, and the urethane product remains in a dissolved state. After that, il! Almost all of the remaining catalyst can be recovered as solid content by filtration. The catalyst thus recovered, together with the catalyst recovered by the first filtration, is recycled if necessary after being purified as described above. The amount of solvent used in this case may also be the same as above.

上記のように反応混合物をまず濾過して不溶の触媒を除
去した後、得られた反応液に脂肪族炭化水素系溶媒を添
加する前に、反応液を常圧下もしくは減圧下で濃縮して
もよい。それにより、未反応の含水酸基有機化合物や含
窒素ヘテロ芳香族化合物などの低沸点成分が反応液から
除去される。
After first filtering the reaction mixture to remove the undissolved catalyst as described above, the reaction mixture may be concentrated under normal pressure or reduced pressure before adding the aliphatic hydrocarbon solvent to the resulting reaction mixture. good. As a result, low-boiling components such as unreacted hydrous acid group organic compounds and nitrogen-containing heteroaromatic compounds are removed from the reaction solution.

この場合には、触媒を可溶化させる含水酸基有機化合物
の量が少なくなっているため、触媒の不溶化に必要な脂
肪族炭化水素系溶媒の添加量は上記より少なくてよい。
In this case, since the amount of the hydrous acid group organic compound that solubilizes the catalyst is small, the amount of aliphatic hydrocarbon solvent added necessary for insolubilizing the catalyst may be smaller than the above.

この場合の溶媒の添加量は、一般に濃縮した反応液中の
芳香族ウレタン生成物に対して重量比で5:1以上、好
ましくは10:1以上とする。溶媒の添加後、不溶化し
た触媒を濾過により分離し、上記と同様に循環使用する
In this case, the amount of the solvent added is generally 5:1 or more, preferably 10:1 or more by weight to the aromatic urethane product in the concentrated reaction solution. After addition of the solvent, the insolubilized catalyst is separated by filtration and recycled in the same manner as above.

以上の触媒の分離操作を適当に組合わせることもできる
。例えば、脂肪族炭化水素系溶媒の共存下で反応を行っ
た場合、触媒の不溶化が十分でなければ、反応後にこの
種の溶媒を追加して、触媒を分離することができる。あ
るいは、反応後に溶媒を少量添加して触媒を濾過した後
、得られた反応液を濃縮し、さらに溶媒を追加して触媒
の完全な分離を行うことも可能である。このように、脂
肪族炭化水素系溶媒を2回以上添加する場合、使用する
溶媒は同一でも異なるものでもよい。
The above catalyst separation operations can also be appropriately combined. For example, when the reaction is carried out in the presence of an aliphatic hydrocarbon solvent, if the catalyst is not sufficiently insolubilized, this type of solvent can be added after the reaction to separate the catalyst. Alternatively, it is also possible to add a small amount of solvent after the reaction, filter the catalyst, concentrate the resulting reaction solution, and further add a solvent to completely separate the catalyst. In this way, when adding an aliphatic hydrocarbon solvent two or more times, the solvents used may be the same or different.

なお、触媒の分離は、濾過以外にも、遠心分離、デカン
テーソヨンなどの任意の固液分離手段により実施できる
In addition to filtration, the catalyst can be separated by any solid-liquid separation means such as centrifugation and decantation.

以上のようにして脂肪族添加水素系溶媒の共存下に触媒
を分離すると、触媒をほとんど含有しない反応液が得ら
れる。この反応液から芳香族ウレタン生成物を蒸留、晶
析などの適当な方法で回収する。触媒が存在しないので
、ウレタンを蒸留により回収しても、熱変成等による生
成物の収率低下および品質劣化が起こらない。それによ
り、特に精製を行わなくても、実質的に純粋な芳香族ウ
レタン生成物を高収率で得ることができる。同時に、触
媒のほぼ全量を回収できるため、触媒を全くあるいは殆
ど追加せずに触媒を循環使用することができる。
When the catalyst is separated in the presence of an aliphatic hydrogenated solvent as described above, a reaction solution containing almost no catalyst can be obtained. The aromatic urethane product is recovered from this reaction solution by an appropriate method such as distillation or crystallization. Since there is no catalyst, even if urethane is recovered by distillation, there will be no reduction in product yield or quality deterioration due to thermal denaturation or the like. Thereby, a substantially pure aromatic urethane product can be obtained in high yield without any particular purification. At the same time, since almost the entire amount of catalyst can be recovered, it is possible to recycle the catalyst with little or no additional catalyst.

以下、実施例により本発明をさらに詳細に説明する。実
施例で、オートクレーブは電磁攪拌方式のものを使用し
た。転化率および収率は液体クロマトグラフィーによる
測定結果から算出したものである。
Hereinafter, the present invention will be explained in more detail with reference to Examples. In the examples, an electromagnetic stirring autoclave was used. The conversion rate and yield were calculated from the results of measurements by liquid chromatography.

