JPH0213807B2 - - Google Patents

Info

Publication number
JPH0213807B2
JPH0213807B2 JP15923281A JP15923281A JPH0213807B2 JP H0213807 B2 JPH0213807 B2 JP H0213807B2 JP 15923281 A JP15923281 A JP 15923281A JP 15923281 A JP15923281 A JP 15923281A JP H0213807 B2 JPH0213807 B2 JP H0213807B2
Authority
JP
Japan
Prior art keywords
capacitor
viscosity
silicone oil
metallized
polyethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15923281A
Other languages
Japanese (ja)
Other versions
JPS5860522A (en
Inventor
Mikio Sawamura
Akira Tokura
Shusaku Tsujio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichikon KK
Original Assignee
Nichikon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichikon KK filed Critical Nichikon KK
Priority to JP15923281A priority Critical patent/JPS5860522A/en
Publication of JPS5860522A publication Critical patent/JPS5860522A/en
Publication of JPH0213807B2 publication Critical patent/JPH0213807B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

現在、一般的に使用されているコンデンサには
亜鉛やアルミニウムを蒸着した金属化紙と非蒸着
のポリエチレンテレフタレートフイルム(以下
PETフイルムという)、ポリプロピレンフイルム
(以下PPフイルムという)などを薄葉誘電体とし
て巻回したコンデンサ素子に、ポリブテンやアル
キルベンゼンなどの合成絶縁油を含浸して使用さ
れていた。これら使用されている絶縁油、紙およ
びフイルムは燃焼性物質で引火点も低いため、コ
ンデンサに不具合が発生したとき、火災を起す危
険性が十分にある。また、従来タイプの紙および
プラスチツクフイルムからなる薄葉誘電体を用い
たコンデンサに、難燃化を目的として含浸剤をポ
リジメチルシロキサン(以下シリコン油という)
に変更しても、従来より使用されているポリブテ
ンやアルキルベンゼンなどの合成絶縁油の場合に
比較して耐電圧性能の低下が著しく、品質を低下
させる大きな欠点があつた。 そこで上述の点に鑑みて本発明者らは、引火点
の高い難燃性シリコーン油を含浸させることによ
つて、コンデンサの難燃化を図るとともに電気的
特性を維持する目的で、シリコーン油と各種薄葉
誘電体の構成および電極マージン幅と耐電圧性に
ついて種々実験を繰返した結果、耐電圧性能およ
び信頼性が著しく向上することを見出した。 すなわち、金属化ポリエチレンテレフタレート
フイルムと複数のポリエチレンテレフタレートフ
イルムとを重ね合せて巻回してコンデンサ素子を
形成し、該素子にシリコーン油を含浸したことを
特徴とする金属化プラスチツクフイルムコンデン
サである。この場合、シリコーン油の粘度は(温
度25℃にて)50〜300cStの範囲が最適である。 シリコーン油は他の一般の鉱物絶縁油、合成絶
縁油に比べて温度による粘度変化が非常に少く、
他の電気特性も広い温度範囲で一定した性能を示
す。しかし粘度が50cSt以上で300℃以上の高い引
火点を有し、300cStを超えると含浸性が悪くな
る。またさらに金属化ポリエチレンテレフタレー
トフイルムコンデンサの定格電圧と電極マージン
幅との比が0.2〜0.4KVDC/mmの範囲内で構成さ
れていることを特徴とするものである。 以下本発明をさらに詳述する。第1表はポリブ
テン、アルキルベンゼンおよびシリコーン油の代
表的な絶縁油特性を示す。特に注目すべき絶縁破
壊電圧値も有意差のない結果である。
Currently, capacitors commonly used include metallized paper deposited with zinc or aluminum and non-deposited polyethylene terephthalate film (hereinafter referred to as
Capacitor elements were made by winding thin dielectric materials such as PET film (hereinafter referred to as PET film) or polypropylene film (hereinafter referred to as PP film), which were impregnated with synthetic insulating oil such as polybutene or alkylbenzene. The insulating oil, paper, and film used are flammable substances and have a low flash point, so there is a significant risk of a fire if a problem occurs in the capacitor. In addition, for the purpose of flame retardancy, we added an impregnating agent called polydimethylsiloxane (hereinafter referred to as silicone oil) to capacitors that use conventional thin dielectric materials made of paper and plastic film.
Even when the oil was changed to , the withstand voltage performance was significantly lower than that of conventionally used synthetic insulating oils such as polybutene and alkylbenzene, which had the major drawback of deteriorating quality. Therefore, in view of the above points, the present inventors have developed a method for impregnating a capacitor with a flame-retardant silicone oil having a high flash point to make the capacitor flame-retardant and maintain its electrical characteristics. As a result of repeated experiments on the configuration of various thin dielectrics, electrode margin widths, and voltage resistance, we found that voltage resistance and reliability were significantly improved. That is, the metallized plastic film capacitor is characterized in that a capacitor element is formed by overlapping and winding a metallized polyethylene terephthalate film and a plurality of polyethylene terephthalate films, and the element is impregnated with silicone oil. In this case, the optimum viscosity of the silicone oil is in the range of 50 to 300 cSt (at a temperature of 25°C). Compared to other general mineral insulating oils and synthetic insulating oils, silicone oil has very little viscosity change due to temperature.
Other electrical properties also show consistent performance over a wide temperature range. However, when the viscosity is 50 cSt or more, it has a high flash point of 300°C or more, and when it exceeds 300 cSt, the impregnating property becomes poor. Furthermore, the metallized polyethylene terephthalate film capacitor is characterized in that the ratio between the rated voltage and the electrode margin width is within the range of 0.2 to 0.4 KVDC/mm. The present invention will be described in further detail below. Table 1 shows typical insulation oil properties for polybutene, alkylbenzene and silicone oils. The dielectric breakdown voltage value, which is particularly noteworthy, also showed no significant difference.