ス夫」に上 本実施例は、脂肪族系炭化水素溶媒のn−へキサンの共
存下での反応を例示する。
This example illustrates a reaction in the coexistence of an aliphatic hydrocarbon solvent, n-hexane.

内容160mのオートクレーブにニトロベンゼン(NB
) 1.2311g、ピリジン0.3955g、無水塩
化第二鉄0.4055g、5%パラジウム−炭素0.1
064g、脱水エタノール5賊およびn−ヘキサン10
II112を仕込み、内部の空気を一酸化炭素で充分量
置換した後、初圧が80kg/c+d−(Hになるまで
一酸化炭素を充填した。内容物を500rpI11で攪
拌しながら160℃に昇温し、この温度で3時間反応さ
せた。反応終了後、室温まで冷却して後排気し、窒素ガ
スで置換した。
Contents: Nitrobenzene (NB) in a 160m autoclave.
) 1.2311g, pyridine 0.3955g, anhydrous ferric chloride 0.4055g, 5% palladium-carbon 0.1
064g, 5 parts of dehydrated ethanol and 10 parts of n-hexane
After charging II112 and replacing a sufficient amount of the air inside with carbon monoxide, carbon monoxide was charged until the initial pressure became 80 kg/c+d-(H.The contents were heated to 160°C while stirring at 500 rpm I11. After the reaction was completed, the reaction mixture was cooled to room temperature, evacuated, and replaced with nitrogen gas.

得られた反応混合物にn−ヘキサン100mqを添加し
てから濾過し、触媒を不溶分として回収した。
After adding 100 mq of n-hexane to the obtained reaction mixture, it was filtered to recover the catalyst as an insoluble matter.

回収触媒量は0.1214gであった。The amount of recovered catalyst was 0.1214 g.

得られた濾液はほとんど無色透明であった。濾液を分析
し、目的生成物であるエチルフェニルカーバメート(E
PC)の生成量を求め、NB転化率およびRPC収率を
算出した。また、濾液中の全Fe量を吸光光度法により
測定し、仕込みFeCl5中のFe1lに対する割合(
濾液中のFe残存率)を求めた。
The obtained filtrate was almost colorless and transparent. The filtrate was analyzed and the desired product, ethyl phenyl carbamate (E
The production amount of PC) was determined, and the NB conversion rate and RPC yield were calculated. In addition, the total amount of Fe in the filtrate was measured by spectrophotometry, and the ratio to Fe1l in the charged FeCl5 (
The Fe residual rate in the filtrate was determined.

実施±に工 n−ヘキサンに代えて各種の脂肪族系炭化水素を溶媒と
して用いて、実施例1と同様に反応および後処理を行っ
た。
In the experiment, reactions and post-treatments were carried out in the same manner as in Example 1, using various aliphatic hydrocarbons as solvents in place of n-hexane.

北本L[LjL=ニエ n−へキサンに代えて脂肪族炭化水素以外の各種の有機
溶媒を用いて、実施例1と同様に反応および後処理を行
った。
Kitamoto L [LjL=ni] Reaction and post-treatment were carried out in the same manner as in Example 1, using various organic solvents other than aliphatic hydrocarbons in place of n-hexane.

以上の結果をまとめて第1表に示す。The above results are summarized in Table 1.

(以下余白) 第1表 スffi 本発明例は、反応後に脂肪族炭化水素系溶媒を添加して
触媒を分離する例である。
(The following is a blank space) Table 1 ffi The present invention is an example in which an aliphatic hydrocarbon solvent is added after the reaction to separate the catalyst.

内容積1000mのオートクレーブにニトロベンゼン(
NB)36.93g、ピリジン11.87g、無水塩化
第二鉄12.17g、 5%パラジウム−炭素3.19
g、脱水エタノール300鵬を仕込み、実施例1と同様
に反応させ、反応終了後の排気と窒素置換も同様に行っ
た。
Nitrobenzene (
NB) 36.93g, pyridine 11.87g, anhydrous ferric chloride 12.17g, 5% palladium-carbon 3.19g
300g of dehydrated ethanol were charged and reacted in the same manner as in Example 1. After the reaction was completed, evacuation and nitrogen substitution were performed in the same manner.

得られた反応混合物にエタノールtooonmを添加し
てから濾過し、触媒の一部をエタノール不溶分として1
1.30g回収した。ili液を分析したところNB転
化率100%、RPC収率95.4%であった。
After adding too much ethanol to the resulting reaction mixture, it was filtered, and a portion of the catalyst was treated as an ethanol-insoluble component.
1.30g was collected. Analysis of the ili liquid revealed that the NB conversion rate was 100% and the RPC yield was 95.4%.