【表】 しかし、第1図に示す破壊回数―破壊電圧特性
において、従来のポリブテン(図中記号c)やア
ルキルベンゼン(図中記号b)などに比較して、
シリコーン油(図中記号a)の場合回数を追うご
とに破壊電圧値が大きく下がつている。また第2
図の絶縁部会試験法(50℃、8KV、H2ガス)に
よる水素ガス吸収特性図によると、従来のポリブ
テン(図中記号c)、アルキルベンゼン(図中記
号b)などがガス吸収型であるのに対し、シリコ
ーン油(図中記号a)はガス発生型である。従つ
て従来より使用されているポリブテンやアルキル
ベンゼンなどに比較してシリコーン油の低い耐電
圧性能と水素ガス吸収特性のため、シリコーン油
含浸コンデンサの品質は何の対策も実施しない場
合、従来品に比べて著しく低下することになる。 第3図イおよびロはコンデンサの薄葉誘電体の
配置構成図で、1は金属化薄葉誘電体、2は非蒸
着薄葉誘電体、3は電極マージン部、4はメタリ
コン部である。 第2表はシリコーン油の粘度別引火点および
JIS C 2321不燃性絶縁油の燃焼性試験結果につ
いて示す。
[Table] However, compared to conventional polybutene (symbol c in the figure) and alkylbenzene (symbol b in the figure), in terms of the breakdown number-breakdown voltage characteristics shown in Figure 1,
In the case of silicone oil (symbol a in the figure), the breakdown voltage value decreases significantly with each repetition. Also the second
According to the hydrogen gas absorption characteristic diagram shown in the figure using the insulation committee test method (50℃, 8KV, H2 gas), conventional polybutene (symbol c in the figure) and alkylbenzene (symbol b in the figure) are gas absorption types. On the other hand, silicone oil (symbol a in the figure) is a gas-generating type. Therefore, due to silicone oil's lower withstand voltage performance and hydrogen gas absorption properties compared to conventionally used polybutenes and alkylbenzenes, the quality of silicone oil-impregnated capacitors will be lower than conventional products if no measures are taken. This will result in a significant decline. 3A and 3B are arrangement diagrams of the thin dielectric material of the capacitor, where 1 is the metallized thin dielectric material, 2 is the non-evaporated thin dielectric material, 3 is the electrode margin portion, and 4 is the metallicon portion. Table 2 shows the flash point and viscosity of silicone oil.
JIS C 2321 nonflammable insulating oil flammability test results are shown below.

【表】 シリコーン油をこの方法で試験した場合、低燃
度のシリコーン油は燃焼するが、50cSt以上の粘
度の油はすぐには燃焼が始まらない。従つて粘度
50cSt以下の油以外はかなり難燃性であるといえ
る。またコンデンサの含浸性と使用する絶縁油の
粘度とは密接な関係があり、低粘度ほど含浸性は
良い。 そこで上記コンデンサに粘度50,200,300,
500cStのシリコーン油を従来の絶縁油と同じ処理
条件で含浸処理を行ない、各粘度別試料を分解、
目視調査を実施した。 目視判断で粘度50―200―300cSt程度までなれ
ば、十分なシリコーン油の浸潤が観察され、良好
な含浸性を示した。ところが、粘度500cStの場
合、素子端面の浸潤は見られたが、薄葉誘電体相
互間の濡れは十分ではなかつた。 また従来からのポリブテンやアルキルベンゼン
絶縁油の粘度特性も鑑みてシリコーン油を採用す
るに当り、難燃性、含浸性および製造設備条件の
適合性より(温度25℃にて)50cSt〜300cSt粘度
が最適と判断される。 第3表は第3図に示す薄葉誘電体の配置構成に
より、絶縁油、薄葉誘電体および定格電圧と電極
マージン幅との比を種々変えて金属化フイルムコ
ンデンサを製造した条件およびテスト結果を示
す。
[Table] When silicone oils are tested using this method, low-flammability silicone oils will burn, but oils with a viscosity of 50 cSt or higher will not start burning immediately. Therefore the viscosity
It can be said that all oils other than 50 cSt or less are fairly flame retardant. Further, there is a close relationship between the impregnating property of the capacitor and the viscosity of the insulating oil used, and the lower the viscosity, the better the impregnating property. Therefore, the above capacitor has a viscosity of 50, 200, 300,
Impregnating with 500 cSt silicone oil under the same processing conditions as conventional insulating oil, decomposing samples of each viscosity,
A visual inspection was conducted. When the viscosity reached approximately 50-200-300 cSt by visual judgment, sufficient infiltration of silicone oil was observed, indicating good impregnating properties. However, in the case of a viscosity of 500 cSt, although infiltration was observed at the end face of the element, there was insufficient wetting between the thin dielectric layers. In addition, in considering the viscosity characteristics of conventional polybutene and alkylbenzene insulating oils, when adopting silicone oil, a viscosity of 50 cSt to 300 cSt is optimal (at a temperature of 25°C) in terms of flame retardancy, impregnability, and compatibility with manufacturing equipment conditions. It is judged that. Table 3 shows the conditions and test results for manufacturing metallized film capacitors using the thin dielectric arrangement shown in Figure 3 and varying the ratio of insulating oil, thin dielectric material, and rated voltage to electrode margin width. .