得られた濾液をロータリーエバポレーターにより減圧濃
縮し、エタノールおよびピリジンを除いた後、濃m液に
n−ヘキサン10100Oを添加し、濾過により不溶分
と濾液とにわけた。この濾液によりさらに11.90g
の触媒が回収された。濾液はほぼ無色透明であり、分析
の結果、生成したEPCの95%が熔解していた。また
濾液中の全Fe量を吸光光度法により測定し、仕込みF
e(:13中のFe量に対する割合(残存率)を求めた
ところ1%であった。
The obtained filtrate was concentrated under reduced pressure using a rotary evaporator to remove ethanol and pyridine, and then 10,100 O of n-hexane was added to the concentrated solution, and the insoluble matter and the filtrate were separated by filtration. With this filtrate, an additional 11.90 g
of catalyst was recovered. The filtrate was almost colorless and transparent, and analysis revealed that 95% of the produced EPC was dissolved. In addition, the total amount of Fe in the filtrate was measured by spectrophotometry, and the
The ratio (residual rate) to the amount of Fe in e(:13) was found to be 1%.

大詣U二用 実施例9と同様に反応を行い、同様にエタノールを添加
してから濾過することにより触媒の一部を分離した。濾
液を分析した結果、NB転化率100%、RPC収率9
5.0%であった。これを実施例9と同様に減圧濃F?
+し、エタノールおよびピリジンを除いた後、濃縮液1
.20gずつをサンプリングし、n−ヘキサン以外の各
種の脂肪族炭化水素系溶媒を100賊ずつ添加して濾過
し、不溶分と濾液とにわけた。濾液中のRPCの量と全
Felとを分析し、[RPCの回収率、Feの残存率を
算出した。
The reaction was carried out in the same manner as in Example 9 for Ohode U2, and a portion of the catalyst was separated by adding ethanol and filtering in the same manner. As a result of analyzing the filtrate, the NB conversion rate was 100% and the RPC yield was 9.
It was 5.0%. This was carried out under reduced pressure in the same manner as in Example 9.
+, and after removing ethanol and pyridine, concentrate 1
.. 20 g each was sampled, 100 g each of various aliphatic hydrocarbon solvents other than n-hexane were added and filtered, and the insoluble matter and the filtrate were separated. The amount of RPC and total Fe in the filtrate were analyzed, and the recovery rate of RPC and the residual rate of Fe were calculated.

ル較撚↓二U 実施例9と同様に反応およびエタノール処理を行って濾
液を得た。この濾液を分析した結果、NB転化率100
%、EPC収率93.0%であった。これを実施例9と
同様に減圧濃縮して、エタノールおよびピリジンを除い
た後、実施例10〜16と同様にサンプリングし、脂肪
族炭化水素系以外の溶媒を用いて処理した。濾液中のR
PCの量と全Fe量とを分析し、RPCの回収率、Pe
の残存率を算出した。
Reaction and ethanol treatment were carried out in the same manner as in Example 9 to obtain a filtrate. As a result of analyzing this filtrate, the NB conversion rate was 100.
%, and the EPC yield was 93.0%. This was concentrated under reduced pressure in the same manner as in Example 9 to remove ethanol and pyridine, and then sampled in the same manner as in Examples 10 to 16 and treated with a solvent other than aliphatic hydrocarbon. R in the filtrate
The amount of PC and the total amount of Fe were analyzed, and the recovery rate of RPC, Pe
The remaining rate was calculated.

以上の結果をまとめて第2表に示す。The above results are summarized in Table 2.

第2表 第1表および第2表より、本発明によれば触媒、特にル
イス酸のほぼ全量を不溶分として回収することができる
のに対し、従来の方法あるいは脂肪族炭化水素系以外の
溶媒を使用した比較例では仕込んだルイス酸の12〜6
5%が濾液中に残存することがわかる。
Table 2 From Tables 1 and 2, it is clear that according to the present invention, almost all of the catalyst, especially the Lewis acid, can be recovered as insoluble matter, whereas conventional methods or solvents other than aliphatic hydrocarbons can be recovered. In the comparative example using Lewis acid 12-6
It can be seen that 5% remains in the filtrate.