【表】 第3表中試料の定格静電容量は8μFで、試料数
はそれぞれ20個製作した。試料群記号中、記号A
およびEは本発明に係る試料で、記号B,C,
D,FおよびGは比較のための試料である。ま
た、薄葉誘電体の欄に記載のMPETは、金属化
ポリエチレンテレフタレート、PETはポリエチ
レンテレフタレートフ、MPは金属化コンデンサ
紙、CPはコンデンサ紙を示す。 第4図は上述の試料を温度範囲を変えて直流コ
ロナ開始(消滅)電圧を測定し、その値と電極マ
ージン幅との比(KVDC/mm)を示したもので、
試料群BとF、または試料群AとGを比較する
と、絶縁油をシリコーン油に変えることにより、
電極マージン幅1mmあたりの直流コロナ開始電圧
(以下DC―CSVという)〔または直流コロナ消滅
電圧(以下DC―CCVという)〕では、試料群B
は試料群Fに対して約60%近くまで低下してい
る。また試料群Aは試料群Gに対して数%低い結
果を示している。これに対してMPETフイルム
およびPETフイルムを用い、かつシリコン油を
含浸して構成された本発明に係る試料群Aは、従
来品に相当する試料群Fに比べて同等以上の優れ
た特性を示した。また試料群BとDを比較した場
合、薄葉誘電体構成枚数を増やすことにより、
DC―CSV、(またはDC―CCV)は改善されてい
る。 第5図は電極マージン幅1mm当りの定格電圧
(KVDC/mm)と、定格電圧に対するDC―CSV
(またはDC―CCV)の電圧比との関係について
示したものである。図中曲線dは薄葉誘電体が第
3図イにおいて、記号1がMPETフイルム、記
号2がPETフイルムを用いてシリコーン油を含
浸したもの、曲線eは同様にしてアルキルベンゼ
ンを含浸したものである。電極マージン幅を増大
させることによりDC―CSVまたはDC―CCVの
向上に繋がるが、製造条件と耐用性、そして経済
性を考慮した場合、定格電圧と電極マージン幅と
の比が0.2〜0.4KVDC/mmの範囲で構成されたも
のが最適となる。この信頼性寿命を確認するた
め、直流V―T試験を行ない、その結果を第6図
に示す。試料群BとFを比較した場合、シリコー
ン油を含浸した試料Bの方が寿命は若干短い。こ
れは直流コロナ量と紙誘電体の耐用性に起因して
いると推定できる。 しかし上述の本発明に係る試料群Aは、従来品
(試料群F)に比較して非常に優れた耐用性を示
すことが実証された。しかも本発明は従来の絶縁
油であるアルキルベンゼンを使用した試料群Gと
も大差のない良好な耐用性を示し、かつ従来品に
比較して、難燃性を有する上に、優れた品質と信
頼性も兼ね備えたコンデンサの製作が可能となつ
た。 叙上のように本発明の金属化フイルムコンデン
サは、PCB油使用禁止以来、強く要求されてき
た難燃化を達成することができ、コンデンサの安
全性に寄与し、工業的ならびに実用的価値の大な
るものである。
[Table] The rated capacitance of the samples in Table 3 is 8 μF, and 20 samples were manufactured for each sample. Among sample group symbols, symbol A
and E are samples according to the present invention, with symbols B, C,
D, F and G are samples for comparison. In addition, MPET described in the thin dielectric column indicates metalized polyethylene terephthalate, PET indicates polyethylene terephthalate, MP indicates metalized capacitor paper, and CP indicates capacitor paper. Figure 4 shows the ratio of the DC corona initiation (annihilation) voltage to the electrode margin width (KVDC/mm) measured by changing the temperature range of the above sample.
Comparing sample groups B and F or sample groups A and G, by changing the insulating oil to silicone oil,
At the DC corona onset voltage (hereinafter referred to as DC-CSV) [or DC corona extinction voltage (hereinafter referred to as DC-CCV)] per 1 mm electrode margin width, sample group B
is reduced to nearly 60% compared to sample group F. Moreover, sample group A shows a result that is several percent lower than sample group G. On the other hand, sample group A according to the present invention, which was constructed using MPET film and PET film and impregnated with silicone oil, exhibited superior properties equivalent to or better than sample group F, which corresponds to conventional products. Ta. Also, when comparing sample groups B and D, by increasing the number of thin dielectric layers,
DC-CSV, (or DC-CCV) has been improved. Figure 5 shows the rated voltage per 1 mm electrode margin width (KVDC/mm) and the DC-CSV against the rated voltage.
(or DC-CCV) voltage ratio. In the figure, curve d is a thin dielectric material impregnated with silicone oil in the same manner as in FIG. Increasing the electrode margin width leads to an improvement in DC-CSV or DC-CCV, but when considering manufacturing conditions, durability, and economic efficiency, the ratio of rated voltage to electrode margin width is 0.2 to 0.4 KVDC/ The optimum configuration is within the mm range. In order to confirm this reliability life, a DC VT test was conducted and the results are shown in FIG. When comparing sample groups B and F, sample B impregnated with silicone oil has a slightly shorter lifespan. This can be assumed to be due to the amount of DC corona and the durability of the paper dielectric. However, it was demonstrated that the sample group A according to the present invention described above exhibits extremely superior durability compared to the conventional product (sample group F). Moreover, the present invention shows good durability with no major difference from Sample Group G using alkylbenzene, which is a conventional insulating oil, and has superior quality and reliability in addition to being flame retardant compared to conventional products. It has now become possible to manufacture a capacitor that has both of these functions. As mentioned above, the metallized film capacitor of the present invention can achieve flame retardancy, which has been strongly required since the ban on the use of PCB oil, contribute to the safety of capacitors, and have industrial and practical value. It is a big thing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種絶縁油の破壊電圧特性図、第2図
は同絶縁油のガス吸収特性図、第3図イ,ロは金
属化フイルムコンデンサの薄葉誘電体の配置構成
図、第4図は直流コロナ開始電圧―温度特性図、
第5図は直流コロナ開始電圧―定格電圧特性図、
第6図は直流V―T試験特性図である。 1:金属化薄葉誘電体、2:非蒸着薄葉誘電
体、3:電極マージン部。
Figure 1 is a breakdown voltage characteristic diagram of various insulating oils, Figure 2 is a gas absorption characteristic diagram of the same insulating oils, Figure 3 A and B are layout diagrams of thin dielectrics in metallized film capacitors, and Figure 4 is DC corona starting voltage-temperature characteristic diagram,
Figure 5 is a DC corona starting voltage vs. rated voltage characteristic diagram.
FIG. 6 is a DC VT test characteristic diagram. 1: metallized thin dielectric, 2: non-evaporated thin dielectric, 3: electrode margin.

Claims (1)

【特許請求の範囲】 1 金属化ポリエチレンテレフタレートフイルム
と複数のポリエチレンテレフタレートフイルムと
を重合わせて巻回してコンデンサ素子を形成し、
該素子にポリジメチルシロキサンを含浸したこと
を特徴とする金属化プラスチツクフイルムコンデ
ンサ。 2 上記ポリジメチルシロキサンの粘度が温度25
℃にて50〜300cStであることを特徴とする特許請
求の範囲第1項記載の金属化プラスチツクフイル
ムコンデンサ。 3 上記金属化ポリエチレンテレフタレートフイ
ルムコンデンサの定格電圧と電極マージン幅との
比が0.2〜0.4KVDC/mmの範囲内で構成されてい
ることを特徴とする特許請求の範囲第1項または
第2項記載の金属化プラスチツクフイルムコンデ
ンサ。
[Claims] 1. A capacitor element is formed by overlapping and winding a metalized polyethylene terephthalate film and a plurality of polyethylene terephthalate films,
A metallized plastic film capacitor characterized in that the element is impregnated with polydimethylsiloxane. 2 The viscosity of the above polydimethylsiloxane is
A metallized plastic film capacitor according to claim 1, characterized in that the metallized plastic film capacitor has a temperature of 50 to 300 cSt at ℃. 3. Claim 1 or 2, characterized in that the ratio of the rated voltage to the electrode margin width of the metallized polyethylene terephthalate film capacitor is within the range of 0.2 to 0.4 KVDC/mm. metallized plastic film capacitor.
JP15923281A 1981-10-05 1981-10-05 Metallized plastic film condenser Granted JPS5860522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15923281A JPS5860522A (en) 1981-10-05 1981-10-05 Metallized plastic film condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15923281A JPS5860522A (en) 1981-10-05 1981-10-05 Metallized plastic film condenser

Publications (2)

Publication Number Publication Date
JPS5860522A JPS5860522A (en) 1983-04-11
JPH0213807B2 true JPH0213807B2 (en) 1990-04-05

Family

ID=15689222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15923281A Granted JPS5860522A (en) 1981-10-05 1981-10-05 Metallized plastic film condenser

Country Status (1)

Country Link
JP (1) JPS5860522A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380515A (en) * 1986-09-24 1988-04-11 松下電器産業株式会社 Metallized film capacitor
JP3392525B2 (en) * 1994-07-27 2003-03-31 ニチコン株式会社 Metallized film capacitors
SE515900C2 (en) * 2000-01-14 2001-10-22 Abb Ab Power capacitor and its use and method

Also Published As

Publication number Publication date
JPS5860522A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
EP0027935B1 (en) Dielectric liquid composition used in an electrical capacitor
US4347169A (en) Electrical insulating oil and oil-filled electrical appliances
JPH0379803B2 (en)
EP0039546B1 (en) Impregnants for metallized paper electrode capacitors
US4744000A (en) Electrical capacitor having improved dielectric system
US4355346A (en) Electrical apparatus having an improved dielectric system
JPS6364213A (en) Insulating oil composition
EP0058904A2 (en) Polyglycol dielectric capacitor fluid
CA1121148A (en) Capacitor with ester dielectric fluid
US2307488A (en) Electric capacitor
JPH0213807B2 (en)
US4097913A (en) Electrical capacitor having an impregnated dielectric system
US4535382A (en) Oil-impregnated capacitor
US4521826A (en) Dielectric fluid for a compacitor
US4626959A (en) Dielectric fluid for metallized capacitors
US4097912A (en) Electrical capacitor having an impregnated dielectric
US4110496A (en) Dielectric system for an electrical apparatus
US4591948A (en) Oil-filled capacitor
KR800000068Y1 (en) Condenser
US4716084A (en) Oil-impregnated capacitor
US3242401A (en) Electrical capacitor and dielectric material therefor
US4613923A (en) Dielectric fluid
EP0171081B1 (en) Oil-filled capacitor
JPS6329767B2 (en)
JPH02304908A (en) Capacitor