(発明の効果) 本発明の方法により、触媒の分離を脂肪族炭化水素系溶
媒の存在下に行うことにより、触媒成分、特に従来法で
は不溶化させにくかったルイス酸を実質的に完全に不溶
化させることができ、ルイス酸のほぼ全量を不溶分とし
て回収することができる。その結果、芳香族ウレタン生
成物のルイス酸による汚染および劣化を防ぐことができ
、次工程の主原料としての芳香族ウレタンの品質および
収率が改善されるとともに、触媒の回収率も向上し、新
たな触媒の補給を最小限に抑えて触媒を循環使用するこ
とができる。また、本発明で触媒の分離に使用した炭化
水素溶媒は、ウレタン生成物を含有する濾液から蒸留に
より回収して反復使用できるので、本発明の方法は単純
でありながら、経済効果の高い方法である。
(Effects of the invention) By separating the catalyst in the presence of an aliphatic hydrocarbon solvent, the method of the present invention substantially completely insolubilizes the catalyst components, especially the Lewis acid, which was difficult to insolubilize using conventional methods. Almost all of the Lewis acid can be recovered as insoluble matter. As a result, it is possible to prevent contamination and deterioration of the aromatic urethane product by Lewis acids, improve the quality and yield of the aromatic urethane as the main raw material for the next process, and improve the recovery rate of the catalyst. The catalyst can be reused with minimal replenishment of new catalyst. In addition, the hydrocarbon solvent used in the present invention to separate the catalyst can be recovered by distillation from the urethane product-containing filtrate and used repeatedly, making the method simple yet economically effective. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ルイス酸(FeCIz)の共存による芳香族
ウレタン(RPC)の熱安定性の低下を示すグラフであ
る。
FIG. 1 is a graph showing a decrease in thermal stability of aromatic urethane (RPC) due to the coexistence of Lewis acid (FeCIz).

Claims (1)

【特許請求の範囲】[Claims] 芳香族ニトロ化合物、含水酸基有機化合物、および一酸
化炭素を、主触媒として白金族金属、助触媒としてルイ
ス酸、および配位子として含窒素ヘテロ芳香族化合物か
らなる触媒系の存在下に反応させて芳香族ウレタンを製
造する方法において、触媒と芳香族ウレタン生成物との
分離を脂肪族炭化水素系溶媒の共存下に行うことを特徴
とする、芳香族ウレタンの製造方法。
An aromatic nitro compound, a hydrous acid group organic compound, and carbon monoxide are reacted in the presence of a catalyst system consisting of a platinum group metal as a main catalyst, a Lewis acid as a promoter, and a nitrogen-containing heteroaromatic compound as a ligand. A method for producing an aromatic urethane, the method comprising: separating a catalyst and an aromatic urethane product in the coexistence of an aliphatic hydrocarbon solvent.
JP28966488A 1988-11-16 1988-11-16 Production of aromatic urethane Pending JPH02138166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28966488A JPH02138166A (en) 1988-11-16 1988-11-16 Production of aromatic urethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28966488A JPH02138166A (en) 1988-11-16 1988-11-16 Production of aromatic urethane

Publications (1)

Publication Number Publication Date
JPH02138166A true JPH02138166A (en) 1990-05-28

Family

ID=17746155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28966488A Pending JPH02138166A (en) 1988-11-16 1988-11-16 Production of aromatic urethane

Country Status (1)

Country Link
JP (1) JPH02138166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297060A (en) * 2006-04-27 2007-11-15 Ajinomoto Co Inc Blister package for syringe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297060A (en) * 2006-04-27 2007-11-15 Ajinomoto Co Inc Blister package for syringe

Similar Documents

Publication Publication Date Title
JPH0617356B2 (en) Method for producing N-methyl carbamate
EP0437258B1 (en) Method of manufacturing aromatic urethane
JPH02138166A (en) Production of aromatic urethane
JP2004262835A (en) Method for producing aromatic isocyanate
US4262130A (en) Process for the production of urethanes
KR890005036B1 (en) Process for the preparation of aromatic urethane and intermediate thereof
US4172948A (en) Preparation of diphenylmethane mono and dicarbamates and polymethylene polyphenyl carbamates
US4469882A (en) Process for the production of aromatic carbamates
JP2804132B2 (en) Purification method of carbamate
JPH06157461A (en) Production of 5,6,7,8-tetrahydroquinolines
KR940003066B1 (en) Method of manufacturing aromatic urethane
US5306842A (en) Method of manufacturing aromatic urethanes
JPH0529349B2 (en)
JPH02229149A (en) Production of aromatic urethane
JPS5811942B2 (en) Aromatic urethane purification method
JPH04235954A (en) Production of urethane compound
JPH02145558A (en) Production of aromatic urethane
JPH0267261A (en) Production of isocyanates
JPH02124866A (en) Production of aromatic urethane
EP0019517A1 (en) Process for the preparation of organic isocyanates from nitro compounds
JPS62111958A (en) Production of aromatic urethane
JPH01261358A (en) Production of aromatic polycarbamate
FR2526799A1 (en) PROCESS FOR THE MANUFACTURE OF POLYURETHANES BY CARBONYLATION OF HYDROXY AROMATIC NITRA DERIVATIVES
JPS63196531A (en) Production of beta-methyl-delta-valerolactone and 3-methylpentane-1, 5-diol
JPS6331461B2 (en)